×
05.07.2019
219.017.a650

СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ГЕОМЕТРИЧЕСКИХ ИЗМЕРЕНИЙ, ПРОВОДИМЫХ С ПОМОЩЬЮ СТЕРЕОСКОПИЧЕСКОГО УСТРОЙСТВА НА ОСНОВЕ ПРИЗМЕННО-ЛИНЗОВОЙ ОПТИЧЕСКОЙ СИСТЕМЫ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к технологиям визуально-измерительного контроля. Способ повышения точности геометрических измерений, проводимых с помощью стереоскопического устройства на основе призменно-линзовой оптической системы, включает предварительную калибровку устройства на основе совместной обработки набора изображений тест-объекта, зарегистрированных при различных положениях тест-объекта относительно оптической системы, и вычисление калибровочных параметров математической модели оптической системы и матричного приемника излучения, регистрацию изображения исследуемого объекта и обработку этого изображения, вычисление координат точек поверхности исследуемого объекта в трехмерном пространстве и расчет геометрических параметров исследуемого объекта с использованием калибровочных параметров. Калибровку устройства осуществляют совместно по нескольким наборам изображений тест-объекта, полученных в узких с шириной по уровню половины максимума менее 1/10 ширины рабочего спектрального диапазона устройства диапазонах длин волн в пределах рабочего спектрального диапазона устройства. Изображение исследуемого объекта регистрируют в узком диапазоне длин волн в пределах рабочего спектрального диапазона устройства. По вычисленным значениям калибровочных параметров, соответствующим узким спектральным интервалам, осуществляют расчет приведенных калибровочных параметров, соответствующих диапазону, в котором зарегистрировано изображение исследуемого объекта, с помощью интерполяции спектрально-зависимых калибровочных параметров. Техническим результатом является повышение эффективности применения призменно-линзовых систем за счет увеличения контраста регистрируемых изображений в узких спектральных интервалах и снижения систематической погрешности измерений геометрических параметров объектов, вызванной неоптимальными методами калибровки. 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к технологиям визуально-измерительного контроля (ВИК), позволяющим по зарегистрированным изображениям осуществить измерение геометрических параметров объектов, находящихся в труднодоступных внутренних полостях технических устройств и сооружений.

В ряде случаев, например, при контроле авиационных и ракетных двигателей, трубопроводов, теплообменников и других промышленных объектов, в ходе визуально-измерительного контроля (ВИК) возникает необходимость не только выявить дефекты, но и измерить их геометрические характеристики. [Клюев В.В., Соснин Ф.Р. Неразрушающий контроль. Справочник. Т. 1. Книга 1. Визуальный и измерительный контроль. // М.: Машиностроение, 2008. 324 с.]. Допустимость или недопустимость обнаруженных дефектов определяется требованиями нормативной документации к их геометрическим параметрам: поперечным размерам, глубине/высоте, площади и др.

Для измерения геометрических характеристик объекта может применяться пассивный стереоскопический метод, использующий сопоставление изображений, полученных одновременно с разных ракурсов при помощи нескольких устройств регистрации (УР), с учетом информации о взаимном расположении этих устройств [Pears N., Liu Y. and Bunting P. 3D imaging, analysis and applications. London, UK: Springer Verlag, 2012. 500 p. Chapter 2, pp. 35-94]. Для реализации этих методов может использоваться составная оптическая система (ОС), содержащая несколько пространственно разнесенных частей, а изображения, полученные синхронно с разных ракурсов, могут регистрироваться на разные части одного матричного приемника излучения (МПИ). Наиболее распространенной реализацией данного метода является получение двух изображений на МПИ при помощи призменно-линзовой системы. Применение такой системы позволяет сократить поперечные размеры устройства, что позволяет создавать на ее основе стереонасадки для видеоэндоскопов, используемых при проведении ВИК труднодоступных полостей различных объектов [Lafleur F. Videoscope Trends: Improvements and New Developments. https://www.qualitymag.com/articles/93455-videoscope-trends-improvements-and-new-developments; Hubben E. and Jervis D., "Advances in Three Dimensional Measurement in Remote Visual Inspection", Proc. of 18th World Conference on Nondestructive Testing (2012); Batshev V., Machikhin A. and Kachurin Y., "Stereoscopic tip for a video endoscope: problems in design", Proc. SPIE, 10466. 104664D (2017)].

