×
19.01.2018
218.016.0b81

Результат интеллектуальной деятельности: ВОЗДУХО-ВОЗДУШНЫЙ РАДИАТОР И СПОСОБ ПОВЫШЕНИЯ ЕГО ЭФФЕКТИВНОСТИ

Вид РИД

Изобретение

№ охранного документа
0002632561
Дата охранного документа
05.10.2017
Аннотация: Изобретение относится к энергетике. Воздухо-воздушный радиатор, разделительной поверхностью которого является обшивка летательного аппарата, под которой размещен воздушный канал, соединяющий входной и выходной ресиверы. К ресиверам подводится и отводится воздух, причём входной и выходной ресиверы соединены между собой нагнетателем, который перекачивает часть воздуха из выходного ресивера во входной ресивер. Также представлены варианты способа повышения эффективности воздухо-воздушного радиатора, при которых на скоростях полёта летательного аппарата более трёх чисел Маха осуществляется подача воды либо в воздушный канал, либо непосредственно в смеситель, установленный на выходе из выходного ресивера. Изобретение позволяет охладить воздух высокого давления, забираемый за компрессором газотурбинного двигателя для охлаждения его лопаток, а также позволяет решить проблему обледенения летательного аппарата. 3 н. и 4 з.п. ф-лы, 2 ил.

Изобретение относится к авиадвигателестроению, самолетостроению.

Повышение температуры газа перед турбиной является приоритетным направлением развития авиадвигателестроения. Повышение температуры может быть достигнуто двумя путями: применением жаропрочных материалов и охлаждением элементов двигателя.

В авиационных газотурбинных двигателях (ГТД) используются системы воздушного охлаждения (П.К. Казанджан, Н.Д.Тихонов, А.К. Янко. Теория авиационных двигателей. М.: Машиностроение, 1983, с. 188÷193). Эффективность указанных систем зависит от температуры и расхода охлаждающего воздуха (там же с. 195, рис. 11.8, 11.9).

Для понижения температуры охлаждающего воздуха в авиационных ГТД используют теплообменные устройства, расположенные внутри газовоздушного тракта двигателя (Теория, расчет и проектирование авиационных двигателей и энергетических установок. Под ред. В.А. Сосунова, В.М. Чепкина - М.: Изд-во МАИ, 2003, с. 656, рис. 22.1). Однако технические возможности таких устройств ограничены хладоресурсом воздуха, проходящего через двигатель, а также размерами газовоздушного тракта двигателя.

Целью изобретения является расширение технических возможностей теплообменных устройств, используемых для охлаждения элементов ГТД.

Известны воздухо-воздушные радиаторы, которые устанавливают в крыле самолета и используют для охлаждения воздуха, поступающего из центробежного нагнетателя в цилиндры поршневого двигателя. Указанные радиаторы имеют воздушные каналы, расположенные под обшивкой крыла, входной и выходной ресиверы, к которым подводится и отводится воздух (Жовинский Н.Е. Силовые авиационные установки. М.: Воениздат, 1948, с. 289, рис. 219).

Поставленная цель достигается тем, что воздухо-воздушный радиатор выполнен в виде воздушного канала, расположенного под обшивкой летательного аппарата, например, в крыле. На входе и выходе из воздушного канала размещены входной и выходной ресиверы соответственно, к которым подводится и отводится воздух. Ресиверы соединены между собой нагнетателем, который перекачивает часть воздуха из выходного ресивера во входной.

Предпочтительно в качестве нагнетателя использовать центробежный либо струйный нагнетатели. Воздушный канал конструктивно может состоять из нескольких отдельных каналов.

Сущность изобретения заключается в том, что, во-первых, хладоресурс воздуха не ограничивается хладоресурсом воздуха, проходящего через двигатель, во-вторых, время пребывания воздуха в теплообменнике за счет его циркуляции и размеров летательного аппарата (того же крыла) многократно возрастает, в-третьих, интенсивность теплообменных процессов (за счет высоких скоростей движения воздуха в воздушных каналах благодаря той же циркуляции) остается высокой. Согласно законам теплопередачи и то, и другое, и третье ведет к увеличению количества теплоты, передаваемой внешней среде (атмосфере).

Эффективность охлаждения воздуха в воздухо-воздушном радиаторе с увеличением скорости полета уменьшается вследствие кинетического нагрева обшивки летательного аппарата. На скоростях полета более трех чисел Маха температура воздуха в радиаторе превышает 700 К.

Подача воды во внутреннюю полость радиатора (воздушный канал) снижает температуру воздуха в радиаторе. Наибольший эффект достигается, если воду подавать в смеситель, установленный на выходе из выходного ресивера.

