×
20.01.2018
218.016.1972

БИОПРИПОЙ ДЛЯ ЛАЗЕРНОЙ СВАРКИ БИОЛОГИЧЕСКИХ ТКАНЕЙ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к медицине и касается биоприпоя для лазерной сварки биологических тканей. Биоприпой содержит водную дисперсионную основу белка альбумина. При этом в его состав введены однослойные углеродные нанотрубки и медицинский краситель индоцианин зеленый при следующем соотношении компонентов, мас.%: альбумин 20-25, однослойные углеродные нанотрубки 0,02÷0,05, индоцианин зеленый 0,01, дистиллированная вода - остальное. Изобретение обеспечивает снижение травматизма и герметизацию шва, в частности, при сварке мелких кровеносных сосудов и каналов, мягких тканей: печени, легких. 1 табл., 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области лазерной техники, используемой в нанотехнологических целях, а именно к способам соединения биологических тканей под действием лазерного излучения.

Лазерная сварка обеспечивает ряд преимуществ относительно традиционных методов соединения биологических тканей (с использованием хирургических шовных материалов, например, иглы и нити). В частности, герметичность и стерильность раны, сосудистый анастомоз, практически незаметные рубцы на местах швов, быстрое соединение тканей и т.п. [1].

Биологический припой (биоприпой), который используется при лазерной сварке, в основном состоит из биологического материала в жидком состоянии, например водной дисперсии альбумина [2]. После завершения процесса лазерной сварки жидкая форма биоприпоя твердеет и в месте соединения биологических тканей образуется прочный шов.

Существующие лазерные биоприпои не обеспечивают должную прочность лазерного шва. Например, известно, что биоприпой для лазерной сварки на основе водной дисперсии альбумина позволяет реализовать прочность на разрыв лазерного шва ~0,05 кПа (свиная кожа) [3], или ~0,43 кПа (кишечник собаки) [4]. Такая прочность является неудовлетворительной, так как на несколько порядков уступает прочности швов, полученных хирургическими методами [5].

Известно, что биоприпой на основе наноматериала, в составе которого присутствует альбумин и углеродные нанотрубки, существенно увеличивает прочность лазерного шва [6 5,6]. При исследовании таких биоприпоев на хрящевой и кожной ткани значения их прочности на разрыв шва составили до 25-30% относительно прочности сплошной ткани в режиме in vitro. Достигнутые предельные значения уступают значениям прочности шва, полученным при традиционных методах сшивания [5].

Наиболее близко к предлагаемому изобретению находится биоприпой, используемый в способе лазерной сварки биологических тканей, характеризующийся тем, что содержит различные белки, выступающие в роли связующего вещества, а также наполнители, такие как поверхностно-активные вещества и многостенные углеродные нанотрубки [7] (прототип). Лазерная сварка с использованием предложенного биоприпоя требует высокой мощности излучения (десятки Ватт), кроме того, процесс сварки занимает несколько минут.

Задача изобретения - получение высокопрочного шва при соединении биологических тканей.

Указанная техническая задача решается тем, что в состав биоприпоя на основе водного раствора белка альбумина введены однослойные углеродные нанотрубки и медицинский краситель индоцианин зеленый при следующем соотношении компонентов, мас.%: альбумин 20-25, однослойные углеродные нанотрубки 0,02÷0,05, индоцианин зеленый 0,01, дистиллированная вода - остальное.

Сущность предлагаемого изобретения состоит в том, что при лазерной сварке из биоприпоя испаряется жидкостная компонента дисперсии, и он затвердевает, при этом происходит структуризация однослойных углеродных нанотрубок (ОУНТ) определенным образом, и тем самым образуется прочный шов на месте соединения тканей. При этом ОУНТ имеет преимущество относительно многослойных углеродных нанотрубок (МУНТ). Например, при высоком уровне диспергации нанотрубок и их одинаковом массовом процентном содержании в матрице биоприпоя на основе ОУНТ реализуется более высокая количественная концентрация нанотрубок в объеме матрицы, чем, в биоприпое на основе МУНТ. Следовательно, создание плотного каркаса в припое наоснове ОУНТ более вероятно, чем в припое на основе МУНТ. Медицинский краситель индоцианин зеленый (ИЦЗ) имеет выраженный максимум поглощения в области 800 нм, что совпадает с длиной волны генерации лазерного излучения (810 нм). Следовательно, данный краситель служит в качестве сильного поглотителя лазерного излучения в биоприпое, кроме этого, энергия излучения эффективно поглощается углеродными нанотрубками. Области, где нанотрубки касаются друг друга, происходит перегрев нанотрубок и сваривание их между собой. В результате образуется прочный каркас из углеродных нанотрубок в матрице из альбумина, что позволяет получить прочный сварной шов.

