×
29.12.2017
217.015.f43c

Результат интеллектуальной деятельности: КОМПОЗИЦИОННАЯ СМЕСЬ ДЛЯ ОСАЖДЕНИЯ ОКСИДОВ ДЕЛЯЩИХСЯ И ОСКОЛОЧНЫХ НУКЛИДОВ ИЗ РАСПЛАВА ЭВТЕКТИЧЕСКОЙ СМЕСИ LiF-NaF-KF

Вид РИД

Изобретение

Аннотация: Изобретение относится к области переработки отработавшей топливной композиции жидкосолевого реактора. Композиционная смесь для осаждения оксидов делящихся и осколочных нуклидов из расплава эвтектической смеси LiF-NaF-KF без изменения состава эвтектической смеси, содержащая LiO, NaF, KF при следующем соотношении компонентов, мол. %: LiO - 30,3, NaF - 15,0, KF - 54,7. Изобретение обеспечивает эффективное осаждение делящихся и осколочных нуклидов из расплава эвтектической смеси фторидов FLiNaK без изменения состава эвтектики. 2 пр.

Изобретение относится к области переработки отработавшей топливной композиции жидкосолевого реактора (ЖСР) с топливной солью на основе эвтектики FLiNaK (LiF-NaF-KF).

Известно, что растворы фторидов урана и плутония (UF4, PuF3) в эвтектике FLiNaK [LiF-NaF-KF (46.5-11.5-42 мол. %)] отвечают основным требованиям, предъявляемым к уран-плутониевой топливной композиции жидкосолевого реактора (ЖСР) (М.Б. Серегин, А.В. Паршин, А.Ю. Кузнецов и др., Радиохимия, 2011, т. 53, No. 5, с. 416-418); (А.А. Лизин, С.В. Томилин, О.Е. Гневашов и др., Атомная энергия, 2013, т. 115, No. 1, с. 11-16).

Эвтектическая смесь FLiNaK имеет температуру плавления (tпл=454°С), почти в два раза более низкую, чем температура плавления образующих ее фторидов щелочных металлов и существенно более низкую, чем температура топлива работающего ЖСР (600-700°С). Благодаря хорошей растворимости делящихся нуклидов и осколков деления, использование FLiNaK в качестве топливной соли обеспечивает гомогенность топливной композиции ЖСР в широком температурном интервале.

Неотъемлемым условием непрерывного функционирования замкнутого ядерного топливного цикла жидкосолевого реактора является рециклирование топливной композиции, включающее очистку топливной композиции от накопившихся осколков деления без изменения состава топливной соли, компенсацию выгоревшей части топлива и возвращение регенерированного топлива в реактор. Согласно концепции замкнутого ядерного топливного цикла ЖСР эти задачи должны решаться на приреакторном радиохимическом узле без остановки реактора.

Известно извлечение осколочных нуклидов из расплава топливной соли LiF-BeF2 с помощью расплава висмута (W.R. Grimes, Oak Ridge National Laboratory, Molten-salt reactor chemistry. Nuclear Applications and Technology, vol. 8, pp. 137-155, 1970). Показано, что расплав висмута достаточно эффективно экстрагирует редкоземельные элементы. Недостатком экстракции висмутом является загрязнение топливной композиции фторидом висмута, образующимся при экстракции, что существенно затрудняет регенерацию топливной соли при рециклировании отработавшего топлива ЖСР.

Известно осаждение оксидов урана, плутония и осколочных элементов из расплава их фторидов в топливной соли LiF-NaF при введении в расплав окиси кальция. После осаждения содержание урана и плутония в надосадочном расплаве составляет ~0.1 вес. %, а лантана и церия ~0.05 вес. %. (Горбунов В.Ф., Г.П. Новоселов, С.А. Уланов и др., Исследование взаимодействия фторидов плутония, урана и редкоземельных элементов с окислами некоторых металлов в расплавах фтористых солей, "Радиохимия", 1976, т. XVIII, No. 1, с. 109-114). Основным недостатком осаждения окисью кальция является образование фторида кальция, удаление которого из топливной соли для сохранения ее состава при рециклировании является сложной задачей.