Сущность изобретения заключается в том, что критической температурой воды является температура 650 К. Мгновенный переход воды из жидкой фазы в газообразную сопровождается мгновенным поглощением теплоты (более 2700 кДж/кг).

На фиг. 1 изображен воздухо-воздушный радиатор;

на фиг. 2 изображен воздухо-воздушный радиатор.

Воздухо-воздушный радиатор (фиг. 1) состоит обшивки крыла 1, входного ресивера 2, выходного ресивера 3, центробежного нагнетателя 4, входного воздушного канала 5, выходного воздушного канала 6, воздушного канала, расположенного под обшивкой крыла, соединяющего ресиверы (для обеспечения жесткости канала между обшивкой крыла и его силовой частью установлены ребра жесткости, в которых имеются отверстия для прохода воздуха в поперечном направлении).

Горячий воздух высокого давления, забираемый за компрессором ГТД, через канал 5 поступает во входной ресивер 2 и далее движется по воздушному каналу, расположенному между силовой частью крыла и обшивкой, делает вокруг крыла оборот. Обшивка крыла омывается с двух сторон: горячим воздухом изнутри и холодным воздухом снаружи (потоки движутся в перекрестном направлении). Между горячим и холодным воздухом устанавливается тепловой поток, определяемый коэффициентом теплопередачи, градиентом температур и площадью крыла, омываемой воздушными потоками. Охлаждаемый воздух попадает в ресивер 3, откуда часть воздуха через центробежный нагнетатель 4 возвращается в ресивер 2, а часть через выходной канал 6 - в систему охлаждения двигателя. Воздух, попавший в ресивер 2 через нагнетатель 4, и горячий воздух, попавший через канал 5, смешиваются, в результате температура горячего воздуха понижается. Далее идет повторение цикла охлаждения воздуха в радиаторе, но уже с меньшей начальной температурой. Через несколько циклов температура воздуха в выходном ресивере устанавливается на минимальном уровне в зависимости от доли воздуха, перепускаемого через нагнетатель (так называемый коэффициент циркуляции воздуха - отношение расхода воздуха, проходящего через нагнетатель, к расходу воздуха, проходящему через воздушный канал, расположенный под обшивкой крыла).

Исследования показывают, что при коэффициентах циркуляции воздуха более 0,9 температура охлажденного воздуха приближается к температуре обшивки летательного аппарата (разница в температурах 20÷30 град).

На скоростях полета более трех чисел Маха температура обшивки летательного аппарата, и соответственно, температура охлажденного воздуха растут независимо от характеристик радиатора: коэффициента теплопередачи, коэффициента циркуляции, площади обшивки и т.д. В этих условиях для понижения температуры охлаждаемого воздуха (если это необходимо) используется вода, которая подается во внутреннюю полость (воздушный канал) радиатора, а лучше - в смеситель 7, установленный на выходе из выходного ресивера (фиг. 2). Испарение воды, которое в этих условиях происходит мгновенно, понижает температуру воздуха до заданной величины при достаточно умеренных расходах воды (исследования показывают, что в диапазоне скоростей полета до четырех Махов расход воды составляет не более 30% от расхода топлива).

Для привода центробежного нагнетателя требуется специальный привод и дополнительная мощность в пределах 1% от мощности турбины ГТД. Если коэффициент циркуляции небольшой, то можно обойтись струйным нагнетателем 8, который работает по принципу эжектора, у которого в качестве активного рабочего тела используется воздух высокого давления, поступающий для охлаждения в воздухо-воздушный радиатор (фиг. 2).

Воздухо-воздушный радиатор как энергетическая система позволяет при современном уровне технологий производства ГТД (жаропрочность и способы охлаждения лопаток) снять ограничение по температуре лопаток ГТД в диапазоне скоростей полета до четырех чисел Маха (расчетная температура газа перед турбиной - 2400 К).

Сопутствующим результатом является то, что воздухо-воздушный радиатор решает проблему обледенения летательного аппарата на принципиально новом уровне (обледенение исключается как явление).


