×
10.05.2013
216.012.3d48

СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к созданию и эксплуатации систем терморегулирования космических аппаратов, преимущественно телекоммуникационных спутников. После сборки жидкостного тракта (ЖТ) системы терморегулирования на конструкции аппарата для обеспечения качества перед проверкой герметичности ЖТ промывают чистым растворителем (изооктаном). Затем удаляют растворитель путем продувки ЖТ сжатым воздухом, после чего проводят вакуумную сушку ЖТ. Для обеспечения полноты слива изооктана перед вакуумной сушкой ЖТ измеряют температуру гидроаккумулятора и кратковременно вакуумируют ЖТ. Вакуум определяется упругостью насыщенных паров рабочей жидкости гидроаккумулятора за вычетом давления, соответствующего максимальной (при полном растяжении) жесткости сильфона гидроаккумулятора. Далее, до начала вакуумной сушки дополнительно продувают ЖТ сжатым воздухом до отсутствия в продуваемом воздухе растворителя па выходе из ЖТ. Технический результат изобретения состоит в обеспечении практически полного удаления растворителя (изооктана) из ЖТ перед вакуумной сушкой. 5 ил.
Основные результаты: Способ изготовления системы терморегулирования космического аппарата, имеющей в своем составе гидроаккумулятор, содержащий разделенные сильфоном газовую полость, частично заполненную рабочей жидкостью, и жидкостную полость, включающий сборку жидкостного тракта системы из комплектующих на конструкции аппарата, заполнение жидкостного тракта чистым растворителем, прокачку его по жидкостному тракту, последующий его слив из жидкостного тракта в емкость заправщика продувкой сжатым воздухом до отсутствия растворителя на выходе из жидкостного тракта в продуваемом воздухе, последующее осуществление вакуумной сушки и проверки герметичности жидкостного тракта помещением аппарата в вакуумную камеру, отличающийся тем, что после фиксирования отсутствия растворителя на выходе из жидкостного тракта в продуваемом воздухе прекращают продувку его сжатым воздухом и до начала вакуумной сушки измеряют температуру газовой полости гидроаккумулятора, затем кратковременно вакуумируют жидкостный тракт до абсолютного давления, равного упругости насыщенных паров двухфазной рабочей жидкости гидроаккумулятора за вычетом величины максимальной жесткости сильфона при его полном растяжении, после этого дополнительно продувают его сжатым воздухом до отсутствия растворителя на выходе из жидкостного тракта в продуваемом воздухе, после чего начинают вакуумную сушку.
Реферат Свернуть Развернуть

Изобретение относится к космической технике, преимущественно к системам терморегулирования (СТР) телекоммуникационных спутников.

В настоящее время СТР телекоммуникационных спутников включает в себя жидкостный контур (см., например, патент Российской Федерации (РФ) №2209750 [1]), заправленный теплоносителем. Циркуляцию теплоносителя в жидкостном контуре осуществляет электронасосный агрегат (ЭНА). Для обеспечения бескавитационной работы ЭНА (поддержания необходимого давления на входе в ЭНА) жидкостный тракт на его входе соединен с жидкостной полостью гидроаккумулятора, газовая полость которого, разъединенная от жидкостной полости сильфоном, заправлена жидкостью - фреоном 141 в, который обеспечивает, например, необходимое давление (абсолютное) в диапазоне от 0,75 кгс/см2 (≈ 75 кПа) до 0,95 кгс/см2 (≈ 95 кПа) в результате периодической работы электрообогревателя, установленного на корпусе гидроаккумулятора. В условиях изготовления СТР сборку ее осуществляют при температуре окружающего воздуха в цехе, равной (24±3)°С, в этом случае в газовой полости гидроаккумулятора давление паров фреона 141 в (гидроаккумулятор заправляется фреоном 141 в автономно при его изготовлении с измерением, в частности, максимально возможного значения жесткости сильфона при его полном растяжении, т.е. минимального значения перепада давления между газовой и жидкостной полостями, при котором сильфон полностью растянут, например, 0,15 кгс/см2 (≈ 15 кПа)) изменяется в диапазоне от 0,65 кгс/см2 до 0,85 кгс/см2 (при изменении температуры окружающего воздуха от 21°С до 27°С).