Таким образом, известные реагенты, предложенные для регенерации топливной композиции ЖСР, не обеспечивают проведение регенерации без изменения состава топливной соли.

Задачей изобретения является разработка композиционной смеси, обеспечивающей эффективное осаждение делящихся и осколочных нуклидов в форме оксидов из расплава эвтектической смеси фторидов FLiNaK без изменения состава эвтектической смеси.

Решение поставленной задачи достигается тем, что для осаждения оксидов делящихся и осколочных нуклидов из расплава FLiNaK используют композиционную смесь, полученную замещением фторида лития в эвтектической смеси FLiNaK на его оксид при сохранении в смеси исходного отношения атомных процентов Li : Na : K = 1:0.25:0.90.

Полученная композиционная смесь содержит Li2O, NaF, KF при следующем их соотношении, мол. %:

Li2O - 30,3

NaF - 15,0

KF - 54,7.

По аналогии с аббревиатурой FLiNaK, для предлагаемой композиционной смеси удобно использовать аббревиатуру FOLiNaK(Li2O), которая отражает кислород-фторидный состав анионной части реагента, его генетическую связь с эвтектикой FLiNaK и содержит формулу замещающего оксида щелочного металла.

При взаимодействии оксида лития, входящего в состав FOLINaK(Li2O), с фторидами нуклидов, растворенными в расплаве FLiNaK, образуются выпадающие в осадок труднорастворимые оксиды делящихся и осколочных нуклидов по фтор-кислородным обменным реакциям:

в то время как оксид лития, содержащийся в FOLINaK(Li2O), превращается в LiF и остается в расплаве. Поскольку согласно предлагаемому решению отношение атомных процентов Li : Na : K в осаждающей смеси FOLiNaK(Li2O) берется таким же, как в эвтектике FLiNaK (1:0.25:0.90), и реакции осаждения (1) сильно смещены вправо, при осаждении нуклидов композиционной смесью FOLiNaK(Li2O) оксидные анионы практически полностью замещаются фторидными анионами, и композиционная смесь FOLiNaK(Li2O) превращается в эвтектику FLiNaK.

При этом, как будет показано в примерах, полнота осаждения нуклидов предлагаемой композиционной смесью не уступает полноте осаждения окисью кальция (смотри цитированную выше статью Горбунов В.Ф., Г.П. Новоселов, С.А. Уланов и др., "Радиохимия", 1976, т. XVIII, No. 1, с. 109-114).

Таким образом, в предлагаемом решении выполнена основная задача изобретения - разработана композиционная смесь, обеспечивающая эффективное осаждение делящихся и осколочных нуклидов в форме оксидов из расплава эвтектической смеси фторидов FLiNaK без изменения состава эвтектики.

Очевидно, что FOLiNaK(Li2O) будет осаждать нуклиды из расплава эвтектической смеси фторидов FLiNaK без изменения состава эвтектики лишь до тех пор, пока оксидные анионы, содержащиеся в композиционной смеси FOLiNaK(Li2O), расходуются на превращение фторидных форм нуклидов в оксиды. Завершение осаждения нуклидов фиксируется по скачку окислительно-восстановительного потенциала расплава, свидетельствующему о появлении в расплаве сверхэквивалентного количества оксидных анионов.

Композиционную смесь FOLiNaK(Li2O) готовят из безводных препаратов Li2O, NaF и KF. Все операции проводят в боксе, заполненном и продуваемом сухим аргоном, очищенным от кислорода. Исходные соединения идентифицировали методом РФА, наличие воды в реагентах контролировали ИК-спектроскопически. Перед использованием все реагенты измельчали. Навески порошков Li2O (8.96 г), NaF (6.30 г), KF (31.32 г) насыпают в никелевый тигель, который помещают в реактор, снабженный герметичной крышкой с мешалкой и патрубками для продувки аргона. Смесь выдерживают при температуре 600°С в течение часа в атмосфере аргона при периодическом перемешивании. Образовавшийся расплав FOLiNaK(Li2O) выливают в форму из никелевой фольги и охлаждают до комнатной температуры. Полученный слиток измельчают и хранят в герметично закрытой емкости. FOLiNaK(Li2O) удобно также использовать в виде прессованных гранул. Полученная композиционная смесь FOLiNaK(Li2O) имеет состав, мол. %: Li2O 30.3, NaF 15.0, KF 54.7. Содержание оксидных анионов в композиционной смеси равняется 0.643 г-атомов кислорода в 100 г смеси (1.28 10-2 г-экв. О в грамме смеси).