Известны методы калибровки стереоскопических систем регистрации, использующие проективную (pinhole) математическую модель (ММ) с дополнительным полиномиальным описанием дисторсии, вносимой ОС [Sturm Р, Ramalingam S, Tardif J-P, Gasparini S, Barreto J. Camera models and fundamental concepts used in geometric computer vision. Foundations and Trends in Computer Graphics and Vision 2011; 6: 1-183. DOI: 10.1561/0600000023; Kannala J, Brandt SS. A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE Trans Pattern Analysis and Machine Intelligence 2006; 28(8): 1335-40. DOI: 10.1109/TPAMI.2006.153; Zhang Z. Flexible camera calibration by viewing a plane from unknown orientations. Proc International Conference on Computer Vision 1999; 666-673. DOI: 10.1109/ICCV.1999.791289]. Калибровка проводится при помощи плоских или трехмерных тест-объектов известной конфигурации, на поверхности которых присутствуют контрастные маркеры, расстояние между которыми известно с высокой точностью. В зависимости от метода и типа тест-объекта регистрируются его изображения в одном положении, нескольких произвольных положениях или нескольких строго контролируемых положениях. Для калибровки призменно-линзовых стереоскопических систем могут применяться методы, использующие как проективную модель [Lim KB, Xiao Y. Virtual stereovision system: new understanding on single-lens stereovision using a biprism. Journal of Electronic Imaging 2005; 14: 043020-043020-11], так и трассировочную модель, учитывающую реальный ход луча через призму [Cui X., Lim К.В., Guo Q. and Wang D., "Accurate geometrical optics model for single-lens stereovision system using a prism", JOSA A, 29, 1828-1837 (2012); Wu L., Zhu J. and Xie H., "Single-lens 3D digital image correlation system based on a bilateral telecentric lens and a biprism: validation and application", Applied Optics, 54, 7842-7850 (2015); Lim K.B. and Qian В., "Biprism distortion modeling and calibration for a single-lens stereovision system", JOSA A, 33, 2213-2224 (2016); Gorevoy A. and Machikhin A., "Optimal calibration of a prism-based videoendoscopic system for precise 3D measurements", Computer Optics, 41(4), 536-546 (2017)]. Наиболее близким к заявляемому методу является метод, описанный авторами патента №US 20100079598 A1 (США, 2008), включающий предварительную калибровку устройства на основе совместной обработки набора изображений тест-объекта, зарегистрированных при различных положениях тест-объекта относительно ОС, и вычислении калибровочных параметров ОС и МПИ, регистрацию изображения исследуемого объекта и обработку этого изображения, вычисление координат точек поверхности исследуемого объекта в трехмерном пространстве и расчет геометрических параметров исследуемого объекта с использованием калибровочных параметров.

К недостаткам данного метода калибровки, ограничивающим его область применения, относится то, что он предназначен для калибровки систем, работающих в широком спектральном диапазоне, ограниченном только спектром излучения источника и спектральной чувствительностью МПИ. Использование данного метода для калибровки призменно-линзовых систем не оптимально при работе в узких спектральных диапазонах и приводит к возрастанию погрешности измерений из-за неизбежной хроматической аберрации [Sasian J., "Introduction to Aberrations in Optical Imaging Systems", Cambridge University Press (2013)]. Такие аберрации приводят к спектральной зависимости фокусного расстояния, коэффициентов дисторсии и других параметров ММ, используемой при калибровке, что не учитывается известным методом.

Использование параметров ММ, полученных указанным методом при калибровке в широком спектральном диапазоне, приведет к заметной погрешности измерений в узких спектральных диапазонах, центральная длина волны которых заметно отличается от средней длины волны широкого диапазона. Так, при калибровке в белом свете погрешность будет возрастать по мере приближения центральной длины волны узкого диапазона к красной или синей границе видимого диапазона. Использование известного метода калибровки в каждом используемом узком спектральном диапазоне ввиду трудоемкости рационально применять на практике только при небольшом числе таких диапазонов.

Задачей изобретения является усовершенствование методов калибровки призменно-линзовых систем для проведения измерений геометрических параметров объектов по стереоскопическим изображениям, полученных в узких спектральных интервалах.

Техническим результатом изобретения является повышение эффективности применения призменно-линзовых систем за счет увеличения контраста регистрируемых изображений в узких спектральных интервалах и снижения систематической погрешности измерений геометрических параметров объектов, вызванной неоптимальными методами калибровки.