При сборке СТР на конструкции космического аппарата (КА) гидроаккумулятор для обеспечения его работоспособности как при наземных испытаниях, так и при эксплуатации на орбите устанавливают как можно дальше от центра масс КА по направлению оси ОХ, направленной к поверхности Земли (при наземных условиях) и по направлению к Земле (при условиях эксплуатации на орбите), т.е. газовая полость с двухфазной жидкостью наиболее удалена от центра масс КА - см. патент РФ №2329920 [2].

Согласно принятой технологии изготовления после сборки (монтажной сваркой стыков жидкостного тракта) СТР на конструкции КА (см. патент РФ №2307774 [3]) до проверки герметичности для обеспечения качества жидкостного тракта его заполняют чистым растворителем (например, изооктаном), прокачивают по жидкостному контуру. Затем его сливают из жидкостного тракта СТР в емкость заправщика, для чего продувают жидкостный тракт сжатым воздухом (обеспечивается минимально возможная продолжительность операции по сравнению с другими способами) давлением выше атмосферного (более 1 кгс/см2) до отсутствия потока изооктана на выходе из жидкостного тракта СТР. После этого осуществляют вакуумную сушку - полное удаление из жидкостного тракта остатков изооктана (оставшиеся на поверхности жидкостного тракта из-за ее смачиваемости). Далее КА (с СТР) помещают в вакуумную камеру и проводят проверку герметичности жидкостного тракта на соответствие требуемой норме.

Существенным недостатком такой подготовки жидкостного тракта СТР к проверке герметичности является недостаточно полный слив изооктана из жидкостного тракта и связанный с этим длительный цикл вакуумной сушки, это обусловлено тем, что при продувке жидкостного тракта давлением выше атмосферного изооктан, наряду со сливом из жидкостного тракта в емкость заправщика (где атмосферное давление), поступает в жидкостную полость гидроаккумулятора, сжимает сильфон до нижнего упора и полностью максимально заполняет жидкостную полость, т.е. когда на выходе из жидкостного тракта будет зафиксировано отсутствие изооктана, в жидкостной полости будет максимально возможное ее объему количество изооктана;

следовательно, из-за такой неполноты слива изооктана из жидкостного тракта в дальнейшем проводимая вакуумная сушка будет характеризоваться длительным циклом выполнения ее.

Наиболее близким прототипом предлагаемого авторами технического решения является способ изготовления СТР КА на основе [3], который включает в себя следующие операции:

- сборку СТР, включающей в себя комплектующие: сотовые панели радиаторов и приборов с жидкостными трактами, трубопроводы, ЭНА, гидроаккумулятор, содержащий жидкостную полость, сильфон, газовую полость с двухфазной рабочей жидкостью - фреоном 141 в на конструкции КА;

- заправку чистым растворителем - изооктаиом - жидкостного тракта, промывку его, слив из жидкостного тракта изооктана в емкость заправщика продувкой сжатым (давлением выше атмосферного) воздухом до отсутствия изооктана на выходе из жидкостного тракта;

- вакуумную сушку жидкостного тракта до полного удаления изооктана из него;

- проверку герметичности жидкостного тракта СТР помещением КА в вакуумную камеру на соответствие требуемой норме.

Как было указано выше, известный способ изготовления обладает существенным недостатком - недостаточно полным сливом изооктана из жидкостного тракта перед вакуумной сушкой его, обуславливающим длительный цикл осуществления.

Целью предлагаемого авторами нового технического решения является устранение вышеуказанного существенного недостатка прототипа.

Поставленная цель достигается тем, что в способе изготовления системы терморегулирования космического аппарата, включающем сборку жидкостного тракта системы из комплектующих на конструкции аппарата, заполнение жидкостного тракта чистым растворителем, прокачку его по жидкостному тракту, после этого слив его из жидкостного тракта продувкой сжатым воздухом в емкость заправщика до отсутствия растворителя на выходе из жидкостного тракта в продуваемом воздухе, затем осуществление вакуумной сушки и проверки герметичности жидкостного тракта помещением аппарата в вакуумную камеру, после зафиксирования отсутствия растворителя на выходе из жидкостного тракта в продуваемом воздухе прекращают продувку его сжатым воздухом и до начала операции вакуумной сушки измеряют температуру газовой полости гидроаккумулятора, затем кратковременно вакуумируют жидкостный тракт до абсолютного давления, равного упругости насыщенных паров двухфазной рабочей жидкости гидроаккумулятора минус значение максимальной жесткости сильфона при его полном растяжении, после этого дополнительно продувают его сжатым воздухом до отсутствия растворителя на выходе из жидкостного тракта в продуваемом воздухе, после чего начинают осуществление вакуумной сушки, что и является, по мнению авторов, существенными отличительными признаками предлагаемого авторами технического решения.

