×
26.08.2017
217.015.e992

Результат интеллектуальной деятельности: Узел катода магнетронного распылителя

Вид РИД

Изобретение

Аннотация: Изобретение относится к узлу катода магнетронного распылителя. Узел содержит мишень 1, закрепленную в стенках корпуса 4, первый электростатический экран 7, установленный с внешней стороны стенок корпуса 4 и основания 5. Со стороны внутренней поверхности 3 мишени 1 установлена пластина 10, выполненная по форме, идентичной форме мишени 1 толщиной от 1 до 4 мм, и плотно прижатая к ее внутренней поверхности 3. На основании 5 по центру установлен центральный магнит 11, а на периферии основания 5 расположены внешние магниты 12. На основании 5 расположен теплопередающий элемент 13 с внутренней проточкой 15, в которой расположен центральный магнит 11 и с внешними проточками 16, в которых установлен трубопровод охлаждения 17. Трубопровод охлаждения 17 выполнен в виде прямоугольной рамки со скошенными углами из труб прямоугольного сечения и содержит патрубки подачи и отвода охлаждающей жидкости 18. При этом в теплопередающем элементе 13 выполнены отверстия 19, в которые вставлены патрубки подачи и отвода охлаждающей жидкости 18. Поперечное сечение трубопровода охлаждения 17 выбрано из условия обеспечения эффективного охлаждения с турбулентным режимом течения охлаждающей жидкости, характеризующимся числом Рейнольдса не менее 8000. Технический результат заключается в повышении эффективности охлаждения и надежности работы узла катода магнетронного распылителя. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области нанесения покрытий распылением металлов с использованием магнитного поля, а именно к магнетронным распылительным устройствам.

Известен узел катода магнетронного распылителя (патент RU №2555264, МПК С23С 14/35, опубл. 10.07.2015), содержащий основание из ферромагнитного материала, соединенную с основанием мишень из распыляемого материала, установленные на основании с внутренней стороны от мишени магниты, отделенные от нее зазором, и систему охлаждения.

Недостатком настоящего устройства является низкая надежность вследствие нагрева внешней части магнитной системы излучением как от мишени, так и от стенок корпуса магнетронов, а также наличия сложного в изготовлении основания из ферромагнитного материала, имеющего низкую теплопроводность и легко подвергающегося коррозии.

Наиболее близким по технической сущности к заявляемому изобретению является узел катода магнетронного распылителя (патент RU №2319788, МПК С23С 14/35, опубл. 20.03.2008), содержащий мишень, имеющую наружную сторону и внутреннюю сторону и выполненную по меньшей мере частично из распыляемого материала, расположенные с внутренней стороны от мишени магниты, теплоизолированные от мишени, и по меньшей мере один трубопровод для охлаждающей среды, имеющий стенку с частью, свободной от передачи тепла непосредственно от мишени.

Недостатком настоящего устройства является низкая надежность из-за ненадежного теплового контакта с контуром охлаждения, одновременного нагрева внешней части магнитной системы излучением от мишени и от боковых стенок корпуса магнетронов, а также возможность утечки охлаждающей среды в рабочий объем вакуумной камеры.

Технической задачей предлагаемого изобретения является повышение эффективности охлаждения мишени и магнитной системы узла катода магнетронного распылителя.

Технический результат заключается в повышении эффективности охлаждения и надежности работы узла катода магнетронного распылителя.

Это достигается тем, что узел катода магнетронного распылителя, содержащий мишень с внешней поверхностью и внутренней поверхностью, закрепленную в стенках корпуса, установленных на основании, соединительными винтами, первый электростатический экран, установленный с внешней стороны стенок корпуса и основания, выполненный идентичным их форме, закрепленный на основании крепежными болтами и электрически изолированный от него изоляторами, внешние магниты, расположенные на периферии основания, теплопередающий элемент и трубопровод охлаждения, снабжен центральным магнитом, установленным на продольной оси симметрии основания, пластиной, вторым электростатическим экраном и прижимными винтами, при этом пластина установлена со стороны внутренней поверхности мишени, выполнена по форме, идентичной форме мишени толщиной от 1 до 4 мм, и плотно прижата к ней и стенкам корпуса соединительными винтами, причем между пластиной и верхней плоскостью внешних магнитов образован теплоизоляционный зазор шириной от 0,5 до 2 мм, при этом общая толщина пластины с мишенью 1 не превышает 12 мм, второй электростатический экран установлен внутри первого электростатического экрана, выполнен идентичным его форме, электрически изолирован от основания изоляторами и закреплен на нем крепежными болтами таким образом, что между стенками корпуса, вторым электростатическим экраном и первым электростатическим экраном образованы зазоры от 2 до 4 мм, теплопередающий элемент расположен на основании, выполнен в виде вкладыша продолговатой формы и прижат своей верхней плоскостью к пластине прижимными винтами, а боковыми торцами - к внешним магнитам, при этом теплопередающий элемент содержит внутреннюю проточку, в которой расположен центральный магнит и выполненную идентичной его форме, внешние проточки, в которых установлен трубопровод охлаждения с патрубками подачи и отвода охлаждающей жидкости, выполненные идентичными его форме таким образом, что он плотно прижат к пластине, и отверстия, в которые вставлены патрубки подачи и отвода охлаждающей жидкости и выполненные по форме, идентичной форме их поперечного сечения, причем трубопровод охлаждения выполнен в виде прямоугольной рамки со скошенными углами из труб прямоугольного поперечного сечения, которое выбрано из условия обеспечения эффективного охлаждения с турбулентным режимом течения охлаждающей жидкости, характеризующимся числом Рейнольдса не менее 8000, при этом пластина и теплопередающий элемент выполнены из немагнитных материалов с высокой теплопроводностью, второй электростатический экран выполнен из немагнитного материала с низким значением коэффициента черноты.