Эвтектику FLiNaK состава (мол. %) LiF 46.5, NaF 11.5, KF 42 готовят нагреванием смеси порошков безводных фторидов LiF, NaF и KF [LiF (12.06 г), NaF (4.83 г) и KF (24.40 г)] при 600°С. Полученный прозрачный расплав FLiNaK выливают в форму из никелевой фольги и охлаждают до комнатной температуры. Слиток измельчают и хранят в герметично закрытой емкости. FLiNaK удобно также использовать в виде прессованных гранул.

Пример 1

Навеску FLiNaK (12.024 г) насыпают в никелевый тигель, тигель помещают в реактор и выдерживают при 600°С в течение 30-40 минут в токе аргона при периодическом перемешивании. В полученный расплав вносят навеску UF4 (1.006 г), содержащую 0.762 г урана (3.20 10-3 грамм-атома). Расплаву дают отстояться при 600°С в течение часа. Полученный расплав выдерживают при периодическом перемешивании в течение часа, в расплав погружают электрод, чувствительный к изменению окислительно-восстановительного потенциала расплава, и небольшими порциями добавляют FOLiNaK(Li2O) до скачка показаний электрода, свидетельствующего о завершении осаждения урана. В точке эквивалентности количество добавленной композиционной смеси составило 1.019 г. Осадку дают отстояться при 600°С в течение часа и определяют содержание урана в надосадочном расплаве. Для этого отбирают пробу надосадочного расплава (1-2 мл), выливают на никелевую фольгу, и после охлаждения полученный слиток взвешивают. Слиток растворяют в азотной кислоте и 2-3 раза перепаривают с азотной кислотой для удаления HF. В полученном азотнокислом растворе определяют содержание урана на эмиссионном спектрометре с индуктивно связанной плазмой. После осаждения урана его содержание в расплаве уменьшилась с 5.6 вес. % г до 0.09 вес. %. Полученное значение концентрации урана в надосадочном расплаве при осаждении композиционной смесью FOLiNaK(Li2O) (0.09 вес. %) в пределах ошибки определения (±5%) не отличается от значения ~0.1 вес. %, полученного при осаждении урана в расплаве LiF-NaF при 800°С окисью кальция (смотри цитированную выше статью Горбунов В.Ф., Г.П. Новоселов, С.А. Уланов и др., "Радиохимия", 1976, т. XVIII, No. 1, с. 109-114). Осадок отфильтровывают и очищают от примеси фторидов щелочных металлов путем вакуумной отгонки при 1100°С. Согласно данным рентгенофазового анализа полученный осадок является диоксидом урана UO2.

Из приведенного примера видно, что при осаждении урана композиционной смесью FOLiNaK(Li2O) в осадок перешло 0.751 г урана (3.15 10-3 г-атома урана) в форме UO2.

Учитывая, что атом урана в UO2 связан с двумя атомами кислорода, при стехиометрическом осаждении на образование UO2 должно пойти 6.30 10-3 г-атомов кислорода, содержащихся в композиционной смеси. Поскольку, как показано выше, один грамм FOLiNaK(Li2O) содержит 0.643 10-2 г-атомов кислорода, для осаждения 3.15 10-3 г-атомов урана требуется 0.980 г FOLiNaK. Как было показано выше, на осаждение урана пошло 1.019 г FOLiNaK(Li2O). Эта величина в пределах ошибки определения (±5%) совпадает с количеством FOLiNaK(Li2O), необходимым для стехиометрического осаждения урана. Полученные данные показывают, что в пределах погрешности эксперимента при осаждении урана композиционной смесью FOLiNaK(Li2O) происходит эквивалентное замещение фторидных анионов UF4 оксидными анионами с образованием осадка UO2, а композиционная смесь FOLiNaK(Li2O) превращается в исходную эвтектику FLiNaK.

