×
20.01.2018
218.016.101f

СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА). Способ изготовления СТР КА включает проверки суммарных негерметичностей жидкостного тракта и двухфазного контура (ДФК) перед заправкой их соответствующими теплоносителями. В процессе изготовления ДФК дополнительно контролируют с использованием пробного газа в вакуумной камере межполостную негерметичность между паровой полостью и жидкостной полостью капиллярного насоса, сообщив отвакуумированную жидкостную полость с течеискателем, обеспечив подачу в паровую полость пробного газа давлением, равным максимальному рабочему давлению аммиака. Перед запуском КА на орбиту с помощью специального программного обеспечения работы электрообогревателей компенсатора объема обеспечивают повышение минимального давления на входе в электронасосный агрегат (ЭНА) до определенной величины, гарантирующей с высокой надежностью бескавитационную работу ЭНА в условиях эксплуатации. Техническим результатом изобретения является повышение надежности работы СТР КА в условиях длительной эксплуатации на орбите. 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к созданию и эксплуатации систем терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников с жидкостными контурами охлаждения их приборов.

Известны способы изготовления таких жидкостных контуров - патенты RU 2238886 [1] (принят авторами за прототип), RU 4481255 [2], которые включают (см. фиг. 1, где: 1 - жидкостный контур с теплоносителем; 1.1 - электронасосный агрегат (ЭНА); 1.2 - жидкостные коллекторы панелей, на которых установлены приборы КА; 1.3 - жидкостные тракты радиатора (излучательного); 1.5 - компенсатор объема, содержащий жидкостную полость 1.5.1, заполненную жидким теплоносителем, и газовую полость 1.5.2, заправленную двухфазным рабочим телом; 1.5.3 - сильфон; 1.5.4 - электрообогреватели) до заправки жидким теплоносителем жидкостного контура, например ЛЗ-ТК-2, и до заправки газовой полости компенсатора объема двухфазным рабочим телом, например фреоном 141в, проверки соответствующих величин их суммарных негерметичностей в вакуумной камере с использованием пробного газа (например, гелия) на соответствие требуемым нормам при максимальных рабочих давлениях.

В настоящее время, например, для КА «Экспресс-АМ5» величины максимальных и минимальных рабочих давлений соответственно следующие: давления в газовой и жидкостной полостях, а также на входе в ЭНА близки друг к другу: ≈ 1,15 кгс/см2 и ≈ 0,5 кгс/см2 (обусловлены величиной поддерживаемого при эксплуатации диапазона изменения температуры фреона 141в в газовой полости от 35°С до 15°С в результате соответствующей работы электрообогревателей), а давления на выходе из ЭНА соответственно больше на величину перепада давлений работающего ЭНА и равны ≈ 2 кгс/см2 и ≈ 1,35 кгс/см2.

Так как в условиях эксплуатации давления в газовой и жидкостной полостях в текущие моменты времени одинаковы и они герметичны (удовлетворяют требуемым нормам), взаимное проникновение теплоносителя ЛЗ-ТК-2 и рабочего тела фреона 141в в газовую и жидкостную полости пренебрежимо мало и, следовательно, в теплоносителе ЛЗ-ТК-2 в условиях эксплуатации (до 19 лет) не имеется растворенного фреона 141в и по этой причине отсутствует влияние фреона 141в на бескавитационную работу ЭНА.

Однако когда СТР мощного КА (см. фиг 2, где: 1 - жидкостный контур; 1.1 - электронасосный агрегат (ЭНА); 1.2 - жидкостные коллекторы панелей, на которых установлены приборы КА; компенсатор объема 1.5, содержащий жидкостную полость 1.5.1, заполненную жидким теплоносителем, и газовую полость 1.5.2, заправленную двухфазным рабочим телом; 1.5.3 - сильфон; 1.5.4 - электрообогреватели; 2 - двухфазный контур; 2.1 - капиллярный насос (контурная тепловая труба); 2.1.1 - полость с парами аммиака (паровая полость); 2.1.2 - полость с жидким теплоносителем ЛЗ-ТК-2 (жидкостная полость); 2.2.3 - капиллярная структура; 2.4 - радиатор (излучательный), в жидкостном тракте которого циркулирует двухфазный аммиак) выполнена на основе технического решения - см. заявку № RU 2007108169 (опубликована Роспатентом 10.09.2008 г.) [3], то без принятия специальных конкретных мер по обеспечению суммарной негерметичности между полостями с аммиаком и ЛЗ-ТК-2 не более определенной величины (которые не затребованы в известных [1], [2], [3]) может привести постепенно сперва к появлению пузырей паров аммиака допустимой концентрации в теплоносителе на входе в ЭНА без нарушения устойчивого режима его работы, а затем - к кавитации в ЭНА и к полному прекращению циркуляции теплоносителя в жидкостном контуре, поскольку, хотя величины суммарной негерметичности в жидкостном контуре с теплоносителем (ЛЗ-ТК-2), в газовой полости компенсатора объема с рабочим телом (двухфазным фреоном 141в) и в двухфазном контуре (ДФК) с аммиаком удовлетворяют соответствующим заданным нормам, т.е. каждый из них герметичен, влияние аммиака на работу ЭНА может быть существенно отрицательным, т.к. при рабочих температурах в капиллярном насосе (около 55°С) рабочее давление паров аммиака (≈ 25 кгс/см2) существенно выше рабочего давления теплоносителя ЛЗ-ТК-2 (≈ 1,25 кгс/см2 в районе капиллярного насоса) и из-за этого возможно проникновение недопустимого количества паров аммиака в жидкостный контур с теплоносителем ЛЗ-ТК-2.