В результате анализа, проведенного авторами, известной патентной и научно-технической литературы предложенное сочетание существенных отличительных признаков заявляемого технического решения в известных источниках информации не обнаружено и, следовательно, известные технические решения не проявляют тех же свойств, что в заявляемом способе изготовления СТР КА.

На фиг.1-5 изображены последовательные принципиальные схемы реализации предложенного авторами технического решения (где:

1 - космический аппарат; 2 - система терморегулирования; 3 - сотовые панели с встроенными жидкостными коллекторами; 4 - жидкостный тракт; 5 - радиаторы с встроенными жидкостными коллекторами; 6 - гидроаккумулятор; 6.1 - жидкостная полость гидроаккумулятора; 6.2 - газовая полость гидроаккумулятора, частично заполненная двухфазной рабочей жидкостью - фреоном 141 в; 6.3 - сильфон; 6.4 -электрообогреватель; 6.5 - датчик температуры; 7 - электронасосный агрегат; 8 - вентиль «Заправка СТР»; 9 - вентиль «Слив СТР»; 10 - отсечной вентиль; начиная с фиг.2-5: 11, 12 - магистрали заправщика; 13,…18 - вентили заправщика; 19 - емкость заправщика; 20 - источник сжатого воздуха (газа); 21 - вакуумный насос; 22 - смотровое окно).

Фиг.1 - принципиальная схема СТР после сборки ее на конструкции КА (жидкостный тракт заполнен сухим газом):

- до начала промывки ее жидкостного тракта чистым растворителем - изооктаном;

- или после вакуумной сушки перед проверкой жидкостного тракта на герметичность.

Фиг.2 - принципиальная схема СТР с заправщиком после заполнения ее отвакуумированного жидкостного тракта деаэрированным изооктаном и в процессе промывки жидкостного тракта прокачкой изооктана ЭНА СТР или ЭНА заправщика (соответствующие вентили 8, 9, 10, 13,…18 открыты или закрыты; для обеспечения компенсации температурного изменения объема изооктана из жидкостной полости гидроаккумулятора слита доза теплоносителя - сильфон находится в промежуточном положении).

Фиг.3 - принципиальная схема СТР с заправщиком после слива изооктана из жидкостного тракта СТР в емкость заправщика продувкой сжатым воздухом давлением выше атмосферного до отсутствия на выходе из СТР жидкой фазы изооктана (контроль, например, визуально через смотровое окно 22) - сильфон сжат и жидкостная полость гидроаккумулятора полностью заполнена жидким изооктаном - это до 30% объема жидкостного тракта СТР.

Фиг.4 - принципиальная схема СТР с заправщиком после измерения температуры гидроаккумулятора 6.5 и отвакууммирования емкости заправщика и далее через нее - жидкостного тракта СТР до абсолютного давления (например, до 0,6 кгс/см2), равного упругости насыщенных паров двухфазной рабочей жидкости гидроаккумулятора (например, 0,75 кгс/см) минус значение максимальной жесткости сильфона при его полном растяжении (например, 0,15 кгс/см2): вентили 9 и 10 - открыты; вентиль 8 - закрыт; вентили 13, 17 - открыты; вентили 14, 15, 16, 18 - закрыты - в результате пониженного давления в жидкостном тракте сильфон гидроаккумулятора растягивается и выдавливает изооктан из жидкостной полости в остальную часть жидкостного тракта и частично - в емкость заправщика.

Фиг.5 - принципиальная схема СТР с заправщиком после дополнительной продувки сжатым воздухом (в частности, при открытых вентилях 8, 9, 10) жидкостного тракта СТР до отсутствия жидкостной фазы изооктана па выходе из жидкостного тракта СТР (и перед началом вакуумной сушки жидкостного тракта незначительное количество (не более (2-5)%) жидкой фазы изооктана имеется только в жидкостной полости гидроаккумулятора) и перед вакуумной сушкой и далее - вакуумная сушка и полное удаление остатков жидкой фазы изооктана из жидкостного тракта осуществляется за более короткий промежуток времени (например, как показывают опытные работы, не более 4 часов вместо ≈ 6-9 часов).

Следует заметить, что, при необходимости, операции фиг.4 и 5 можно повторить и продолжительность вакуумной сушки жидкостного тракта будет еще короче.