Пример 2

Навеску FLiNaK (12.024 г) насыпают в никелевый тигель, тигель помещают в реактор и выдерживают при 600°С в течение 30-40 минут в токе аргона при периодическом перемешивании. В полученный расплав эвтектики FLiNaK вносят навески порошков UF4 0.503 г (0.381 г урана) и NdF3 0.051 г (0.036 г Nd). Неодим использовали в качестве модельного аналога Pu(III) и осколочных РЗЭ(Ш). Полученный расплав выдерживают при периодическом перемешивании в течение часа, погружают ред-окс чувствительный электрод и небольшими порциями добавляют FOLiNaK(Li2O) до скачка показаний электрода. В точке эквивалентности количество добавленного реагента FOLiNaK (Li2O) составило 0.572 г. Расплаву дают отстояться при 600°С в течение часа. Для определения содержания урана и неодима отбирают пробу расплава (1-2 мл), выливают на никелевую фольгу, охлаждают и полученный слиток взвешивают. Слиток переносят в стакан и 2-3 раза перепаривают с азотной кислотой для удаления HF. В полученном азотнокислом растворе определяют содержание урана и неодима на эмиссионном спектрометре с индуктивно связанной плазмой. После осаждения содержание урана в надосадочном расплаве уменьшилась с 3.06 вес. % до 0.08 вес. %, а неодима с 0.29 вес. % до 0.04 вес. %. Таким образом, концентрация урана и неодима в надосадочном расплаве при осаждении предлагаемой композиционной смесью находится на том же уровне, что и при осаждении оксидов РЗЭ (Се, La) из раствора их фторидов в расплаве LiF-NaF окисью кальция (смотри цитированную выше статью Горбунов В.Ф., Г.П. Новоселов, С.А. Уланов и др., " Радиохимия", 1976, т. XVIII, No. 1, с. 109-114). Осадок отфильтровывают и очищают от остатков фторидов щелочных металлов путем вакуумной отгонки при 1100°С. Согласно данным рентгенофазового анализа уран и неодим находятся в осадке в форме механической смеси оксидов UO2 и Nd2O3. Как показано выше, на совместное осаждение оксидов урана и неодима пошло 0.572 г FOLiNaK. Эта величина совпадает в пределах ошибки определения (±5%) с количеством FOLiNaK, необходимым для стехиометрического осаждения суммы оксидов урана и неодима (0.555 г), то есть при осаждении происходит эквивалентное замещение фторидных анионов UF4 и NdF3 оксидными анионами FOLiNaK(Li2O), который превращается в исходную эвтектику FLiNaK.

Предлагаемая композиционная смесь может быть использована в схеме приреакторного узла рециклирования отработавшего топлива ЖСР на основе эвтектики FLiNaK путем комбинации процессов осаждения оксидов делящихся и осколочных нуклидов из расплава отработавшей топливной композиции, растворения осадка оксидов в азотной кислоте и последующей их переработки с помощью ПУРЕКС-процесса.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 33.
20.08.2015
№216.013.7337

Способ получения совместного раствора u и pu

Заявленное изобретение относится к способу получения совместного раствора U и Pu при переработке облученного ядерного топлива АЭС. Заявленный способ включает предварительную экстракцию U, Pu, Np, Тc из азотнокислого раствора 30%-ным раствором трибутилфосфата в алифатическом разбавителе....
Тип: Изобретение
Номер охранного документа: 0002561065
Дата охранного документа: 20.08.2015
20.11.2015
№216.013.90ff

Ниобат-титанат гидразина, способ его получения и использования

Изобретение относится к области очистки промышленных жидких отходов и сточных вод от токсичных и радиоактивных элементов и может использовано для удаления ряда радиоизотопов, таких как технеций-99, палладий-107, и токсичных экологических загрязнителей, включая свинец и шестивалентный хром....
Тип: Изобретение
Номер охранного документа: 0002568735
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.987d