В известных технических решениях [1]-[3] нет требования, как технологически или конструктивно обеспечить проникновение аммиака в жидкостный контур с ЛЗ-ТК-2 в таком количестве, чтобы работоспособность СТР при этом гарантировалась в течение не менее 15,5 лет, т.е. известные технические решения обеспечивают недостаточно высокую надежность работы СТР в течение требуемого срока эксплуатации.

Целью предлагаемого авторами данного технического решения является устранение вышеуказанного существенного недостатка.

Поставленная цель достигается тем, что в способе изготовления СТР КА, предусматривающем соответствующие проверки суммарных негерметичностей жидкостного тракта, включающего жидкостный контур с электронасосным агрегатом, жидкостные полости компенсатора объема и капиллярного насоса, перед заправкой его жидким деаэрированным теплоносителем, например ЛЗ-ТК-2, газовой полости компенсатора объема перед заправкой ее двухфазным рабочим телом, например фреоном 141в; двухфазного контура, сообщенного в тепловом отношении с жидкостным контуром с помощью жидкостной и паровой полостей капиллярного насоса, перед заправкой его двухфазным рабочим телом, например аммиаком; в вакуумной камере с использованием пробного газа, например гелия, в процессе изготовления двухфазного контура до его заправки дополнительно контролируют величину суммарной негерметичности между полостями капиллярного насоса, при этом его отвакуумированную жидкостную полость сообщают с течеискателем, а в паровую полость подают пробный газ давлением, равным максимальному давлению насыщенных паров двухфазного рабочего тела в паровой полости в условиях эксплуатации аппарата на орбите, которая должна удовлетворять следующему условию:

Qут.г≤Кам-г⋅mам.доп,

где Qут.г - допустимая суммарная межполостная негерметичность пробного газа между полостями: паровая полость - жидкостная полость капиллярного насоса, Вт;

Кам-г - опытный коэффициент пересчета относительно пробного газа допустимых утечек двухфазного рабочего тела двухфазного контура из паровой полости в жидкостную полость капиллярного насоса (mам.доп; кг) в течение всего срока эксплуатации аппарата, Вт/кг;

mам.допам⋅Vж.к.цир⋅υдоп;

ρам - плотность паров аммиака при минимальной рабочей температуре при испытаниях на герметичность и минимально допустимом, исключающем кавитацию в электронасосном агрегате давлении жидкого теплоносителя на входе в него при отсутствии допустимых пузырей газа согласно опытным данным, кг/м3;

Vж.к.цир - максимальный объем циркулирующего жидкого теплоносителя в жидкостном контуре, м3;

υдоп - допустимая доля объема нерастворенных паровых пузырей аммиака в теплоносителе на входе в электронасосный агрегат при минимально допустимом давлении, обеспечивающая устойчивый режим его работы: согласно опытным данным не более 0,02-0,05,

при этом в условиях эксплуатации посредством повышения минимально допустимой рабочей температуры рабочего тела в газовой полости компенсатора объема на входе в электронасосный агрегат обеспечивают повышение минимально допустимого рабочего давления до величины (кгс/см2):

где Рпарц.ам - парциальное давление, достаточное для растворения паров рабочего тела до входа в электронасосный агрегат, поступившего из жидкостной полости капиллярного насоса в жидкостный контур в течение срока эксплуатации аппарата на орбите, согласно опытным данным, кгс/см2,

что и является, по мнению авторов, существенными признаками предлагаемого авторами технического решения.