Указанный технический результат достигается тем, что в известном способе повышения точности геометрических измерений, проводимых с помощью стереоскопического устройства на основе призменно-линзовой оптической системы, заключающемся в последовательно осуществляемых действиях: предварительной калибровке устройства на основе совместной обработки набора изображений тест-объекта, зарегистрированных при различных положениях тест-объекта относительно оптической системы, и вычислении калибровочных параметров математической модели оптической системы и матричного приемника излучения; регистрации изображения исследуемого объекта и обработки этого изображения; вычислении координат точек поверхности исследуемого объекта в трехмерном пространстве и расчете геометрических параметров исследуемого объекта с использованием калибровочных параметров, согласно изобретению калибровку устройства осуществляют совместно по нескольким наборам изображений тест-объекта, полученных в узких (с шириной по уровню половины максимума менее 1/10 ширины рабочего спектрального диапазона устройства) диапазонах длин волн в пределах рабочего спектрального диапазона устройства; изображение исследуемого объекта регистрируют в узком диапазоне длин волн в пределах рабочего спектрального диапазона устройства; по вычисленным значениям калибровочных параметров, соответствующим узким спектральным интервалам, осуществляют расчет приведенных калибровочных параметров, соответствующих диапазону, в котором зарегистрировано изображение исследуемого объекта, с помощью интерполяции спектрально-зависимых параметров.

На рисунке 1 представлена последовательность действий в случае, если зависимость калибровочных параметров от длины волны известна.

На рисунке 2 представлена последовательность действий в случае, если зависимость калибровочных параметров от длины волны неизвестна.

В зависимости от используемой математической модели калибровочные параметры можно разделить на две группы: спектрально-независимые и спектрально-зависимые; при расчете приведенных калибровочных параметров спектрально-независимые полагаются постоянными, а интерполяции подлежат только спектрально-зависимые.

Количество и положения узких диапазонов длин волн в пределах рабочего спектрального диапазона устройства, используемых при калибровке, определяются из условия достижения требуемой точности вычисления координат точек поверхности исследуемого объекта в трехмерном пространстве и геометрических измерений для всех узких диапазонов длин волн в пределах рабочего спектрального диапазона устройства. Для этого используется метод на основе математического моделирования процесса калибровки с использованием оптической схемы устройства.

Целью процедуры калибровки является вычисление вектора k параметров ММ призменно-линзовой системы, используя полученный набор изображений тест-объекта. При этом используется плоский или трехмерный тест-объект известной конфигурации, на поверхности которых нанесены четко различимые маркеры (шахматные клетки, круги, решетка из линий и другие картины из геометрических фигур).

При одновременной калибровке системы регистрации для L узких спектральных интервалов будут зарегистрировано L наборов изображений тест-объекта и вычислены координаты проекций точек тест-объекта для каждого интервала В зависимости от выбранного алгоритма калибровки и особенностей реализации переключения между узкими спектральными интервалами количество положений R тест-объекта может быть одинаковым или разным для всех интервалов.

Если количество используемых спектральных интервалов велико, то проводить одновременную калибровку для всех интервалов затруднительно, поскольку это требует регистрации очень большого числа изображений тест-объекта. В таком случае следует выбрать некоторое количество интервалов для проведения совместной калибровки и интерполировать спектрально-зависимые параметры в зависимости от диапазона длин волн используемого в данный момент спектрального интервала. Количество интервалов для проведения совместной калибровки и метод интерполяции определяются предполагаемым характером зависимости значений параметров от длины волны. В частности, применительно к трассировочной ММ, использованной в работе [Gorevoy A. and Machikhin А., "Optimal calibration of a prism-based videoendoscopic system for precise 3D measurements", Computer Optics, 41(4), 536-546 (2017)] в качестве спектрально-зависимых были приняты два параметра: фокусное расстояние и показатель преломления призмы. Поскольку эти параметры, как правило, являются непрерывными и плавно изменяющимися функциями от длины волны, проведения совместной калибровки для трех правильно выбранных интервалов (расположенных в начале, середине и конце видимого диапазона) и последующей интерполяции по формуле Конради [Conrady А.Е., "Applied Optics and Optical Design", Dover Publications (2011)] оказывается достаточно для последующих измерений в узких спектральных интервалах в пределах видимого диапазона.. Последовательность действий в случае, если зависимость калибровочных параметров от длины волны известна, кратко иллюстрируется на рисунке 1.