Способ подготовки карбидного оят к экстракционной переработке

Заявленное изобретение относится к способу подготовки карбидного ОЯТ к экстракционной переработке. В заявленном способе предусмотрена автоклавная обработка азотнокислого раствора карбидного ОЯТ. В процессе такой обработки выпадает молибдат циркония, частично захватывающий плутоний. Полученный в...
Тип: Изобретение
Номер охранного документа: 0002570657
Дата охранного документа: 10.12.2015
27.01.2016
№216.014.c3f4

Способ экстракционной переработки отработанного ядерного топлива аэс

Изобретение относится к способу переработки отработавшего ядерного топлива атомных электростанций (АЭС) и имеет целью отделение (фракционирование) и локализацию долгоживущих радионуклидов для их последующего захоронения в виде устойчивых матриц. Заявленный способ включает экстракцию урана(+6),...
Тип: Изобретение
Номер охранного документа: 0002574036
Дата охранного документа: 27.01.2016
10.06.2016
№216.015.488f

Способ приготовления гранулированной закиси-окиси урана

Изобретение относится к технологии обращения с порошкообразной закисью-окисью урана, а именно к способу гранулирования закиси-окиси урана. Способ включает приготовление смеси закиси-окиси урана, диураната аммония, нитрата или ацетата аммония и воды, при весовом отношении закиси-окиси урана и...
Тип: Изобретение
Номер охранного документа: 0002587093
Дата охранного документа: 10.06.2016
25.08.2017
№217.015.cea3

Экстракционная смесь для извлечения актинидов из азотнокислых растворов

Изобретение относится к области химической технологии выделения и концентрирования радионуклидов из азотнокислых растворов и может быть использовано в экстракционных процессах при переработке жидких радиоактивных отходов. Экстракционная смесь для извлечения актинидов из азотнокислых растворов,...
Тип: Изобретение
Номер охранного документа: 0002620583
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.dc4d

Способ переработки отходов реакторного графита

Изобретение относится к области охраны окружающей среды и может быть использовано при снятии с эксплуатации реакторов с графитовым замедлителем. Облученный графит перед термообработкой подвергают воздействию реагентов, разрушающих его поверхностный слой, содержащий радиоактивные нуклиды, и...
Тип: Изобретение
Номер охранного документа: 0002624270
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.df02

Способ экстракционного выделения молибдена из радиоактивных растворов

Изобретение относится к радиохимической технологии. Способ экстракционного выделения молибдена из радиоактивных растворов включает экстракцию молибдена растворами гидроксамовых кислот, растворенных в смеси не более 30% спирта с парафиновыми углеводородами при соотношении объемов органической и...
Тип: Изобретение
Номер охранного документа: 0002624920
Дата охранного документа: 11.07.2017
19.01.2018
№218.016.0c67

Способ получения воды, обогащенной по кислороду-18, и установка для ее получения

Изобретение относится к области производства изотопа кислорода-18 для ПЭТ-томографии и также может быть использовано для производства воды, обогащенной по изотопу кислорода-18. Способ получения воды, обогащенной по кислороду-18, из природной воды методом ректификации воды под вакуумом включает...
Тип: Изобретение
Номер охранного документа: 0002632697
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0d7d

Способ ликвидации аварии при разливе радиоактивных растворов

Изобретение относится к области охраны окружающей среды, а именно к области эксплуатации объектов по переработке радиоактивных материалов. Способ ликвидации аварии при разливе радиоактивных растворов, включающий нанесение на место разлива полимерсодержащей композиции, обеспечивающей поглощение...
Тип: Изобретение
Номер охранного документа: 0002632924
Дата охранного документа: 11.10.2017
Показаны записи 11-20 из 28.
20.08.2015
№216.013.7337

Способ получения совместного раствора u и pu

Заявленное изобретение относится к способу получения совместного раствора U и Pu при переработке облученного ядерного топлива АЭС. Заявленный способ включает предварительную экстракцию U, Pu, Np, Тc из азотнокислого раствора 30%-ным раствором трибутилфосфата в алифатическом разбавителе....
Тип: Изобретение
Номер охранного документа: 0002561065
Дата охранного документа: 20.08.2015
20.11.2015
№216.013.90ff