В результате анализа известной патентной и научно-технической литературы, проведенного авторами, предложенное сочетание существенных признаков заявляемого технического решения в известных источниках информации не обнаружено, и следовательно, известные технические решения не проявляют тех же свойств, что в заявляемом способе изготовления системы терморегулирования космического аппарата.

На фиг. 2 изображена принципиальная схема реализации предлагаемого технического решения.

Предлагаемый способ изготовления СТР КА включает в себя нижеуказанные операции, выполняемые в следующей последовательности:

- в процессе изготовления перед заправками штатными деаэрированными теплоносителями (например, соответственно фреоном 141в, аммиаком, ЛЗ-ТК-2) осуществляют проверки величин суммарной негерметичности методом вакуумирования в вакуумной камере с использованием пробного газа (например, гелия) с контрольной течью согласно ОСТ 92-1527-89 [4]:

- газовой полости компенсатора объема при давлении гелия, равном максимальному рабочему давлению паров фреона 141в (например, 1,15 кгс/см2): при этом измеренное значение суммарной негерметичности должно быть, например, не более 1,333⋅10-7 Вт (после этого заправляют газовую полость требуемым количеством фреона 141в и герметизируют ее);

- двухфазного контура, в котором в условиях эксплуатации циркулирует двухфазное рабочее тело - аммиак, при давлении гелия, равном максимальному давлению насыщенных паров аммиака (например, 25 кгс/см2) в условиях эксплуатации КА на орбите: при этом измеренное значение суммарной негерметичности должно быть, например, не более 1,333⋅10-8 Вт;

- после выполнения предыдущей операции выполняют следующую дополнительную операцию (которую разрешается выполнять на любом этапе изготовления двухфазного контура до его заправки, в том числе на этапе изготовления собственно капиллярного насоса):

дополнительно контролируют величину суммарной негерметичности между полостями капиллярного насоса, при этом его отвакуумированную жидкостную полость сообщают с течеискателем, а в паровую полость подают пробный газ давлением, равным максимальному давлению насыщенных паров двухфазного рабочего тела в паровой полости (например, 25 кгс/см2) в условиях эксплуатации аппарата на орбите, которая должна удовлетворять следующему условию:

Qут.г.≤Кам-г⋅mам.доп,

где Qут.г. - допустимая суммарная межполостная негерметичность пробного газа между полостями: паровая полость - жидкостная полость капиллярного насоса, например, не более 6,67⋅10-9, Вт;

Кам-г - опытный коэффициент пересчета относительно пробного газа допустимых утечек двухфазного рабочего тела двухфазного контура из паровой полости в жидкостную полость капиллярного насоса (mам.доп; кг) в течение всего срока эксплуатации аппарата, Вт/кг (для перепада давлений между полостями, равного 25 кгс/см2, согласно опытным данным Кам-г=6,67⋅10-5 Вт/кг);

mам.допам⋅Vж.к.цир⋅υдоп;

ρам - плотность паров аммиака при минимальной рабочей температуре, равной минимальной температуре при испытаниях на герметичность (≈ 15°С), и минимально допустимом, исключающем кавитацию в ЭНА давлении жидкого теплоносителя на входе в электронасосный агрегат в течение всего срока эксплуатации КА на орбите (≈ 0,3 кгс/см2 согласно данным эксплуатации КА на орбите в течение более 15,5 лет) при отсутствии допустимых пузырей газа согласно опытным данным, 0,23 кг/м3 (чем меньше минимальное давление на входе в ЭНА, тем меньше давление в жидкостном контуре и, следовательно, тем меньше утечки ЛЗ-ТК-2 на орбите);

Vж.к.цир - максимальный объем циркулирующего жидкого теплоносителя в жидкостном контуре, м3 (не более 9⋅10-3 м3 согласно статистике);

υдоп≤0,02-0,05 - допустимая, опытно определенная доля объема нерастворенных паровых пузырей аммиака в теплоносителе на входе в квалифицированный ЭНА при минимально допустимом давлении, обеспечивающая устойчивый режим его работы;

- после вышеуказанного контроля величины суммарных негерметичностей с положительными результатами заправляют жидкостный контур теплоносителем ЛЗ-ТК-2, а ДФК - аммиаком, герметизируют их, осуществляют наземные электрические испытания КА и перед запуском его на орбиту реализуют такое программное обеспечение работы электрообогревателей компенсатора объема, которое реализует повышение минимально допустимой рабочей температуры рабочего тела в газовой полости компенсатора объема на входе в электронасосный агрегат (в нашем случае на ≈ 5°С) и обеспечивает повышение минимально допустимого рабочего давления до величины (кгс/см2), обеспечивающей отсутствие нерастворенных пузырей в теплоносителе жидкостного контура и гарантирующей с высокой надежностью бескавитационную работу ЭНА на орбите рассматриваемого КА:

где Рпарц.ам=0,135 кгс/см2 - парциальное давление, достаточное для растворения паров рабочего тела до входа в ЭНА, поступающих из жидкостной полости капиллярного насоса в жидкостный контур в течение срока эксплуатации аппарата на орбите согласно опытным данным, кгс/см2.

