×
20.01.2018
218.016.145b

Результат интеллектуальной деятельности: Способ определения амплитудно-фазового распределения в раскрыве фазированной антенной решетки

Вид РИД

Изобретение

Аннотация: Изобретение относится к области антенной техники. Осуществляют прием или излучение сигналов фазированной антенной решеткой. Изменяют сдвиги фаз сигналов, проходящих через один или несколько элементов фазированной антенной решетки. Измеряют амплитуды и фазы сигнала, переданного или принятого вспомогательной антенной. Определяют амплитуды и фазы возбуждения элементов. При этом фазированная антенная решетка располагается в такой области, где излучаемое или принимаемое электромагнитное поле представляет собой плоскую электромагнитную волну. Электрические длины от элементов фазированной антенной решетки до входа измерительной аппаратуры произвольны, а плоскость раскрыва фазированной антенной решетки располагают под углом относительно фронта плоской электромагнитной волны. Задают набор из Р направлений луча с координатами (u, v), охватывающий область видимости фазированной антенной решетки. При этом направления луча располагают в области видимости по сетке. Изменяют с помощью фазовращателей сдвиги фаз сигналов, проходящих через элементы фазированной антенной решетки, устанавливая луч фазированной антенной решетки в одно из направлений набора и измеряют амплитуду F и фазу ψсигнала. Затем операции повторяют, каждый раз устанавливая луч фазированной антенной решетки последовательно в остальные направления, определяют амплитудно-фазовое распределение (A, ϕ) на раскрыве фазированной антенной решетки путем обратного дискретного преобразования Фурье. Технический результат заключается в повышении точности и уменьшении времени определения АФР в раскрыве ФАР. 5 ил.

Изобретение относится к области антенной техники и может быть использовано для определения амплитудно-фазового распределения (АФР) в раскрыве фазированной антенной решетки (ФАР).

Известен способ определения АФР в раскрыве ФАР, основанный на измерении амплитуд и фаз поля на заданной поверхности, расположенной в ближней зоне ФАР при модуляции фазовых сдвигов на элементах ФАР [Методы измерения характеристик антенн СВЧ/ Л.Н. Захарьев, А.А. Леманский, В.И. Турчин и др.; Под ред. Н.М. Цейтлина. - М.: Радио и связь, 1985, с. 312-319]. Этот способ реализуется путем поочередного изменения фаз сигналов, проходящих через элементы ФАР, от 0 до 360° и регистрации мощности сигнала, излучаемого с помощью измерительной вспомогательной антенны и принимаемого всей ФАР при каждом фазовом состоянии. Недостатком известного способа является трудность обеспечения высокой точности восстановления АФР, особенно в ФАР с большим числом элементов.

В [Авторское свидетельство СССР №1786452, опубл. 07.01.93] предлагается способ, позволяющий повысить точность определения АФР за счет предварительной установки фазы принятого сигнала в канале каждого излучателя исследуемой ФАР. Предварительная установка фазы принятого сигнала осуществлялась путем L-кратной установки этой фазы по случайному закону, равномерно распределенному в пределах [-π; π]. Однако данный способ также имеет недостатки, суть которых заключается в необходимости сложной статистической обработки измеренных амплитуд и фаз суммарного сигнала, принятого ФАР, необходимости решения системы уравнений, а также необходимости точного взаимного расположения ФАР и зонда с учетом фазового центра зонда.

Наиболее близким по технической сущности к предлагаемому изобретению является способ [Патент RU 2343495 С2, опубл. 10.01.2009], который выбран в качестве прототипа. В этом способе устранен недостаток, связанный с необходимостью точного взаимного расположения ФАР и зонда, благодаря использованию коллиматора, а также не требуется статистическая обработка измеренных амплитуд и фаз суммарного сигнала. Суть способа, заявленного в прототипе, заключается в приеме или излучении сигналов ФАР, изменении сдвигов фаз одного или нескольких элементов ФАР, измерении амплитуды и фазы сигнала, переданного или принятого вспомогательной антенной, определении из измеренных данных амплитуды и фазы возбуждения элементов и вычислении диаграммы направленности ФАР в соответствии с математической моделью

где - диаграмма направленности фазированной антенной решетки;

- комплексная амплитуда n-го элемента фазированной антенной решетки;

- диаграмма направленности n-го элемента фазированной антенной решетки;

N- количество элементов фазированной антенной решетки.