Сущность изобретения поясняется чертежами, где на фиг. 1 изображена схема узла катода магнетронного распылителя, на фиг. 2 представлен внешний вид трубопровода охлаждения, на фиг. 3 показан внешний вид вкладыша, на фиг. 4 представлена схема трубопровода охлаждения и вкладыша в сборе.

Узел катода магнетронного распылителя содержит мишень 1 с внешней поверхностью 2 и внутренней поверхностью 3, закрепленную в стенках корпуса 4, установленных на основании 5, соединительными винтами 6, первый электростатический экран 7, установленный с внешней стороны стенок корпуса 4 и основания 5, выполненный идентичным их форме, и электрически изолированный от основания 5 изоляторами 8, и закрепленный на нем крепежными болтами 9. Со стороны внутренней поверхности 3 мишени 1 установлена пластина 10, выполненная по форме, идентичной форме мишени 1 толщиной от 1 до 4 мм, и плотно прижатая к ее внутренней поверхности 3 и стенкам корпуса 4 соединительными винтами 6. При этом общая толщина пластины 10 с мишенью 1 не превышает 12 мм.

На продольной оси симметрии основания 5 установлен центральный магнит 11, а на периферии основания 5 расположены внешние магниты 12, причем между верхней плоскостью внешних магнитов 12 и пластиной 10 образован теплоизоляционный зазор шириной от 0,5 до 2 мм. На основании 5 расположен теплопередающий элемент 13, выполненный в виде вкладыша продолговатой формы и прижатый своей верхней плоскостью к пластине 10 прижимными винтами 14, а боковыми торцами к внешним магнитам 12. Теплопередающий элемент 13 содержит внутреннюю проточку 15, в которой расположен центральный магнит 11 и выполненную идентичной его форме, и внешние проточки 16, в которых установлен трубопровод охлаждения 17, и выполненные идентичными его форме таким образом, что он плотно прижат к пластине 10. Причем трубопровод охлаждения 17 выполнен в виде прямоугольной рамки со скошенными углами из труб прямоугольного сечения и содержит патрубки подачи и отвода охлаждающей жидкости 18. При этом в теплопередающем элементе 13 выполнены отверстия 19, в которые вставлены патрубки подачи и отвода охлаждающей жидкости 18, идентичные форме их поперечного сечения. Поперечное сечение трубопровода охлаждения 17 выбрано из условия обеспечения эффективного охлаждения с турбулентным режимом течения охлаждающей жидкости, характеризующимся числом Рейнольдса не менее 8000.

Внутри первого электростатического экрана 7 установлен второй электростатический экран 20, выполненный идентичным его форме, электрически изолированный от основания 5 изоляторами 8, и закрепленный на нем крепежными болтами 9 таким образом, что между стенками корпуса 4, вторым электростатическим экраном 20 и первым электростатическим экраном 7 образованы зазоры от 2 до 4 мм.

Пластина 10 и теплопередающий элемент 13 выполнены из немагнитных материалов с высокой теплопроводностью, например меди или алюминиевого сплава. Второй электростатический экран 20 выполнен из немагнитного материала с низким значением коэффициента черноты. Трубопровод охлаждения 17 выполнен из коррозионно-стойкого материала, некорродирующего с применяемой охлаждающей жидкостью.

Узел катода магнетронного распылителя работает следующим образом.