Следует отметить, что допускается включение в работу вышеуказанного программного обеспечения в течение эксплуатации КА на орбите, если на борту КА по телеметрии периодически контролируется расход теплоносителя, обеспечиваемого ЭНА: как показывает анализ, если расход уменьшится на (1-2)%, то необходимо включить в работу вышеуказанное программное обеспечение, тем самым повысив давление теплоносителя на входе в ЭНА до требуемой величины (например, на 0,135 кгс/см2) по сравнению с исходным давлением.

Таким образом, как следует из вышеизложенного, в результате изготовления СТР вновь разрабатываемого КА согласно предложенному авторами техническому решению гарантированно обеспечивается требуемый стабильный расход теплоносителя в жидкостном контуре СТР в течение длительного (не менее 15,5 лет) требуемого срока эксплуатации КА на орбите, т.е. тем самым обеспечивается повышение надежности работы СТР КА в условиях эксплуатации на орбите, одновременно обеспечив при этом минимально возможные утечки теплоносителя из жидкостного контура.


СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 229.
10.04.2013
№216.012.33fa

Электропривод с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в электроприводах механических систем космических аппаратов, в приводах другого назначения и в других областях техники. Электропривод с трехступенчатым планетарным редуктором содержит электродвигатель (1), редуктор с быстроходным...
Тип: Изобретение
Номер охранного документа: 0002478849
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.33fb

Электропривод с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в качестве электропривода, например, на космическом аппарате. Электропривод с трехступенчатым планетарным редуктором содержит электродвигатель (1), редуктор, включающий входной вал (4), предступень (5), быстроходный (6),...
Тип: Изобретение
Номер охранного документа: 0002478850
Дата охранного документа: 10.04.2013
10.05.2013
№216.012.3d42

Способ удержания геостационарного космического аппарата на заданной орбитальной позиции

Изобретение относится к космической технике и может быть использовано для удержания геостационарного космического аппарата (КА) в заданном диапазоне долгот и широт рабочей позиции на орбите. Ошибка управления движением центра масс КА комплексно устраняется с использованием коэффициента...
Тип: Изобретение
Номер охранного документа: 0002481249
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3d46

Способ контроля работы системы терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР), преимущественно телекоммуникационных спутников. Способ включает телеметрические измерения (напр., с частотой опроса 0,5 с в принятом промежутке времени) таких параметров СТР, как суммарный расход теплоносителя в жидкостном тракте и...
Тип: Изобретение
Номер охранного документа: 0002481253
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3d47

Теплофизическая модель космического аппарата

Изобретение относится к созданию и отработке систем терморегулирования космических аппаратов (КА), преимущественно телекоммуникационных спутников. У таких КА данные системы выполнены по комбинированной схеме: тепловые трубы в сочетании с дублированными жидкостными контурами. Модель КА включает...
Тип: Изобретение
Номер охранного документа: 0002481254
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3d48

Способ изготовления системы терморегулирования космического аппарата

Изобретение относится к созданию и эксплуатации систем терморегулирования космических аппаратов, преимущественно телекоммуникационных спутников. После сборки жидкостного тракта (ЖТ) системы терморегулирования на конструкции аппарата для обеспечения качества перед проверкой герметичности ЖТ...
Тип: Изобретение
Номер охранного документа: 0002481255
Дата охранного документа: 10.05.2013
20.06.2013
№216.012.4bf5

Система терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников. СТР включает в себя жидкостный контур, заправленный теплоносителем. В жидкостном контуре установлены теплообменники приборов, радиатор, гидроаккумулятор и...
Тип: Изобретение
Номер охранного документа: 0002485027
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4bf6

Способ контроля работы системы терморегулирования космического аппарата

Изобретение относится к системам терморегулирования космических аппаратов, преимущественно телекоммуникационных спутников. Способ включает периодические телеметрические измерения температур газа в герметичном контейнере и числа оборотов электродвигателя установленного в нем вентилятора....
Тип: Изобретение
Номер охранного документа: 0002485028
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.5024