Испытуемая ФАР располагается перед коллиматором в такой области, где излучаемое или принимаемое электромагнитное поле представляет собой плоскую волну, параллельно фронту плоской волны таким образом, чтобы электрические длины путей от элементов ФАР до входа измерительной аппаратуры были одинаковы, а измеренные значения амплитуды и фазы сигнала, переданного или принятого вспомогательной антенной, непосредственно используются для восстановления диаграммы направленности в соответствии с вышеупомянутой математической моделью.

Определение из измеренных данных амплитуд и фаз возбуждения элементов в прототипе осуществляется решением системы линейных уравнений с использованием ДН элемента ФАР. Совокупность амплитуд и фаз возбуждения элементов ФАР, полученная в прототипе, составляет АФР на раскрыве ФАР.

Недостатками прототипа являются:

1. Необходимо измерения проводить в поле плоской волны, создаваемой коллиматором.

2. Необходимо, чтобы у измеряемой ФАР электрические длины путей от элементов ФАР до входа измерительной аппаратуры были одинаковы.

3. В прототипе в процессе измерений требуется перебор всех фазовых состояний каждого фазовращателя, что ведет к значительному увеличению времени измерений.

4. Для выполнения операции определения из измеренных данных амплитуд и фаз возбуждения элементов ФАР (операции определения АФР) необходимо решать систему линейных уравнений большого порядка, что требует значительного времени обработки.

5. При определении АФР (амплитуд и фаз возбуждения элементов) используется ДН одного элемента ФАР, что является источником дополнительных ошибок.

Задачей изобретения является достижение возможности определения АФР ФАР в различных условиях проведения измерений.

Техническим результатом предлагаемого способа является повышение точности и уменьшение времени определения АФР в раскрыве ФАР.

Сущность предлагаемого способа определения амплитудно-фазового распределения в раскрыве фазированной антенной решетки состоит в определении амплитудно-фазового распределения в раскрыве фазированной антенной решетки, включающиего прием или излучение сигналов фазированной антенной решеткой, при этом сигналы переносятся электромагнитным полем, изменение сдвигов фаз сигналов, проходящих через один или несколько элементов фазированной антенной решетки, измерение измерительной аппаратурой амплитуды и фазы сигнала переданного или принятого вспомогательной антенной, определение из измеренных данных амплитуды и фазы возбуждения элементов, при этом фазированная антенная решетка располагается в такой области, где излучаемое или принимаемое электромагнитное поле представляет собой плоскую электромагнитную волну.

Новым в заявляемом изобретении является то, что электрические длины от элементов фазированной антенной решетки до входа измерительной аппаратуры произвольны, плоскость раскрыва фазированной антенной решетки располагают под углом относительно фронта плоской электромагнитной волны, задают набор из Р направлений луча с координатами (us, vs), охватывающий область видимости фазированной антенной решетки, при этом направления луча располагают в области видимости по сетке с шагами Δu и Δv, меньше или равными λ/Lx и λ/Ly соответственно, изменяют с помощью фазовращателей сдвиги фаз сигналов, проходящих через элементы фазированной антенной решетки, устанавливая луч фазированной антенной решетки в одно из направлений набора и измеряют амплитуду Fs и фазу ψs сигнала, затем операции повторяют, каждый раз устанавливая луч фазированной антенной решетки последовательно в остальные направления, определяют амплитудно-фазовое распределение (An, ϕn) на раскрыве фазированной антенной решетки путем обратного дискретного преобразования Фурье:

где An - амплитуда возбуждения элемента с номером n;

ϕn - фаза возбуждения элемента с номером n;

n - номер элемента в раскрыве фазированной антенной решетки;

s - номер направления луча;

Р - количество направлений луча;

us, vs- направление луча с номером s в системе координат (u, v),

u-sin(θ)cos(θ);

v=sin(θ)sin(θ);

θ, ϕ - угловые координаты в сферической системе координат;

Δu, Δv - шаги сетки направлений луча в системе координат (u, v);

Lx - длина фазированной антенной решетки по координате х;

Ly - длина фазированной антенной решетки по координате y;

Fs - амплитуда сигнала, измеренная при направлении луча (us, vs);

ψs - фаза сигнала, измеренная при направлении луча (us, vs);

xn, yn - координаты элемента с номером n в раскрыве фазированной антенной решетки;

k=2π/λ - волновое число;

λ - длина волны сигнала в свободном пространстве.