Ниобат-титанат гидразина, способ его получения и использования

Изобретение относится к области очистки промышленных жидких отходов и сточных вод от токсичных и радиоактивных элементов и может использовано для удаления ряда радиоизотопов, таких как технеций-99, палладий-107, и токсичных экологических загрязнителей, включая свинец и шестивалентный хром....
Тип: Изобретение
Номер охранного документа: 0002568735
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.987d

Способ подготовки карбидного оят к экстракционной переработке

Заявленное изобретение относится к способу подготовки карбидного ОЯТ к экстракционной переработке. В заявленном способе предусмотрена автоклавная обработка азотнокислого раствора карбидного ОЯТ. В процессе такой обработки выпадает молибдат циркония, частично захватывающий плутоний. Полученный в...
Тип: Изобретение
Номер охранного документа: 0002570657
Дата охранного документа: 10.12.2015
27.01.2016
№216.014.c3f4

Способ экстракционной переработки отработанного ядерного топлива аэс

Изобретение относится к способу переработки отработавшего ядерного топлива атомных электростанций (АЭС) и имеет целью отделение (фракционирование) и локализацию долгоживущих радионуклидов для их последующего захоронения в виде устойчивых матриц. Заявленный способ включает экстракцию урана(+6),...
Тип: Изобретение
Номер охранного документа: 0002574036
Дата охранного документа: 27.01.2016
10.06.2016
№216.015.488f

Способ приготовления гранулированной закиси-окиси урана

Изобретение относится к технологии обращения с порошкообразной закисью-окисью урана, а именно к способу гранулирования закиси-окиси урана. Способ включает приготовление смеси закиси-окиси урана, диураната аммония, нитрата или ацетата аммония и воды, при весовом отношении закиси-окиси урана и...
Тип: Изобретение
Номер охранного документа: 0002587093
Дата охранного документа: 10.06.2016
25.08.2017
№217.015.cea3

Экстракционная смесь для извлечения актинидов из азотнокислых растворов

Изобретение относится к области химической технологии выделения и концентрирования радионуклидов из азотнокислых растворов и может быть использовано в экстракционных процессах при переработке жидких радиоактивных отходов. Экстракционная смесь для извлечения актинидов из азотнокислых растворов,...
Тип: Изобретение
Номер охранного документа: 0002620583
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.dc4d

Способ переработки отходов реакторного графита

Изобретение относится к области охраны окружающей среды и может быть использовано при снятии с эксплуатации реакторов с графитовым замедлителем. Облученный графит перед термообработкой подвергают воздействию реагентов, разрушающих его поверхностный слой, содержащий радиоактивные нуклиды, и...
Тип: Изобретение
Номер охранного документа: 0002624270
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.df02

Способ экстракционного выделения молибдена из радиоактивных растворов

Изобретение относится к радиохимической технологии. Способ экстракционного выделения молибдена из радиоактивных растворов включает экстракцию молибдена растворами гидроксамовых кислот, растворенных в смеси не более 30% спирта с парафиновыми углеводородами при соотношении объемов органической и...
Тип: Изобретение
Номер охранного документа: 0002624920
Дата охранного документа: 11.07.2017
19.01.2018
№218.016.0c67

Способ получения воды, обогащенной по кислороду-18, и установка для ее получения

Изобретение относится к области производства изотопа кислорода-18 для ПЭТ-томографии и также может быть использовано для производства воды, обогащенной по изотопу кислорода-18. Способ получения воды, обогащенной по кислороду-18, из природной воды методом ректификации воды под вакуумом включает...
Тип: Изобретение
Номер охранного документа: 0002632697
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0d7d

Способ ликвидации аварии при разливе радиоактивных растворов

Изобретение относится к области охраны окружающей среды, а именно к области эксплуатации объектов по переработке радиоактивных материалов. Способ ликвидации аварии при разливе радиоактивных растворов, включающий нанесение на место разлива полимерсодержащей композиции, обеспечивающей поглощение...
Тип: Изобретение
Номер охранного документа: 0002632924
Дата охранного документа: 11.10.2017
+ добавить свой РИД