Практическая применимость предлагаемого способа иллюстрируется указанными ниже шагами изготовления водной дисперсии биоприпоя:

1. К дистиллированной воде добавляют ОУНТ в количестве 0,02-0,1 мас.%, после чего полученную дисперсию перемешивают в магнитной мешалке в течение 30 мин, а затем диспергируют в ультразвуковом диспергаторе при температуре ≤30°С в течение 30 мин до получения однородной дисперсии черного цвета.

2. В водную дисперсию ОУНТ вводят порошок бычий сывороточный альбумин (БСА) в концентрации 20-25 мас.% и затем дисперсию помещают в ультразвуковую баню и диспергируют при температуре ≤40°С в течение 60 мин до получения однородной дисперсии БСА/ОУНТ черного цвета.

3. В водную дисперсию БСА/ОУНТ вводят 0,01 мас.% ИЦЗ, дисперсию диспергируют в ультразвуковую бане при температуре ≤40°С в течение 60 мин.

4. Водную дисперсию БСА/ОУНТ/ИЦЗ деконтируют в течение 24 ч, фильтруют и переливают в другой сосуд.

5. Дисперсия БСА/ОУНТ/ИЦЗ является биоприпоем и используется при лазерной сварке.

6. На соединяемые поверхности тонким слоем наносят биоприпой и максимально приближают друг к другу («под лицо») так, чтобы в области предполагаемого шва практически не оставалось зазора. Лазерный луч диаметром ~0,8-1,0 мм проходит со скоростью 2-5 мм/с по поверхности предполагаемого шва с нанесенным припоем. В зависимости от состава свариваемых тканей подбирается режим работы лазера (диодный лазер с оптоволоконным выводом): удельная мощность излучения 0,02-0,1 МВт/м2, длина волны генерации 810 нм, режим генерации - непрерывный, импульсный. Эмпирический подбор режима лазера позволяет реализовать нужные механические параметры сварного шва.

В таблице 1 приведены результаты измерения (in vitro) прочности на разрыв лазерного шва для некоторых типов ткани (свиная кожа и бычий хрящ). Величины σm и σ показывают прочности на разрыв сплошной ткани и лазерного шва соответственно. Эти величины измерялись динамометром типа AIGUZP-500N с разрешением 0,1 Н, с учетом размеров биологических тканей. Образцам биологических тканей придавалась форма полосок с размерами: длина 25-30 мм, ширина 5-8 мм, толщина 1-2 мм.

На фиг. 1 показана типичная картина лазерного шва, полученная на сканирующем электронном микроскопе. Видны углеродные нанотрубки, которые запутаны или свернуты в жгуты и распределены практически однородно в объеме матрицы. Они создают каркасообразную структуру в матрице альбумина. Поскольку углеродные нанотрубки имеют высокие механические параметры, например высокую прочность на разрыв, следовательно, созданный ими каркас также является прочным. Созданию прочного каркаса способствует добавление ИЦЗ, так как данный краситель обеспечивает сильное поглощение лазерного излучения биоприпоем, перегрев углеродных нанотрубок и сваривание их между собой. В целом, лазерный шов, полученный с применением лазерного биоприпоя в составе БСА/ОУНТ/ИЦЗ, приобретает высокую прочность.

Таким образом, каркасообразная структура ОУНТ в матрице биоприпоя при лазерной сварке обеспечивает высокую механическую прочность шва, т.е. высокую прочность соединения биологических тканей.

Важными преимуществами биоприпоя, изготовленного предложенным способом, относительно известных материалов и прототипа являются [3, 4, 6, 7]:

- его матрица состоит из биологического материала (белок альбумин) и из наполнителей в виде одностенных углеродных нанотрубок и медицинского красителя индоцианина зеленого, и в целом наноматериал является биосовместимым;

- его состав 25 мас.% БСА/0,05 мас.% ОУНТ/0,01 мас. % ИЦЗ при лазерной сварке позволяет реализовать шов, прочность которого достигает до 40% относительно прочности соединяемых хрящевых тканей;

- низкое содержание ОУНТ подчеркивает высокую степень безопасности и биосовместимости материала;

- в его составе уменьшено содержание ОУНТ, а прочность лазерного шва значительно увеличена (см. табл. 1);

- удельная мощность (~0,02-0,1 МВт/м2) лазерного излучения для получения лазерного шва уменьшена в несколько раз;

- скорость лазерной сварки увеличена в несколько раз (~2-5 мм/с),

- диаметр пятна лазерного луча на месте шва 0,6-0,8 мм.