Согласно предлагаемому способу для определения АФР требуется измерить амплитуды и фазы сигнала. Совокупность измеренных по предлагаемому способу значений амплитуд и фаз сигнала является «множителем направленности» ФАР [Марков Г.Т, Сазонов Д.М. Антенны. -М.: Энергия, 1975, с. 307-310]. АФР в раскрыве плоской ФАР и ее множитель направленности связаны между собой посредством двумерного преобразования Фурье. Аналогичную математическую связь имеют также временные зависимости двумерных сигналов и их двумерные частотные спектры [Даджион Д., Мерсеро Р. Цифровая обработка многомерных сигналов: Пер. с англ. - М.: Мир, 1988. - с. 49].

Для сигналов с ограниченным спектром справедлива теорема Котельникова (теорема отсчетов): если наивысшая частота в спектре функции s(t) меньше чем ƒв, то функция s(t) полностью определяется последовательностью своих значений в моменты, отстоящие друг от друга не более чем на 1/(2ƒв) [Гоноровский И.С.Радиотехнические цепи и сигналы: Учебник для вузов. - 4-е изд., перераб. и доп.- М.: Радио и связь, 1986. - с. 59].

В применении к антенной технике это означает, что, если размеры раскрыва ФАР составляют Lx и Ly, то АФР в раскрыве полностью определяется последовательностями значений двумерного множителя направленности в области видимости, отстоящими друг от друга не более чем на Δu≤λ/Lx и Δv≤λ/Ly.

На Фиг. 1. приведен один из вариантов реализации схемы измерений, где

1 - ФАР;

2 - компьютер;

3 - коммутатор сверхвысокой частоты;

4 - генератор сигнала сверхвысокой частоты;

5 - вспомогательная антенна;

6 - измерительная аппаратура;

7 - блок управления ФАР.

На Фиг. 2 приведен пример раскрыва плоской фазированной антенной решетки.

На Фиг. 3 приведен пример измеренных значений амплитуд сигнала в Р направлениях луча для плоской ФАР, приведенной на Фиг. 2.

На Фиг. 4 приведен пример амплитудного распределения на раскрыве плоской фазированной антенной решетки, определенного по измеренным амплитудам и фазам сигнала.

На Фиг. 5 приведен пример фазового распределения на раскрыве плоской фазированной антенной решетки, определенного по измеренным амплитудам и фазам сигнала.

В режиме работы ФАР (1) на прием определение АФР в раскрыве ФАР осуществляется следующим образом.

ФАР (1) до начала измерений располагается фиксировано относительно фронта плоской электромагнитной волны, в процессе измерений ФАР остается неподвижной. При этом у ФАР электрические длины от различных элементов ФАР до входа измерительной аппаратуры могут быть неодинаковы.

Компьютер (2) дает команду коммутатору (3) пропускать сигнал от генератора (4) на вспомогательную антенну (5), а сигнал, принятый ФАР (1), передавать на измерительную аппаратуру (6).

С помощью генератора (4) генерируется сигнал, который проходит через коммутатор (3) и непрерывно излучается в пространство с помощью вспомогательной антенны (5). Сигнал в пространстве представляет собой электромагнитную волну. Вспомогательная антенна (5) обеспечивает формирование в области расположения ФАР (1) плоского фронта этой электромагнитной волны.

Устанавливают луч ФАР (1) с помощью блока управления ФАР (7) и фазовращателей в заранее заданное направление и принимают сигнал, пришедший от вспомогательной антенны (5). Сигнал от ФАР через коммутатор (3) поступает на измерительную аппаратуру (6), которая измеряет амплитуду и фазу сигнала и запоминает их.

Затем луч ФАР устанавливают в следующее заранее заданных направлений и повторяют измерения. Перечисленные действия повторяют для всех заданных направлений луча. Затем амплитуды и фазы сигнала, измеренные при каждом направлении луча, поступают в компьютер (2), где определяют амплитудно-фазовое распределение (An, ϕn) на раскрыве фазированной антенной решетки путем обратного дискретного преобразования Фурье:

где An - амплитуда возбуждения элемента с номером n;

ϕn - фаза возбуждения элемента с номером n;

n - номер элемента в раскрыве фазированной антенной решетки;

s - номер направления луча;

Р - количество направлений луча;

us, vs - направление луча с номером s в системе координат (u, v),

u=sin(θ)cos(ϕ);

v=sin(θ)sin(ϕ);

θ,ϕ - угловые координаты в сферической системе координат;

Δu, Δv - шаг сетки направлений луча в системе координат (u, v);

Lx - длина фазированной антенной решетки по координате х;

Ly - длина фазированной антенной решетки по координате y;

Fs- амплитуда сигнала, измеренная при направлении луча (us, vs);

ψs - фаза сигнала, измеренная при направлении луча (us, vs);

xn, yn - координаты элемента с номером n в раскрыве фазированной антенной решетки;

k=2π/λ - волновое число;

λ - длина волны сигнала в свободном пространстве.