Способ контроля качества изготовления системы терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов, преимущественно телекоммуникационных спутников. Способ включает сборку жидкостного тракта (ЖТ) СТР на конструкции космического аппарата. До проверки герметичности ЖТ его промывают чистым растворителем (изооктаном),...
Тип: Изобретение
Номер охранного документа: 0002486109
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5026

Способ удержания геостационарного космического аппарата на заданной орбитальной позиции

Изобретение относится к области космической техники и предназначено для удержания на заданной геостационарной орбитальной позиции космического аппарата (КА). После увеличения срока управления центром масс КА без привлечения наземных средств измерения навигационных параметров рассчитывают план...
Тип: Изобретение
Номер охранного документа: 0002486111
Дата охранного документа: 27.06.2013
Показаны записи 1-10 из 138.
10.04.2013
№216.012.33fa

Электропривод с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в электроприводах механических систем космических аппаратов, в приводах другого назначения и в других областях техники. Электропривод с трехступенчатым планетарным редуктором содержит электродвигатель (1), редуктор с быстроходным...
Тип: Изобретение
Номер охранного документа: 0002478849
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.33fb

Электропривод с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в качестве электропривода, например, на космическом аппарате. Электропривод с трехступенчатым планетарным редуктором содержит электродвигатель (1), редуктор, включающий входной вал (4), предступень (5), быстроходный (6),...
Тип: Изобретение
Номер охранного документа: 0002478850
Дата охранного документа: 10.04.2013
10.05.2013
№216.012.3d42

Способ удержания геостационарного космического аппарата на заданной орбитальной позиции

Изобретение относится к космической технике и может быть использовано для удержания геостационарного космического аппарата (КА) в заданном диапазоне долгот и широт рабочей позиции на орбите. Ошибка управления движением центра масс КА комплексно устраняется с использованием коэффициента...
Тип: Изобретение
Номер охранного документа: 0002481249
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3d46

Способ контроля работы системы терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР), преимущественно телекоммуникационных спутников. Способ включает телеметрические измерения (напр., с частотой опроса 0,5 с в принятом промежутке времени) таких параметров СТР, как суммарный расход теплоносителя в жидкостном тракте и...
Тип: Изобретение
Номер охранного документа: 0002481253
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3d47

Теплофизическая модель космического аппарата

Изобретение относится к созданию и отработке систем терморегулирования космических аппаратов (КА), преимущественно телекоммуникационных спутников. У таких КА данные системы выполнены по комбинированной схеме: тепловые трубы в сочетании с дублированными жидкостными контурами. Модель КА включает...
Тип: Изобретение
Номер охранного документа: 0002481254
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3d48

Способ изготовления системы терморегулирования космического аппарата

Изобретение относится к созданию и эксплуатации систем терморегулирования космических аппаратов, преимущественно телекоммуникационных спутников. После сборки жидкостного тракта (ЖТ) системы терморегулирования на конструкции аппарата для обеспечения качества перед проверкой герметичности ЖТ...
Тип: Изобретение
Номер охранного документа: 0002481255
Дата охранного документа: 10.05.2013
20.06.2013
№216.012.4bf5

Система терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников. СТР включает в себя жидкостный контур, заправленный теплоносителем. В жидкостном контуре установлены теплообменники приборов, радиатор, гидроаккумулятор и...
Тип: Изобретение
Номер охранного документа: 0002485027
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4bf6

Способ контроля работы системы терморегулирования космического аппарата

Изобретение относится к системам терморегулирования космических аппаратов, преимущественно телекоммуникационных спутников. Способ включает периодические телеметрические измерения температур газа в герметичном контейнере и числа оборотов электродвигателя установленного в нем вентилятора....
Тип: Изобретение
Номер охранного документа: 0002485028
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.5024

Способ контроля качества изготовления системы терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов, преимущественно телекоммуникационных спутников. Способ включает сборку жидкостного тракта (ЖТ) СТР на конструкции космического аппарата. До проверки герметичности ЖТ его промывают чистым растворителем (изооктаном),...
Тип: Изобретение
Номер охранного документа: 0002486109
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5026

Способ удержания геостационарного космического аппарата на заданной орбитальной позиции

Изобретение относится к области космической техники и предназначено для удержания на заданной геостационарной орбитальной позиции космического аппарата (КА). После увеличения срока управления центром масс КА без привлечения наземных средств измерения навигационных параметров рассчитывают план...
Тип: Изобретение
Номер охранного документа: 0002486111
Дата охранного документа: 27.06.2013
+ добавить свой РИД