В трубопровод охлаждения 17 подают охлаждающую жидкость. Затем на узел катода магнетронного распылителя подают высокое напряжение. При этом над мишенью 1 возникает газовый разряд, поддерживаемый скрещенными электрическими и магнитными полями. Наличие центрального магнита 11 позволяет настраивать конфигурацию магнитного поля над мишенью для нанесения металлических или диэлектрических (керамических) покрытий, что расширяет возможности управления технологическим процессом осаждения покрытий с помощью данного устройства.

Электроны плазмы, образующейся над мишенью 1, удерживаются магнитными полями, образуемыми внешними магнитами 12 и центральным магнитом 11 и дрейфуют по замкнутым траекториям над мишенью 1. Получаемые при этом положительно заряженные ионы рабочего газа ускоряются электрическим полем узла катода магнетронного распылителя, приобретают высокую кинетическую энергию и бомбардируют внешнюю поверхность 2 мишени 1 так, что распыляемый материал выбивается из мишени 1 и оседает на изделии.

Контакт пластины 10, обладающей высокой теплопроводностью, с внутренней поверхностью 3 мишени 1, трубопроводом охлаждения 17, теплопередающим элементом 13 и стенками корпуса 4 образует замкнутый контур теплопередачи (тепловой мостик) вокруг центрального 11 и внешних 12 магнитов. Это препятствует нагреву магнитной системы и отводит тепло от внутренней поверхности мишени 3.

Трубопровод охлаждения 17 находится в тепловом контакте с пластиной 10 и теплопередающим элементом 13, через которые проходит поток тепла от внутренней поверхности 3 горячей мишени 1 к охлаждающей жидкости, и не касается боковыми стенками других элементов. Это обеспечивается пастами или многослойной фольгой, выполненными из материалов с высокой теплопроводностью. Охлаждающая жидкость, циркулирующая по трубопроводу охлаждения 17, обеспечивает охлаждение мишени 1, предотвращающее ее разрушение под действием тепловых нагрузок, и обеспечивает эффективное охлаждение стенок корпуса 4, основания 5, пластины 10 и теплопередающего элемента 13, тем самым предотвращая нагрев центрального 11 и внешних 12 магнитов. Пластина 10 также препятствует разрушению трубопровода охлаждения 17 из-за распыления его материала при сквозном распылении мишени 1, что предотвращает возможность утечки охлаждающей жидкости в рабочий объем. Второй электростатический экран 20 препятствует одновременному осуществлению нагрева внешней части магнитной системы излучением от мишени 1 и от стенок первого электростатического экрана 7.

Использование изобретения позволяет повысить эффективность охлаждения и надежность работы узла катода магнетронного распылителя за счет создания вокруг магнитной системы замкнутого охлаждаемого теплопроводящего контура, организующего направленный поток тепла к трубопроводу охлаждения и обеспечивающего возможность сквозного распыления мишени, а также за счет препятствия нагреву деталей узла катода магнетронного распылителя от окружающей среды через стенки корпуса.


Узел катода магнетронного распылителя
Узел катода магнетронного распылителя
Узел катода магнетронного распылителя
Узел катода магнетронного распылителя
Источник поступления информации: Роспатент

Показаны записи 141-150 из 213.
04.06.2019
№219.017.7361

Внутритрубный упругий микроробот с управляемой пьезоактюатором формой

Изобретение относится к робототехнике, а именно к мобильным миниатюрным роботам, предназначенным для осуществления работ в трубчатых каналах различных типов. Внутритрубный упругий микроробот выполнен в виде гибкого многоопорного неразрезного стержня, опорами которого служат шарнирно...
Тип: Изобретение
Номер охранного документа: 0002690258
Дата охранного документа: 31.05.2019
07.06.2019
№219.017.74ff

Фильтрокомпенсирующая установка

Использование: в области электротехники. Технический результат - снижение уровня необратимых потерь электроэнергии, уменьшение массогабаритов, повышение коэффициента мощности и снижение коэффициентов гармонических составляющих напряжения электрической сети. Фильтрокомпенсирующая установка,...
Тип: Изобретение
Номер охранного документа: 0002690689
Дата охранного документа: 05.06.2019
07.06.2019
№219.017.7508

Ротор асинхронного электродвигателя

Изобретение относится к электротехнике и электромашиностроению, предназначено для применения в асинхронных электродвигателях мощностью более 100 кВт и направлено на повышение надежности работы электродвигателя и сопряженных с ним питающей сети и технологического оборудования за счет улучшения...
Тип: Изобретение
Номер охранного документа: 0002690680
Дата охранного документа: 05.06.2019
04.07.2019
№219.017.a4d8