Предлагаемый способ в случае излучения сигнала ФАР может быть осуществлен аналогичным образом. Компьютер (2) дает команду коммутатору (3) пропускать сигнал от генератора сигнала на ФАР (1), а сигнал, принятый вспомогательной антенной (5), передавать на измерительную аппаратуру (6). При этом сигнал излучается самой ФАР (1) и принимается вспомогательной антенной. Измерения амплитуд и фаз сигнала на передачу проводят по тем же операциям, что и на прием.

В процессе проведения измерений плоский фронт электромагнитной волны может быть сформирован как посредством использования коллиматора, так и удалением вспомогательной антенны в дальнюю зону ФАР. Главным условием в заявляемом изобретении является формирование плоского фронта электромагнитной волны в области расположения ФАР.

Приведем пример определения АФР, плоской ФАР с прямоугольным раскрывом, приведенной на Фиг. 2. Длина ФАР по координате X составляет Lx=12λ, длина ФАР по координате Y составляет Ly=6λ. Шаги сетки измерений амплитуды и фазы сигнала выбираем равными Δu=(1/12.5), Δv=(1/6.5). Задаем количество измерений сигналов при отклонениях луча во всей области видимости Р=25*13=325. Измеренные значения амплитуд сигнала приведены на Фиг. 3. Согласно формуле изобретения определяем АФР путем обратного дискретного преобразования Фурье:

В результате получаем амплитудное распределение на раскрыве плоской ФАР, приведенное на Фиг. 4, и фазовое распределение на раскрыве плоской ФАР, приведенное на Фиг. 5.

Предлагаемый способ свободен от недостатков, присущих прототипу, поскольку:

1) в предлагаемом способе измерения можно проводить как в малогабаритных безэховых камерах, использующих коллиматор, так и в условиях полигонов при установке вспомогательной антенны в дальней зоне;

2) в предлагаемом способе не требуется, чтобы электрические длины путей от элементов ФАР до входа измерительной аппаратуры были одинаковы;

3) в предлагаемом способе не требуется перебор всех фазовых состояний каждого фазовращателя;

4) для определения АФР (амплитуд и фаз возбуждения элементов ФАР) из измеренных данных в предлагаемом способе необходимо применить обратное дискретное преобразование Фурье, что сокращает время обработки измеренных данных относительно прототипа.

5) в предлагаемом способе ДН одного элемента ФАР не используется. Перечисленные преимущества предлагаемого способа позволяют считать способ универсальным по организации условий проведения измерений, а также повысить точность и уменьшить время определения АФР в раскрыве ФАР. Точность определения АФР в раскрыве ФАР в предлагаемом способе повышается за счет исключения из процедуры определения АФР ДН одного элемента ФАР. Так как перебора всех фазовых состояний каждого фазовращателя не требуется, обеспечивается уменьшение времени определения АФР в раскрыве ФАР в предлагаемом способе.


Способ определения амплитудно-фазового распределения в раскрыве фазированной антенной решетки
Способ определения амплитудно-фазового распределения в раскрыве фазированной антенной решетки
Способ определения амплитудно-фазового распределения в раскрыве фазированной антенной решетки
Способ определения амплитудно-фазового распределения в раскрыве фазированной антенной решетки
Способ определения амплитудно-фазового распределения в раскрыве фазированной антенной решетки
Способ определения амплитудно-фазового распределения в раскрыве фазированной антенной решетки
Способ определения амплитудно-фазового распределения в раскрыве фазированной антенной решетки
Источник поступления информации: Роспатент

Показаны записи 31-40 из 68.
27.10.2018
№218.016.9775

Резьбовое соединение деталей

Изобретение относится к области машиностроения и может быть использовано в соединениях высоконагруженных элементов. Резьбовое соединение деталей содержит первую деталь с резьбовым отверстием, вторую деталь со сквозным отверстием, шпильку, первую пружину, вторую пружину, шайбу, гайку. В первой...
Тип: Изобретение
Номер охранного документа: 0002670950
Дата охранного документа: 25.10.2018
09.11.2018
№218.016.9b40