Достоинством биоприпоя для лазерной сварки, полученного предложенным способом, является его высокая эффективность, достигнутая благодаря высокой прочности на разрыв лазерного шва, низкому содержанию углеродных нанотрубок, низкой энергетической нагрузке лазерного излучения на свариваемые ткани и высокой скорости процесса сварки.

Предложенный биоприпой перспективен для применения как в традиционных хирургических процедурах, так и в сложных случаях, где важны снижение травматизма и герметизация шва, в частности при сварке мелких кровеносных сосудов и каналов, мягких тканей: печени, легких и др.

Таким образом, реализовано техническое решение задачи, поставленной в настоящем изобретении. Предложен способ приготовления биоприпоя для лазерной сварки на основе биологического материала альбумина и наполнителя из однослойных углеродных нанотрубок и медицинского красителя индоцианина зеленого. Биоприпой, представляющий собой наноматериал, является биосовместимым.

Источники информации

1. Sawyer P.N. Method for welding biological tissue. - US Patent No. 5,824,015.

2. Forer В., Vasilyev Т., Brosh Т., et al. Lasers in Surgery and Medicine, 9999, 1 (2005).

3. Simhon D., Halpern M., Brosh Т., and et al. Annals of surgery, 245 (2), 206-213 (2007).

4. Bleustein C.B., Felsen D., Poppas D.P. Lasers in Surgery and Medicine, 27 (2), 82-86 (2000).

5. Хенч Л., Джонс Д. Биоматериалы, искусственные органы и инжиниринг тканей. М.: Техносфера. 2007. - 304 с.

6. Герасименко А.Ю., Ичкитидзе Л.П., Подгаецкий В.М., Пономарева О.В., Селищев С.В. / Нанокомпозитный припой для лазерной сварки биологических тканей // Известия вузов. Электроника. 2010. №4. С. 33-41.

7. Патент RU №2425700.

Биоприпой, содержащий водную дисперсионную основу белка альбумина, отличающийся тем, что в состав введены однослойные углеродные нанотрубки и медицинский краситель индоцианин зеленый при следующем соотношении компонентов, мас.%: альбумин 20-25, однослойные углеродные нанотрубки 0,02÷0,05, индоцианин зеленый 0,01, дистиллированная вода - остальное.
БИОПРИПОЙ ДЛЯ ЛАЗЕРНОЙ СВАРКИ БИОЛОГИЧЕСКИХ ТКАНЕЙ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 75.
31.05.2019
№219.017.7122

Энергетически автономное устройство для обнаружения возгораний

Изобретение относится к системам пожарной безопасности, а именно к энергетически автономному устройству для обнаружения возгораний. Устройство содержит температурный чувствительный элемент (1), источник неэлектрической энергии (2), преобразователь неэлектрической энергии в электрическую (3),...
Тип: Изобретение
Номер охранного документа: 0002689633
Дата охранного документа: 28.05.2019
09.06.2019
№219.017.7636

Способ термической очистки углеродных нанотрубок

Изобретение предназначено для термической очистки углеродных нанотрубок. Очищение нанотрубок происходит при контролируемом термическом отжиге на воздухе. Способ термической очистки углеродных нанотрубок осуществляется при контроле процесса отжига нанотрубок путем построения графика зависимости...
Тип: Изобретение
Номер охранного документа: 0002690991
Дата охранного документа: 07.06.2019
13.06.2019
№219.017.80f3

Способ формирования глубокопрофилированных кремниевых структур

Суть настоящего изобретения состоит в формировании глубокопрофилированных кремниевых структур последовательными операциями изотропного и анизотропного травления, причем операцию фотолитографии выполняют на кремниевой структуре, используя фоторезист с гидроизоляционными свойствами. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002691162
Дата охранного документа: 11.06.2019
22.06.2019
№219.017.8e8c

Твердотельный датчик линейных ускорений

Изобретение относится к измерительной технике и может применяться в микромеханических датчиках линейных ускорений. Устройство содержит основание, инерционную массу, упругие элементы. Сформированы две группы раздельных электрически неподвижных емкостных гребенчатых преобразователей. Гребенки...
Тип: Изобретение
Номер охранного документа: 0002692122
Дата охранного документа: 21.06.2019
22.06.2019
№219.017.8ea7

