×
26.08.2017
217.015.e3f7

СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области волоконной оптики и может быть использовано при создании волоконно-оптических гироскопов и других фазовых интерферометрических датчиков физических величин, построенных по схеме интерферометра Саньяка. Технический результат – повышение точности волоконно-оптического гироскопа достигается путем компенсации отклонений значения масштабного коэффициента за счет временного мультиплексирования основного сигнала компенсации фазового сдвига Саньяка со вспомогательным диагностическим сигналом. Указанный дополнительный диагностический сигнал обеспечивает возникновение соответствующего интерферометрического отклика со сложной полигармонической структурой, регистрация которого на фотоприемном устройстве и последующий анализ соотношений отдельных спектральных компонент позволяют оценить величину отклонения масштабного коэффициента. Техническим результатом является повышение точности волоконно-оптического гироскопа без снижения частоты формирования сигнала вращения. 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к области волоконной оптики и может быть использовано при создании волоконно-оптических гироскопов и других фазовых интерферометрических датчиков физических величин, построенных по схеме интерферометра Саньяка.

Общая структурная схема волоконно-оптического гироскопа (ВОГ) с закрытым контуром описана в ряде патентов (патент РФ №2444704, МПК G01С 19/72, от 26.10.2010, патент РФ №2522147, МПК G01С 19/64, от 13.11.2012). Для реализации предлагаемого способа повышения точности пригодны любые ВОГ компенсационного типа, содержащие схему формирования ступенчатого модулирующего фазового сигнала.

Известен способ модуляции сигнала волоконно-оптического гироскопа с закрытым контуром, обеспечивающий повышение точности работы прибора по сравнению с волоконно-оптическогим гироскопом с открытым контуром, где в качестве вспомогательного сигнала используют фазовый квадратурный сигнал (Pavlath G.A. Closed-loop fiber optic gyros. SPIE v. 2837, 1996, pp. 46-60). Для расширения динамического диапазона измерения угловых скоростей и получения высокой линейности выходной характеристики ВОГ в оптоэлектронной схеме обработки сигнала применяют компенсационный метод: одновременно с напряжением вспомогательной фазовой модуляции подают компенсирующее разность фаз Саньяка пилообразное ступенчатое напряжение. При достижении пилообразным сигналом границы диапазона фазовой модуляции сигнал сбрасывают на величину напряжения, эквивалентную фазовой разности между интерферирующими лучами, равной 2π радиан, тем самым обеспечивая расширение динамического диапазона. Перепад уровня сигнала на фотоприемном устройстве в момент сброса сигнала фазовой модуляции используют в качестве сигнала обратной связи для компенсации отклонений величины масштабного коэффициента (МК) путем подстройки коэффициента усиления генератора модулирующего сигнала.

Одним из недостатков известного способа является зависимость эффективности алгоритма стабилизации значения масштабного коэффициента от величины сигнала вращения. Недостаток объясняется тем, что различным угловым скоростям ВОГ соответствуют различные углы наклона пилообразного ступенчатого сигнала компенсации. Временной интервал между моментами сброса сигнала модуляции, а значит и моментами получения сигнала обратной связи, также зависит от угловой скорости, что может привести к дестабилизации МК при малых скоростях вращения.

Наиболее близким к предлагаемому и принятым за прототип является способ повышения точности устройств на основе кольцевого интерферометра Саньяка (патент US №5141316, МПК G01C 19/72, опубл. 25.08.1992). Суть известного способа состоит в следующем: сигнал представляет собой последовательность уровней длительностью , где - собственное время контура. Исходную форму сигнала Фm на модулирующем устройстве подбирают таким образом, чтобы сигнал фазовой разности лучей на интерферометре имел следующую форму: нечетные по счету уровни должны содержать квадратурную модуляцию с амплитудами ±Ф0, четные - с амплитудами ±aФ0, причем:

В этом случае линейные комбинации Хр и Хg выходных уровней х1…х4, последовательно регистрируемых на фотоприемном устройстве, помимо информации о величине невзаимного фазового сдвига, будут содержать также информацию об эффективности фазовой модуляции:

Как и в случае использования квадратурной модуляции с длительностью уровня τ (Pavlath G.A. Closed-loop fiber optic gyros. SPIE v. 2837, 1996, pp. 46-60), предлагаемый в прототипе подход позволяет регистрировать величину фазового сдвига Саньяка с периодом τ, в то время как проблему, связанную с дестабилизацией масштабного коэффициента на малых скоростях, решают за счет включения в модулирующий сигнал вспомогательного сигнала постоянной частоты, предназначенного для оценки величины отклонения МК, и соответствующей подстройки коэффициента усиления генератора модулирующего сигнала.