ВОЗДУХО-ВОЗДУШНЫЙ РАДИАТОР И СПОСОБ ПОВЫШЕНИЯ ЕГО ЭФФЕКТИВНОСТИ
ВОЗДУХО-ВОЗДУШНЫЙ РАДИАТОР И СПОСОБ ПОВЫШЕНИЯ ЕГО ЭФФЕКТИВНОСТИ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 27.
27.06.2014
№216.012.d6c8

Парогазовая установка

Парогазовая установка (ПГУ) относится к области энергетики. Установка имеет два рабочих контура: парогазовый, представляющий собой газотурбинную установку (ГТУ), и паровой, включающий в себя теплообменник-конденсатор, установленный во входном канале ГТУ, теплообменник-нагреватель, установленный...
Тип: Изобретение
Номер охранного документа: 0002520762
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.dfd5

Парогазотурбинная установка

Парогазотурбинная установка состоит из входного устройства, компрессора, камеры сгорания, камеры смешения, турбины привода компрессора, выходного устройства, теплообменника-испарителя, теплообменника-нагревателя, расположенного за теплообменником-испарителем, паровой турбины,...
Тип: Изобретение
Номер охранного документа: 0002523087
Дата охранного документа: 20.07.2014
20.09.2014
№216.012.f5ab

Дождевальная установка

Применение в качестве дождевальной установки, создающей облака, газотурбинного двигателя, содержащего турбокомпрессор, форсажную камеру, установленную вертикально относительно поверхности земли, внутри которой за зоной горения расположен водяной коллектор с форсунками, направленными по потоку...
Тип: Изобретение
Номер охранного документа: 0002528724
Дата охранного документа: 20.09.2014
10.10.2014
№216.012.fa8f

Способ охлаждения газотурбинного двигателя

Способ охлаждения газотурбинного двигателя (ГТД), заключающийся в понижении температуры воздуха, используемого для охлаждения ГТД. Понижение температуры воздуха осуществляется в турбохолодильной установке (ТХУ) и включает сжатие воздуха, используемого при охлаждении, в компрессоре с последующим...
Тип: Изобретение
Номер охранного документа: 0002529989
Дата охранного документа: 10.10.2014
10.12.2014
№216.013.0eb9

Способ регулирования осевого компрессора в системе газотурбинного двигателя

Способ регулирования осевого компрессора в системе газотурбинного двигателя заключается в подаче горячего газа, отбираемого из канала, расположенного за турбиной, в канал, расположенный между входным устройством и компрессором двигателя, в количестве, необходимом для поддержания заданной...
Тип: Изобретение
Номер охранного документа: 0002535186
Дата охранного документа: 10.12.2014
27.07.2015
№216.013.66d5

Противообледенительная система газотурбинного двигателя

Противообледенительная система газотурбинного двигателя содержит теплообменник, установленный в проточной части двигателя перед входом в компрессор двигателя. Воздух, отбираемый за последней ступенью компрессора, через теплообменник подается в систему охлаждения турбины. Степень повышения...
Тип: Изобретение
Номер охранного документа: 0002557878
Дата охранного документа: 27.07.2015
27.03.2016
№216.014.c974

Способ форсирования двухконтурного турбореактивного двигателя

Способ форсирования двухконтурного турбореактивного двигателя, заключающийся в подаче в основную камеру сгорания форсажного топлива. Коллектор форсажного топлива расположен в зоне вторичного воздуха основной камеры сгорания. Предпочтительно частота вращения компрессора и перепад давлений на...
Тип: Изобретение
Номер охранного документа: 0002578941
Дата охранного документа: 27.03.2016
27.04.2016
№216.015.3880

Способ уплотнения воздушных каналов

Способ уплотнения воздушных каналов заключается в использовании лабиринтного уплотнения. Перед лабиринтным уплотнением расположена полость низкого давления, из которой воздух центробежным компрессором перекачивается в полость высокого давления. Рабочие лопатки компрессора размещены на валу, а...
Тип: Изобретение
Номер охранного документа: 0002582725
Дата охранного документа: 27.04.2016
25.08.2017
№217.015.a603

Теплообменник

Рекуперативный теплообменник, в котором один из теплоносителей, прежде чем попасть в теплообменник, проходит через смеситель, в котором смешивается с этим же теплоносителем, но уже прошедшим через теплообменник, нагнетаемым компрессором. Теплообменник, будучи рекуперативным, по эффективности...
Тип: Изобретение
Номер охранного документа: 0002607916
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.ac9c

Авиационная стехиометрическая силовая установка и способ ее регулирования

Силовая установка состоит из входного устройства, турбокомпрессора с отбором воздуха за компрессором для охлаждения лопаток турбины, выходного устройства. Турбокомпрессор имеет степень повышения давления в компрессоре не более четырех, одну ступень турбины. Воздух охлаждается в...
Тип: Изобретение
Номер охранного документа: 0002612482
Дата охранного документа: 09.03.2017
Показаны записи 1-10 из 27.
27.06.2014
№216.012.d6c8