Для других ММ калибровочные параметры могут не иметь столь ярко выраженного физического смысла и их зависимость от длины волны может быть заранее неизвестна. В таком случае для определения оптимального количества и положения интервалов для совместной калибровки требуется дополнительный анализ. При наличии оптической схемы системы регистрации такой анализ может быть проведен при помощи математического моделирования, при котором имитируется процесс калибровки.

Проведение такого математического моделирования требует наличия программного обеспечения, осуществляющего трассировку лучей через все поверхности ОС, заданной ее оптической схемой. В таком случае становится возможным вычислить координаты проекций каждой точки тест-объекта j=1…М при каждом положении k=1…R тест-объекта и для каждого интервала Положения тест-объекта и их количество задаются в соответствии с используемым алгоритмом калибровки. В целях сокращения времени вычислений проводится трассировка только главного луча на центральной длине волны интервала. Полученный набор координат точек используется в качестве входных данных для процедуры калибровки.

Для первичного анализа следует задать количество интервалов L порядка 10, равномерно распределенных в пределах рабочего диапазона, провести моделирование совместной калибровки для всех интервалов и оценить полученный характер зависимости значений калибровочных параметров от длины волны. В зависимости от величины изменений параметры можно разделить на спектрально-зависимые и спектрально-независимые. Для спектрально-зависимых параметров далее следует провести сравнительный анализ различных методов интерполяции и оптимальным образом выбрать из L интервалов минимально необходимое количество интервалов для выбранного метода интерполяции. Так, для линейной интерполяции необходимо выбрать 2 интервала таким образом, чтобы для остальных (L-2) интервалов обеспечить для каждого спектрально-зависимого параметра минимальное расхождение интерполированных значений со значениями, полученными при калибровке. Выбрав количество и положение интервалов для совместной калибровки, следует повторить для них калибровку и затем провести проверочный расчет.

Для проведения проверочного расчета требуется аналогично моделированию калибровки для каждого интервала вычислить координаты проекций точек, равномерно распределенных в пределах рабочего объема системы регистрации. Это соответствует моделированию съемки проверочной серии и позволяет оценить систематическую погрешность измерения 3D координат точек и геометрических параметров, например, длин ориентированных различным образом отрезков как в работе [Gorevoy A. and Machikhin A., "Optimal calibration of a prism-based videoendoscopic system for precise 3D measurements", Computer Optics, 41(4), 536-546 (2017)]. Если полученные значения погрешности не являются допустимыми, следует вернуться на предыдущий этап и рассмотреть возможность увеличения количества интервалов. Если это представляется нецелесообразным, следует рассмотреть использование другой ММ. Последовательность действий в случае, если зависимость калибровочных параметров от длины волны неизвестна, кратко иллюстрируется на рисунке 2.

Следует отметить, что как при проведении калибровки, так и при проверочном расчете требуется один раз провести вычисление набора данных, который впоследствии может многократно использоваться для проведения калибровки с различными ММ и различным количеством интервалов. Этим обеспечивается возможность сравнения различных вариантов непосредственно по величине систематической погрешности измерений и сразу делать вывод об их применимости.


СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ГЕОМЕТРИЧЕСКИХ ИЗМЕРЕНИЙ, ПРОВОДИМЫХ С ПОМОЩЬЮ СТЕРЕОСКОПИЧЕСКОГО УСТРОЙСТВА НА ОСНОВЕ ПРИЗМЕННО-ЛИНЗОВОЙ ОПТИЧЕСКОЙ СИСТЕМЫ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ГЕОМЕТРИЧЕСКИХ ИЗМЕРЕНИЙ, ПРОВОДИМЫХ С ПОМОЩЬЮ СТЕРЕОСКОПИЧЕСКОГО УСТРОЙСТВА НА ОСНОВЕ ПРИЗМЕННО-ЛИНЗОВОЙ ОПТИЧЕСКОЙ СИСТЕМЫ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ГЕОМЕТРИЧЕСКИХ ИЗМЕРЕНИЙ, ПРОВОДИМЫХ С ПОМОЩЬЮ СТЕРЕОСКОПИЧЕСКОГО УСТРОЙСТВА НА ОСНОВЕ ПРИЗМЕННО-ЛИНЗОВОЙ ОПТИЧЕСКОЙ СИСТЕМЫ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 208.
10.09.2015
№216.013.7894

Способ изготовления электродно-диафрагменного блока для щелочного электролизера воды