Бестопливная тригенерационная установка

Изобретение относится к детандер-генераторным агрегатам для производства электроэнергии и устройствам для производства тепла и холода за счет разделения газового потока. Между газопроводом высокого давления и газопроводом низкого давления, разделенными дросселем, установлена линия подачи газа...
Тип: Изобретение
Номер охранного документа: 0002693352
Дата охранного документа: 02.07.2019
04.07.2019
№219.017.a514

Инвертная пылегазовая призматическая топка

Изобретение относится к области тепловой энергетики и может быть использовано на паровых котлах ТЭС. Пылегазовая призматическая топка содержит экранированные вертикальные стены, верхнее торцевое ограждение и скаты холодной воронки, пылеугольные горелки, а также воздушные сопла, установленные на...
Тип: Изобретение
Номер охранного документа: 0002693281
Дата охранного документа: 02.07.2019
05.07.2019
№219.017.a650

Способ повышения точности геометрических измерений, проводимых с помощью стереоскопического устройства на основе призменно-линзовой оптической системы

Изобретение относится к технологиям визуально-измерительного контроля. Способ повышения точности геометрических измерений, проводимых с помощью стереоскопического устройства на основе призменно-линзовой оптической системы, включает предварительную калибровку устройства на основе совместной...
Тип: Изобретение
Номер охранного документа: 0002693532
Дата охранного документа: 03.07.2019
10.07.2019
№219.017.a988

Цифровой обнаружитель фазоманипулированных сигналов

Изобретение относится к области радиотехники и может быть использовано в радиотехнических устройствах, использующих фазоманипулированные (ФМ) сигналы. Технический результат - снижение максимального уровня проникновения сигнальной компоненты в канал оценки интенсивности помехи при включении и...
Тип: Изобретение
Номер охранного документа: 0002693930
Дата охранного документа: 08.07.2019
10.07.2019
№219.017.a9a1

Способ контроля устройства релейной защиты электроустановки

Использование: в области электроэнергетики, в системах релейной защиты электроустановки. Технический результат - исключение случаев неправильной работы устройства путем своевременного выявления сверхнормативных отклонений его напряжений срабатывания и возврата, количества электричества импульса...
Тип: Изобретение
Номер охранного документа: 0002693931
Дата охранного документа: 08.07.2019
23.07.2019
№219.017.b81e

Устройство изготовления непрерывных базальтовых волокон

Изобретение относится к устройству для получения непрерывных базальтовых волокон. Устройство содержит фидерную печь, бункер с дозатором и загрузчиком базальта, теплообменник, при этом печь и фидер перекрыты сводом с установленными горелками, в фидере установлены фильерные питатели, под которыми...
Тип: Изобретение
Номер охранного документа: 0002695188
Дата охранного документа: 22.07.2019
23.08.2019
№219.017.c2b4

Устройство определения электропроводимости магнитных отложений на поверхности труб вихретоковым методом

Использование: для неразрушающего контроля. Техническая целесообразность изобретения заключается в том, что устройство вихретокового контроля удельной электрической проводимости магнитных отложения на поверхности труб содержит генератор прямоугольных периодических импульсов тока с периодом Тв,...
Тип: Изобретение
Номер охранного документа: 0002697936
Дата охранного документа: 21.08.2019
Показаны записи 71-73 из 73.
04.06.2019
№219.017.7294

Способ нанесения коррозионностойкого покрытия на поверхность стальной лопатки паровой турбины

Изобретение относится к способу нанесения защитных покрытий на стальные лопатки влажнопаровых ступеней турбин. Способ включает электролитно-плазменную полировку лопатки, ее размещение в вакуумной камере, нагрев вакуумной камеры, откачку из нее воздуха, очистку и травление поверхности лопатки...
Тип: Изобретение
Номер охранного документа: 0002690385
Дата охранного документа: 03.06.2019
15.01.2020
№220.017.f4f6

Способ нанесения эрозионностойкого покрытия на поверхность стальной лопатки паровой турбины

Изобретение относится к области энергетического машиностроения и может быть использовано для защиты от эрозионного износа стальных рабочих лопаток влажнопаровых ступеней турбин, подвергающихся высокоскоростному каплеударному воздействию в коррозионно-активных средах при повышенных усталостных...
Тип: Изобретение
Номер охранного документа: 0002710761
Дата охранного документа: 13.01.2020
01.02.2020
№220.017.fc3d

Способ формирования трибологического покрытия

Изобретение может быть использовано в машиностроении и микромеханике для уменьшения трения и износа в подшипниках скольжения. Сначала подготавливают рабочую поверхность изделий 1 путём полировки, обезжиривания в ультразвуковой ванне, обработки бензино-спиртовой смесью и термообработки в...
Тип: Изобретение
Номер охранного документа: 0002712661
Дата охранного документа: 30.01.2020
+ добавить свой РИД