Парогазовая установка

Парогазовая установка (ПГУ) относится к области энергетики. Установка имеет два рабочих контура: парогазовый, представляющий собой газотурбинную установку (ГТУ), и паровой, включающий в себя теплообменник-конденсатор, установленный во входном канале ГТУ, теплообменник-нагреватель, установленный...
Тип: Изобретение
Номер охранного документа: 0002520762
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.dfd5

Парогазотурбинная установка

Парогазотурбинная установка состоит из входного устройства, компрессора, камеры сгорания, камеры смешения, турбины привода компрессора, выходного устройства, теплообменника-испарителя, теплообменника-нагревателя, расположенного за теплообменником-испарителем, паровой турбины,...
Тип: Изобретение
Номер охранного документа: 0002523087
Дата охранного документа: 20.07.2014
20.09.2014
№216.012.f5ab

Дождевальная установка

Применение в качестве дождевальной установки, создающей облака, газотурбинного двигателя, содержащего турбокомпрессор, форсажную камеру, установленную вертикально относительно поверхности земли, внутри которой за зоной горения расположен водяной коллектор с форсунками, направленными по потоку...
Тип: Изобретение
Номер охранного документа: 0002528724
Дата охранного документа: 20.09.2014
10.10.2014
№216.012.fa8f

Способ охлаждения газотурбинного двигателя

Способ охлаждения газотурбинного двигателя (ГТД), заключающийся в понижении температуры воздуха, используемого для охлаждения ГТД. Понижение температуры воздуха осуществляется в турбохолодильной установке (ТХУ) и включает сжатие воздуха, используемого при охлаждении, в компрессоре с последующим...
Тип: Изобретение
Номер охранного документа: 0002529989
Дата охранного документа: 10.10.2014
10.12.2014
№216.013.0eb9

Способ регулирования осевого компрессора в системе газотурбинного двигателя

Способ регулирования осевого компрессора в системе газотурбинного двигателя заключается в подаче горячего газа, отбираемого из канала, расположенного за турбиной, в канал, расположенный между входным устройством и компрессором двигателя, в количестве, необходимом для поддержания заданной...
Тип: Изобретение
Номер охранного документа: 0002535186
Дата охранного документа: 10.12.2014
27.07.2015
№216.013.66d5

Противообледенительная система газотурбинного двигателя

Противообледенительная система газотурбинного двигателя содержит теплообменник, установленный в проточной части двигателя перед входом в компрессор двигателя. Воздух, отбираемый за последней ступенью компрессора, через теплообменник подается в систему охлаждения турбины. Степень повышения...
Тип: Изобретение
Номер охранного документа: 0002557878
Дата охранного документа: 27.07.2015
27.03.2016
№216.014.c974

Способ форсирования двухконтурного турбореактивного двигателя

Способ форсирования двухконтурного турбореактивного двигателя, заключающийся в подаче в основную камеру сгорания форсажного топлива. Коллектор форсажного топлива расположен в зоне вторичного воздуха основной камеры сгорания. Предпочтительно частота вращения компрессора и перепад давлений на...
Тип: Изобретение
Номер охранного документа: 0002578941
Дата охранного документа: 27.03.2016
27.04.2016
№216.015.3880

Способ уплотнения воздушных каналов

Способ уплотнения воздушных каналов заключается в использовании лабиринтного уплотнения. Перед лабиринтным уплотнением расположена полость низкого давления, из которой воздух центробежным компрессором перекачивается в полость высокого давления. Рабочие лопатки компрессора размещены на валу, а...
Тип: Изобретение
Номер охранного документа: 0002582725
Дата охранного документа: 27.04.2016
25.08.2017
№217.015.a603

Теплообменник

Рекуперативный теплообменник, в котором один из теплоносителей, прежде чем попасть в теплообменник, проходит через смеситель, в котором смешивается с этим же теплоносителем, но уже прошедшим через теплообменник, нагнетаемым компрессором. Теплообменник, будучи рекуперативным, по эффективности...
Тип: Изобретение
Номер охранного документа: 0002607916
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.ac9c

Авиационная стехиометрическая силовая установка и способ ее регулирования

Силовая установка состоит из входного устройства, турбокомпрессора с отбором воздуха за компрессором для охлаждения лопаток турбины, выходного устройства. Турбокомпрессор имеет степень повышения давления в компрессоре не более четырех, одну ступень турбины. Воздух охлаждается в...
Тип: Изобретение
Номер охранного документа: 0002612482
Дата охранного документа: 09.03.2017
+ добавить свой РИД