Изобретение относится к способу изготовления электродно-диафрагменного блока для щелочного электролизера воды, включающему приготовление формующего раствора диафрагмы, нанесение формующего раствора на подложку, изготовление диафрагмы методом фазовой инверсии и формирование...
Тип: Изобретение
Номер охранного документа: 0002562457
Дата охранного документа: 10.09.2015
20.10.2015
№216.013.83b4

Способ изготовления диафрагменного материала для электролитического разложения воды

Изобретение относится к технологии изготовления нетканых диафрагменных материалов на основе волокон полимера с внедренными по поверхности частицами гидрофильного наполнителя для электролизеров воды с щелочным электролитом. Способ изготовления диафрагменного материала для электролитического...
Тип: Изобретение
Номер охранного документа: 0002565319
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.8881

Пылеугольная топка

Изобретение относится к области тепловой энергетики и может быть использовано на паровых котлах с прямым вдуванием угольной пыли. Пылеугольная топка содержит экранированные прямоугольную вертикальную камеру сгорания 1 и двускатную холодную воронку 2, шлаковый комод 3, установленные по...
Тип: Изобретение
Номер охранного документа: 0002566548
Дата охранного документа: 27.10.2015
20.12.2015
№216.013.9cf0

Устройство для токарной обработки некруглых деталей

Устройство относится к электромеханике и может быть использовано для повышения точности токарной обработки серийных некруглых деталей, выполняемой по бескопирной технологии, в условиях колебания скорости вращения детали. Технический результат - повышение точности формообразования в условиях...
Тип: Изобретение
Номер охранного документа: 0002571801
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a0cb

Устройство для управления вентильно-индукторным электроприводом

Изобретение относится к области электротехники и может быть использовано в электроприводе станков, гибридного и электрического транспорта, установок общепромышленного назначения. Техническим результатом является повышение надежности устройства. Устройство управления предусматривает...
Тип: Изобретение
Номер охранного документа: 0002572805
Дата охранного документа: 20.01.2016
10.04.2016
№216.015.2e6a

Способ электропитания генератора озона поверхностного разряда

Изобретение относится к электротехнике и может быть использовано для экономии электроэнергии и повышения надежности генераторов озона барьерно-поверхностного разряда. Технический результат - повышение эффективности использования электроэнергии и уменьшение потребляемой мощности озонатора от...
Тип: Изобретение
Номер охранного документа: 0002579354
Дата охранного документа: 10.04.2016
20.05.2016
№216.015.4023

Микроканальный теплообменник

Изобретение относится к теплообменной технике и может использоваться в микроканальных теплообменниках. Микроканальный теплообменник состоит из жесткого корпуса, содержащего теплообменную матрицу, образованную из спаянных между собой тонких гладких теплопроводных пластин одинаковой конструкции,...
Тип: Изобретение
Номер охранного документа: 0002584081
Дата охранного документа: 20.05.2016
20.08.2016
№216.015.4a79

Гель-полимерный электролит для литиевых источников тока

Изобретение относится к электротехнической промышленности и может быть использовано при производстве литиевых первичных и вторичных источников тока, а также суперконденсаторов. Повышение удельной электрической проводимости гель-полимерного электролита, обеспечение его химической и...
Тип: Изобретение
Номер охранного документа: 0002594763
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4cd4

Энергоустановка с электрохимическим генератором на основе водородно-кислородных топливных элементов

Изобретение относится к энергетическому оборудованию и может быть использовано для получения электрической энергии как в стационарных установках, так и на транспорте, а также при производстве и эксплуатации энергоустановок. Повышение эффективности работы энергоустановки с электрохимическим...
Тип: Изобретение
Номер охранного документа: 0002594895
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4d93

Установка для нанесения покрытий на поверхности деталей

Изобретение относится к установке для нанесения покрытий на поверхности деталей. Внутри корпуса вакуумной камеры установлен, по меньшей мере, один источник распыляемого материала, выполненный в виде N магнетронов, где N - целое число и N>1, и ионный источник. Внутри корпуса камеры...
Тип: Изобретение
Номер охранного документа: 0002595187
Дата охранного документа: 20.08.2016
Показаны записи 1-10 из 14.
10.02.2016
№216.014.c589

Способ получения оптических трехмерных и спектральных изображений микрообъектов и устройство для его осуществления