Таким образом, как следует из вышеизложенного, в результате изготовления СТР КА согласно предложенному авторами техническому решению обеспечивается практически полный слив жидкого изооктана из жидкостного тракта перед его вакуумной сушкой и сокращается цикл осуществления вакуумной сушки, т.е. тем самым достигается цель изобретения.

Способ изготовления системы терморегулирования космического аппарата, имеющей в своем составе гидроаккумулятор, содержащий разделенные сильфоном газовую полость, частично заполненную рабочей жидкостью, и жидкостную полость, включающий сборку жидкостного тракта системы из комплектующих на конструкции аппарата, заполнение жидкостного тракта чистым растворителем, прокачку его по жидкостному тракту, последующий его слив из жидкостного тракта в емкость заправщика продувкой сжатым воздухом до отсутствия растворителя на выходе из жидкостного тракта в продуваемом воздухе, последующее осуществление вакуумной сушки и проверки герметичности жидкостного тракта помещением аппарата в вакуумную камеру, отличающийся тем, что после фиксирования отсутствия растворителя на выходе из жидкостного тракта в продуваемом воздухе прекращают продувку его сжатым воздухом и до начала вакуумной сушки измеряют температуру газовой полости гидроаккумулятора, затем кратковременно вакуумируют жидкостный тракт до абсолютного давления, равного упругости насыщенных паров двухфазной рабочей жидкости гидроаккумулятора за вычетом величины максимальной жесткости сильфона при его полном растяжении, после этого дополнительно продувают его сжатым воздухом до отсутствия растворителя на выходе из жидкостного тракта в продуваемом воздухе, после чего начинают вакуумную сушку.
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 126.
10.01.2013
№216.012.1a88

Электромеханический привод раскрытия

Изобретение относится к области машиностроения, в частности к космической технике, может быть использовано при проектировании систем раскрытия конструкций космических аппаратов и предназначено для приведения в действие раскрывающихся узлов механических систем космического аппарата. Привод...
Тип: Изобретение
Номер охранного документа: 0002472284
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1d4a

Способ работы электропривода с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в качестве способа работы при реализации его в трехступенчатом планетарном редукторе. Способ работы реализован в устройстве электропривода с трехступенчатым планетарным редуктором, который включает три последовательно...
Тип: Изобретение
Номер охранного документа: 0002472992
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.2809

Цифровой феррозондовый магнитометр

Изобретение относится к феррозондовым навигационным магнитометрам и может быть использовано для измерения трех ортогональных компонент вектора индукции магнитного поля Земли и выдачи сигналов, пропорциональных измеренным компонентам, в виде цифрового кода. Сущность изобретения заключается в...
Тип: Изобретение
Номер охранного документа: 0002475769
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2c2a

Способ имитации солнечного излучения в термобарокамере

Изобретение относится к способам имитации солнечного излучения (ИСИ) в тепловакуумной камере (ТВК) и может быть использовано при тепловакуумных испытаниях космического аппарата (КА) или его составных частей. Способ имитации заключается в создании имитирующего потока солнечной радиации от...
Тип: Изобретение
Номер охранного документа: 0002476833
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c36

Способ испытаний бортовой аппаратуры космического аппарата на вибрационные воздействия

Изобретение относится к области испытаний на механические воздействия (вибрационные испытания) аппаратуры. Способ заключается в том, что при определении собственных частот бортовой аппаратуры дополнительно определяют добротность на каждой резонансной частоте и делают прогноз отклика, причем при...
Тип: Изобретение
Номер охранного документа: 0002476845
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2cb5

Способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника земли

Изобретение относится к электротехнической промышленности и может быть использовано при проектировании автономных систем электропитания искусственных спутников Земли (ИСЗ). Способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника Земли от солнечной...
Тип: Изобретение
Номер охранного документа: 0002476972
Дата охранного документа: 27.02.2013
10.04.2013
№216.012.32cc

Контейнер

Изобретение относится к транспортировочным контейнерам, например, для транспортирования космических аппаратов. Контейнер содержит основание, съемную крышку, уплотнительную прокладку между ними и средства крепления крышки к основанию. Уплотнительная прокладка установлена в паз типа «ласточкин...
Тип: Изобретение
Номер охранного документа: 0002478547
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.33fa