Недостатком прототипа является то, что при формировании предлагаемой в прототипе фазоразностной последовательности с использованием серродинной модуляции (Pavlath G.A. Closed-loop fiber optic gyros. SPIE v. 2837, 1996, pp. 46-60) на модулирующем устройстве с диапазоном фазовой модуляции -π…+π радиан возможно возникновение режима, при котором х14 и х23, поэтому вычисление величины Хg (3) приводит к получению нулевого результата даже при наличии погрешности масштабного коэффициента. Другими словами, предложенный в прототипе способ модуляции в некоторых режимах фактически приводит к временному размыканию дополнительного контура обратной связи, что, в свою очередь, может стать причиной накопления погрешности масштабного коэффициента и снижения точности измерительной системы.

Изобретение решает задачу повышения точности выходного сигнала волоконно-оптического гироскопа за счет устранения зависимости частоты формирования вспомогательного сигнала, предназначенного для оценки отклонения величины масштабного коэффициента, от величины текущей угловой скорости ВОГ, устранения зависимости величины указанного вспомогательного сигнала от величины действующего на ВОГ углового ускорения, что позволяет использовать приборы, в которых реализован предлагаемый в заявке способ, в условиях жестких динамических нагрузок и исключения возможности возникновения режимов вращения ВОГ, нарушающих работу алгоритма стабилизации масштабного коэффициента

Поставленная задача решается следующим образом. Путем подачи на фазовый модулятор ступенчатого импульсного сигнала напряжения формируют модулирующий фазовый сигнал, состоящий из двух чередующихся последовательностей и , каждая из которых включает в себя уровни длительностью , где τ - время обхода оптоволоконного контура, m - именной индекс, указывающий на использование сигнала в качестве модуляционного, n - порядковый номер уровня в общем модулирующем фазовом сигнале, являющимся суперпозицией двух указанных чередующихся последовательностей, в обозначенных последовательностях чередуют сигнал компенсации фазового сдвига Саньяка и вспомогательный диагностический сигнал , вызывающие соответственно интерференционные отклики и , регистрацией которых на фотоприемном устройстве и их последующей демодуляцией получают, соответственно, величину действующей на прибор угловой скорости и сигнал ошибки, с помощью которого оценивают величину отклонения масштабного коэффициента и стабилизируют его значение путем замыкания дополнительного контура обратной связи. В последовательности , содержащей вспомогательный диагностический сигнал, его отдельные отсчеты формируют как дискретизированные на интервале τ значения гармонической функции с амплитудой С' и частотой , где - собственная частота гироскопа и , а регистрируемый на фотоприемном устройстве соответствующий интерференционный отклик имеет полигармоническую структуру. Демодуляцию полученного интерференционного отклика осуществляют следующим образом: на основе зарегистрированного значения вычисляют дополнительный сигнал путем умножения последовательных дискретных отсчетов отклика на значения последовательности {1, -1,1, -1,1, …}, из полученных сигналов и выделяют, соответственно, мгновенные значения и амплитуд первых двух четных спектральных компонент с частотами 2ƒ0 и 4ƒ0 и мгновенные значения и амплитуд первых двух нечетных спектральных компонент с частотами ƒ0 и 3ƒ0, затем формируют сигнал ошибки ΔFB, величину которого вычисляют по формуле где , , где JN - функция Бесселя первого рода N-го порядка.

Сущность заявляемого способа поясняется следующим: сигнал фазовой модуляции содержит в себе две чередующиеся последовательности и , каждая из которых содержит в себе уровни длительностью .

Уровни формируют на основании базового уровня пилообразного сигнала с предыдущей итерации , величины сигнала обратной связи , а также сигнала квадратурной сдвигающей модуляции ±Фb.

Уровни формируются при помощи дискретизации на интервале τ гармонической функции с амплитудой С' и частотой , где - собственная частота гироскопа, и . Зависимость величины уровня от его порядкового номера в последовательности приводится в формуле 1.