Способ нанесения медного покрытия на полиэфирэфиркетон

Изобретение относится к нанесению медного покрытия на полиэфирэфиркентон и может быть использовано в радиотехнической промышленности, приборостроении, авиационной промышленности. Способ включает обезжиривание полиэфирэфиркентона в растворе спиртонефрасовой смеси, дополнительное химическое...
Тип: Изобретение
Номер охранного документа: 0002671988
Дата охранного документа: 08.11.2018
02.12.2018
№218.016.a2a5

Устройство цифровой обработки сигналов в импульсно-доплеровской рлс с компенсацией миграции целей по дальности

Изобретение относится к области радиолокации и предназначено для использования в импульсно-доплеровских (ИД) радиолокационных станциях (РЛС), работающих с высокой частотой повторения импульсов. Достигаемый технический результат - увеличение отношения сигнал-шум, повышение разрешения по...
Тип: Изобретение
Номер охранного документа: 0002673679
Дата охранного документа: 29.11.2018
07.12.2018
№218.016.a475

Полимерная композиция для поглощения высокочастотной энергии

Изобретение относится к радиоэлектронной технике, в частности к получению полимерных композиций, предназначенных для поглощения энергии паразитных типов волн в диаграммообразующих устройствах квазиоптического типа многолучевых антенных решеток, выполненных на фольгированных СВЧ-диэлектриках на...
Тип: Изобретение
Номер охранного документа: 0002674193
Дата охранного документа: 05.12.2018
28.02.2019
№219.016.c83d

Волноводный уголок

Изобретение относится к радиотехнической промышленности и может быть использовано в волноводной СВЧ-технике. Волноводный уголок состоит из входного и выходного волноводов, расположенных под прямым углом один относительно другого. Во входном и выходном волноводах из одного в другой...
Тип: Изобретение
Номер охранного документа: 0002680731
Дата охранного документа: 26.02.2019
28.02.2019
№219.016.c84b

Антенный излучатель

Предлагаемое изобретение относится к антенной технике и может быть использовано для создания бортовых антенн, применяемых в системах связи. Антенный излучатель содержит основание (1) с окном (2), первую гребенку (3), вторую гребенку (4), первый волновод (5), второй волновод (6), уголок (7), две...
Тип: Изобретение
Номер охранного документа: 0002680733
Дата охранного документа: 26.02.2019
28.02.2019
№219.016.c857

Способ формирования пеленгационных диаграмм направленности в антенне кругового электронного сканирования

Изобретение относится к радиотехнике, в частности к антенной технике, и может быть использовано в прицельных радиолокационных станциях. Способ формирования пеленгационных ДН (суммарной и разностной одновременно) в АКЭС основан на размещении на цилиндрической поверхности антенны излучателей,...
Тип: Изобретение
Номер охранного документа: 0002680732
Дата охранного документа: 26.02.2019
28.02.2019
№219.016.c86c

Способ формирования пеленгационных диаграмм направленности в антенне кругового электронного сканирования

Изобретение относится к радиотехнике, в частности к антенной технике, и может быть использовано в прицельных радиолокационных станциях. Способ формирования пеленгационных ДН в антенне кругового электронного сканирования основан на размещении на цилиндрической поверхности антенны излучателей,...
Тип: Изобретение
Номер охранного документа: 0002680729
Дата охранного документа: 26.02.2019
02.03.2019
№219.016.d1b7

Свч-фазовращатель на микрополосковых линиях передачи дециметрового диапазона длин волн

Изобретение относится к области радиотехники, в частности к фазовращателям. СВЧ-фазовращатель на микрополосковых линиях передачи дециметрового диапазона длин волн содержит два совмещенных pin-диодных разряда 11,25° и 5,625° на нагруженной линии, в каждом по два pin-диода. Катоды pin-диодов...
Тип: Изобретение
Номер охранного документа: 0002680859
Дата охранного документа: 28.02.2019
23.03.2019
№219.016.ec8f

Устройство наземного контроля радиолокационной системы управления

Изобретение относится к области радиолокации, в частности к устройствам контроля работоспособности радиолокационных систем. Достигаемый технический результат – обеспечение синхронной работы устройства наземного контроля радиолокационной системы управления в режиме реального времени. Указанный...
Тип: Изобретение
Номер охранного документа: 0002682716
Дата охранного документа: 21.03.2019
Показаны записи 31-40 из 42.
17.04.2019
№219.017.15c4

Способ формирования диаграммы направленности в антенной системе с электронным управлением лучом