Планарный двухспектральный фотоэлектронный умножитель

Изобретение относится к вакуумной фотоэмиссионной электронике и может быть использовано при конструировании приборов и устройств ночного и ультрафиолетового видения. Фотоэлектронный умножитель состоит из фотокатода на основе полупроводниковых, в том числе и наноструктурированных материалов,...
Тип: Изобретение
Номер охранного документа: 0002692094
Дата охранного документа: 21.06.2019
10.08.2019
№219.017.bd81

Устройство усиления комбинационного рассеяния света

Изобретение относится к оптическим сенсорам и может быть использовано для детектирования различных веществ или иных наноразмерных объектов и определения концентрации веществ в очень малых количествах молекул с использованием комбинационного рассеяния света. Устройство усиления комбинационного...
Тип: Изобретение
Номер охранного документа: 0002696899
Дата охранного документа: 07.08.2019
12.08.2019
№219.017.bedf

Устройство для подключения насоса вспомогательного кровообращения к желудочку сердца человека

Изобретение относится к медицинской технике, а именно к устройству для подключения насоса вспомогательного кровообращения к желудочку сердца человека. Устройство содержит фланцевый патрубок, тканую манжету, хомут и входную канюлю насоса вспомогательного кровообращения. Фланцевый патрубок имеет...
Тип: Изобретение
Номер охранного документа: 0002696685
Дата охранного документа: 05.08.2019
15.08.2019
№219.017.bfe9

Рентгеновский источник и способ генерации рентгеновского излучения

Изобретение относится к рентгеновской технике. Технический результат - повышение интенсивности рентгеновского излучения, увеличение продолжительности срока эксплуатации прибора, расширение перечня излучаемых длин волн, обеспечение возможности выбора количества длин волн и формы рентгеновского...
Тип: Изобретение
Номер охранного документа: 0002697258
Дата охранного документа: 13.08.2019
02.10.2019
№219.017.d016

Способ формирования трехмерных структур топологических элементов функциональных слоев на поверхности подложек

Изобретение относится к производству интегральных микросхем и микроэлектромеханических приборов и может быть использовано для формирования трехмерных структур топологических элементов функциональных слоев на поверхности подложек без использования фотошаблонов и фоторезистивных масок. Способ...
Тип: Изобретение
Номер охранного документа: 0002700231
Дата охранного документа: 13.09.2019
21.10.2019
№219.017.d880

Способ синхронизации в системах с прямым расширением спектра

Изобретение относится к области радиосвязи и может быть использовано для синхронизации фазоманипулированных сигналов в системах связи, работающих в условиях значительного превышения уровня помех и шума над уровнем информационного сигнала. Техническим результатом является избавление от...
Тип: Изобретение
Номер охранного документа: 0002703509
Дата охранного документа: 18.10.2019
Показаны записи 31-33 из 33.
10.08.2019
№219.017.bd81

Устройство усиления комбинационного рассеяния света

Изобретение относится к оптическим сенсорам и может быть использовано для детектирования различных веществ или иных наноразмерных объектов и определения концентрации веществ в очень малых количествах молекул с использованием комбинационного рассеяния света. Устройство усиления комбинационного...
Тип: Изобретение
Номер охранного документа: 0002696899
Дата охранного документа: 07.08.2019
12.08.2019
№219.017.bedf

Устройство для подключения насоса вспомогательного кровообращения к желудочку сердца человека

Изобретение относится к медицинской технике, а именно к устройству для подключения насоса вспомогательного кровообращения к желудочку сердца человека. Устройство содержит фланцевый патрубок, тканую манжету, хомут и входную канюлю насоса вспомогательного кровообращения. Фланцевый патрубок имеет...
Тип: Изобретение
Номер охранного документа: 0002696685
Дата охранного документа: 05.08.2019
07.07.2020
№220.018.3043

Тканеинженерная конструкция для регенерации сердечной ткани

Изобретение относится к медицине и касается тканеинженерной конструкции для регенерации сердечной мышцы, включающей электропроводящий слой композиционного наноматериала из бычьего сывороточного альбумина и наполнителя из одностенных углеродных нанотрубок, содержащей конструкцию из слоев с общей...
Тип: Изобретение
Номер охранного документа: 0002725860
Дата охранного документа: 06.07.2020
+ добавить свой РИД