Способ получения оптических трёхмерных и спектральных изображений микрообъектов включает в себя коллимирование широкополосного оптического излучения источника, разделение на два пучка - референтный и объектный, формирование интерференционной картины за счёт сведения указанных пучков,...
Тип: Изобретение
Номер охранного документа: 0002574791
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c632

Акустооптическое устройство для получения спектральных стереоизображений с перестройкой по спектру

Изобретение относится к области стереоскопии, в частности к получению и регистрации спектральных стереоизображений предметов, объектов. На входе устройства установлена двухапертурная диафрагма, формирующая два световых пучка, выходящих из объекта под разными углами. Входной объектив...
Тип: Изобретение
Номер охранного документа: 0002578372
Дата охранного документа: 27.03.2016
13.01.2017
№217.015.8396

Метод и устройство для регистрации спектральных цифровых голографических изображений оптически прозрачных микрообъектов

Способ получения спектральных цифровых голографических изображений, реализуемый устройством, заключается в формировании коллимированного широкополосного светового пучка, его селективной дифракции в акустооптическом фильтре, делении его на два пучка, пропускании одного из них через исследуемый...
Тип: Изобретение
Номер охранного документа: 0002601729
Дата охранного документа: 10.11.2016
26.08.2017
№217.015.e2fc

Метод и устройство для регистрации изображений фазовых микрообъектов в произвольных узких спектральных интервалах

Изобретение относится к технологиям количественной фазовой микроскопии и предназначено для измерения пространственного распределения фазовой задержки, вносимой прозрачным микрообъектом, в произвольных узких спектральных интервалах. Способ заключается в том, что прошедшее через микрообъект...
Тип: Изобретение
Номер охранного документа: 0002626061
Дата охранного документа: 21.07.2017
09.06.2018
№218.016.5ace

Триангуляционный метод измерения площади участков поверхности внутренних полостей объектов известной формы

Изобретение относится к технологиям визуально-измерительного контроля (ВИК), позволяющим по зарегистрированным изображениям обнаружить искомые элементы поверхности контролируемых объектов в труднодоступных внутренних полостях различных технических устройств и сооружений и измерить...
Тип: Изобретение
Номер охранного документа: 0002655479
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5aef

Способ и устройство регистрации пространственного распределения оптических характеристик труднодоступных объектов

Способ заключается в том, что объект освещают широкополосным светом, формируют пучок излучения, переносящий изображение объекта, делят его на два идентичных пучка, один из которых пространственно фильтруют, формируя волну с известной формой волнового фронта, совмещают направления...
Тип: Изобретение
Номер охранного документа: 0002655472
Дата охранного документа: 28.05.2018
02.12.2018
№218.016.a28f

Двухкомпонентный интерферометр общего пути

Устройство предназначено для регистрации пространственного распределения фазовой задержки, вносимой оптически прозрачным микрообъектом, и измерению его характеристик. Устройство состоит из оптически связанных и расположенных последовательно первого оптического компонента, фокусирующего...
Тип: Изобретение
Номер охранного документа: 0002673784
Дата охранного документа: 29.11.2018
19.11.2019
№219.017.e379

Метод контроля формы выпуклых оптических сферических и асферических поверхностей и устройство для его осуществления

Изобретение относится к технологиям получения топографической карты поверхности интерференционным методом и позволяет контролировать форму выпуклой сферической (СП) или асферической (АП) поверхностей. Технический результат - возможность получения топографической карты выпуклых СП или АП...
Тип: Изобретение
Номер охранного документа: 0002706388
Дата охранного документа: 18.11.2019
12.12.2019
№219.017.ec49

Способ для продольного перемещения перетяжки лазерного гауссова пучка постоянного диаметра без перемещения компонентов оптической системы (варианты)

Изобретение относится к области оптического приборостроения и может быть использовано в приборостроении, медицине и других областях науки и техники, где возникает необходимость непрерывного и плавного изменения положения перетяжки лазерного гауссова пучка при обеспечении постоянства ее...
Тип: Изобретение
Номер охранного документа: 0002708549
Дата охранного документа: 09.12.2019
08.02.2020
№220.018.0039

Способ регистрации мультиспектрального цифрового голографического изображения

Изобретение относится к технологиям цифровой голографии, а именно количественной фазовой микроскопии, и предназначено для измерения спектральной зависимости пространственного распределения фазовой задержки, вносимой оптически прозрачным объектом в световую волну. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002713567
Дата охранного документа: 05.02.2020
+ добавить свой РИД