Изобретение относится к области радиолокации. Техническим результатом является уменьшение уровня компенсационной диаграммы направленности в антенной системе с электронным управлением лучом на любой частоте в рабочем диапазоне частот. Для достижения технического результата сформированная...
Тип: Изобретение
Номер охранного документа: 0002395141
Дата охранного документа: 20.07.2010
18.05.2019
№219.017.5606

Двухдиапазонная антенная система с электронным управлением лучом

Изобретение относится к радиолокационной технике и средствам связи и может быть использовано в радиолокационных станциях для определения координат цели и ее моноимпульсной пеленгации на базе двумерного электронного сканирования. Технический результат - снижение уровня боковых лепестков и...
Тип: Изобретение
Номер охранного документа: 0002349007
Дата охранного документа: 10.03.2009
29.05.2019
№219.017.6756

Приемопередающая антенна с вертикальной поляризацией

Изобретение относится к области радиотехники, в частности к антенной технике, и может быть использовано в радиолокации, связи и других антенных системах, размещенных на летательных аппаратах. Техническим результатом предлагаемого изобретения является повышение коэффициента усиления и...
Тип: Изобретение
Номер охранного документа: 0002320059
Дата охранного документа: 20.03.2008
09.06.2019
№219.017.7a15

Приемо-передающая антенна с вертикальной поляризацией

Изобретение относится к антенной технике и может быть использовано в антенных системах, размещенных на летательных аппаратах. Технический результат заключается в повышении коэффициента усиления и механической прочности. Сущность изобретения состоит в том, что в приемо-передающей антенне с...
Тип: Изобретение
Номер охранного документа: 0002313868
Дата охранного документа: 27.12.2007
09.06.2019
№219.017.7da2

Самолетная антенная решетка

Предлагаемое изобретение относится к антенной технике, в частности к фазированным антенным решеткам, устанавливаемым на борту летательных аппаратов. Самолетная антенная решетка содержит n излучателей, закрепленных на передней стенке носка крыла самолета, закрытых съемным обтекателем, и n...
Тип: Изобретение
Номер охранного документа: 0002453955
Дата охранного документа: 20.06.2012
19.06.2019
№219.017.8817

Направленный ответвитель

Изобретение относится к области радиотехники и может быть использовано в радиолокации, радионавигации, связи, антенных системах и радиоизмерениях как самостоятельное устройство, а также в качестве функционального узла для построения делителей мощности, смесителей, модуляторов, дискриминаторов,...
Тип: Изобретение
Номер охранного документа: 0002364997
Дата охранного документа: 20.08.2009
22.06.2019
№219.017.8ebc

Способ определения амплитудно-фазового распределения в раскрыве фазированной антенной решетки

Изобретение относится к области антенной техники. Способ определения амплитудно-фазового распределения в раскрыве фазированной антенной решетки, включающий прием или излучение сигналов фазированной антенной решеткой, при этом сигналы переносятся электромагнитным полем. Далее производят...
Тип: Изобретение
Номер охранного документа: 0002692125
Дата охранного документа: 21.06.2019
06.07.2019
№219.017.a7f3

Фазированная антенная решетка

Изобретение относится к радиотехнической промышленности и может использоваться в СВЧ антенной технике в составе фазированных антенных решеток, использующих моноимпульсный метод пеленгации. Техническим результатом является снижение уровня боковых лепестков разностной диаграммы направленности в...
Тип: Изобретение
Номер охранного документа: 0002398319
Дата охранного документа: 27.08.2010
23.08.2019
№219.017.c261

Способ измерения пеленгационных ошибок системы антенна-обтекатель радиолокационной станции

Изобретение относится к радиолокационной технике. Способ основан на измерении углового смещения пространственного положения минимума, формируемого разностными ДН антенны на заданных углах поворота ее по азимуту и крену и определении пеленгационных ошибок в зависимости от этих углов. До...
Тип: Изобретение
Номер охранного документа: 0002697883
Дата охранного документа: 21.08.2019
19.12.2019
№219.017.ef35

Способ определения диаграммы направленности фазированной антенной решетки

Изобретение относится к области антенной техники и может быть использовано для определения характеристик фазированных антенных решеток. Способ заключается в приеме сигналов, переносимых электромагнитным полем, изменении сдвигов фаз сигналов, проходящих через один или несколько элементов...
Тип: Изобретение
Номер охранного документа: 0002709417
Дата охранного документа: 17.12.2019
+ добавить свой РИД