Электропривод с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в электроприводах механических систем космических аппаратов, в приводах другого назначения и в других областях техники. Электропривод с трехступенчатым планетарным редуктором содержит электродвигатель (1), редуктор с быстроходным...
Тип: Изобретение
Номер охранного документа: 0002478849
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.33fb

Электропривод с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в качестве электропривода, например, на космическом аппарате. Электропривод с трехступенчатым планетарным редуктором содержит электродвигатель (1), редуктор, включающий входной вал (4), предступень (5), быстроходный (6),...
Тип: Изобретение
Номер охранного документа: 0002478850
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.33fe

Способ работы электропривода с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в качестве способа работы при реализации его в трехступенчатом планетарном редукторе. Способ работы трехступенчатого планетарного редуктора заключается в передаче крутящего момента от электродвигателя (1) к выходному валу (23)...
Тип: Изобретение
Номер охранного документа: 0002478853
Дата охранного документа: 10.04.2013
Показаны записи 1-10 из 142.
10.01.2013
№216.012.1a88

Электромеханический привод раскрытия

Изобретение относится к области машиностроения, в частности к космической технике, может быть использовано при проектировании систем раскрытия конструкций космических аппаратов и предназначено для приведения в действие раскрывающихся узлов механических систем космического аппарата. Привод...
Тип: Изобретение
Номер охранного документа: 0002472284
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1d4a

Способ работы электропривода с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в качестве способа работы при реализации его в трехступенчатом планетарном редукторе. Способ работы реализован в устройстве электропривода с трехступенчатым планетарным редуктором, который включает три последовательно...
Тип: Изобретение
Номер охранного документа: 0002472992
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.2809

Цифровой феррозондовый магнитометр

Изобретение относится к феррозондовым навигационным магнитометрам и может быть использовано для измерения трех ортогональных компонент вектора индукции магнитного поля Земли и выдачи сигналов, пропорциональных измеренным компонентам, в виде цифрового кода. Сущность изобретения заключается в...
Тип: Изобретение
Номер охранного документа: 0002475769
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2c2a

Способ имитации солнечного излучения в термобарокамере

Изобретение относится к способам имитации солнечного излучения (ИСИ) в тепловакуумной камере (ТВК) и может быть использовано при тепловакуумных испытаниях космического аппарата (КА) или его составных частей. Способ имитации заключается в создании имитирующего потока солнечной радиации от...
Тип: Изобретение
Номер охранного документа: 0002476833
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c36

Способ испытаний бортовой аппаратуры космического аппарата на вибрационные воздействия

Изобретение относится к области испытаний на механические воздействия (вибрационные испытания) аппаратуры. Способ заключается в том, что при определении собственных частот бортовой аппаратуры дополнительно определяют добротность на каждой резонансной частоте и делают прогноз отклика, причем при...
Тип: Изобретение
Номер охранного документа: 0002476845
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2cb5

Способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника земли

Изобретение относится к электротехнической промышленности и может быть использовано при проектировании автономных систем электропитания искусственных спутников Земли (ИСЗ). Способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника Земли от солнечной...
Тип: Изобретение
Номер охранного документа: 0002476972
Дата охранного документа: 27.02.2013
10.04.2013
№216.012.32cc

Контейнер

Изобретение относится к транспортировочным контейнерам, например, для транспортирования космических аппаратов. Контейнер содержит основание, съемную крышку, уплотнительную прокладку между ними и средства крепления крышки к основанию. Уплотнительная прокладка установлена в паз типа «ласточкин...
Тип: Изобретение
Номер охранного документа: 0002478547
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.33fa

Электропривод с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в электроприводах механических систем космических аппаратов, в приводах другого назначения и в других областях техники. Электропривод с трехступенчатым планетарным редуктором содержит электродвигатель (1), редуктор с быстроходным...
Тип: Изобретение
Номер охранного документа: 0002478849
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.33fb

Электропривод с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в качестве электропривода, например, на космическом аппарате. Электропривод с трехступенчатым планетарным редуктором содержит электродвигатель (1), редуктор, включающий входной вал (4), предступень (5), быстроходный (6),...
Тип: Изобретение
Номер охранного документа: 0002478850
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.33fe

Способ работы электропривода с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в качестве способа работы при реализации его в трехступенчатом планетарном редукторе. Способ работы трехступенчатого планетарного редуктора заключается в передаче крутящего момента от электродвигателя (1) к выходному валу (23)...
Тип: Изобретение
Номер охранного документа: 0002478853
Дата охранного документа: 10.04.2013
+ добавить свой РИД