Результатом подачи на модулирующее устройство сигнала предлагаемой структуры является формирование фазоразностного сигнала, содержащего последовательно чередующиеся четные и нечетные уровни длительностью каждый. Нечетные уровни ΔФ2n+1 соответствуют таковым в случае использования известного алгоритма квадратурной сдвигающей модуляции (Pavlath G.A. Closed-loop fiber optic gyros. SPIE v. 2837, 1996, pp. 46-60) и несут в основном информацию о величине невзаимного фазового сдвига Саньяка. В четных уровнях содержатся отсчеты дискретизированной на интервале τ гармонической функции с амплитудой С, частотой и фазовым сдвигом ϕC. Зависимость между С и С', в силу того, что волоконная катушка представляет собой линию задержки длительностью τ, выражается формулой 2:

Согласно (2) с приближением к наблюдается приближение значения С к 2С,' иными словами происходит усиление модулирующего сигнала. Величина интерференционного отклика, регистрируемого фотоприемным устройством, соответствующего четным уровням фазоразностного сигнала описывается формулой 3:

где A - некоторый постоянный уровень, В - видность интерференционной картины, - фаза Саньяка. Величина С в рамках предлагаемого способа в дальнейшем называется глубиной модуляции. Сигнал является полигармоническим и состоит из двух подмножеств спектральных составляющих (4), зависимости которых от порядкового номера K, видности интерференционной картины В, глубины модуляции С и фазы Саньяка приводятся в формулах (5) и (6) соответственно:

где , - функции Бесселя первого рода (2К+1)-го и 2К-го порядка.

Перемножение последовательных дискретных отсчетов сигнала интерференционного отклика с дискретным сигналом единичной амплитуды на собственной частоте гироскопа (общий вид подобного сигнала {1, -1,1, -1,1, …}) позволяет получить дополнительный сигнал , нечетные спектральные компоненты которого описываются зависимостью, обозначенной в формуле 7:

Сигналом обратной связи для системы стабилизации значения масштабного коэффициента выступает сигнал ΔFB, формируемый на основе значений мгновенной амплитуды отдельных спектральных компонент , выделенных из сигналов и в соответствии с алгоритмом гомодинной демодуляции (Dandridge A., Tveten А.В., Gialloronzi T.G. Homodyne demodulation scheme for fiber optic sensors using phase generated carrier. IEEE Journal of Quantum Electronics, v. 18, n. 10, pp. 1647-1653). Соотношение для определения сигнала обратной связи приводится в формуле 8:

(8)

где , , где - функция Бесселя первого рода N-го порядка.

В случае аппаратной реализации подобной системы сигнал обратной связи используют для подстройки коэффициента усиления выходного сигнала модуляции (Pavlath G.A. Closed-loop fiber optic gyros. SPIE v. 2837, 1996, pp. 46-60). При использовании единого цифрового блока обработки сигналов более простым является способ программного масштабирования модулирующего сигнала.

Сущность заявляемого изобретения поясняется чертежами.

На Фиг. 1a - общий вид модулирующего фазового сигнала, состоящего из двух чередующихся последовательностей (выделены черной линией базовой толщины) и (выделены утолщенной черной линией). Для упрощения понимания уровни последовательности показаны без учета сигнала квадратурной сдвигающей модуляции т.е. при их формировании были использованы только два сигнала - значение базового уровня пилообразного сигнала с предыдущей итерации и величина сигнала обратной связи . Уровни последовательности сформированы как дискретизированные на интервале τ значения гармонической функции с амплитудой С' и частотой ƒ0 при условии выполнения неравенства . Использование гармонической функции с относительно низкой частотой недопустимо из-за низкого коэффициента пропускания волоконного контура (см. (2), однако, для облегчения понимания структуры модулирующего сигнала данный рисунок был включен в описание заявляемого способа. Единицы измерения по горизонтали - временные интервалы длительностью τ, по вертикали - радианы.

На Фиг. 1б - общий вид модулирующего фазового сигнала, состоящего из двух чередующихся последовательностей (выделены черной линией базовой толщины) и (выделены утолщенной черной линией). Фигура аналогична предыдущей (Фиг. 1а) за исключением частоты гармонической функции, используемой при формировании уровней последовательности - значение частоты составляет при условии выполнения неравенства . Приведенный модулирующий фазовый сигнал соответствует фактически используемому в приборе.

На Фиг. 2а - дискретный спектр для сигнала, заключенного в последовательности модулирующего фазового сигнала (структура которого приведена на Фиг. 1б).

На Фиг. 2-б показан дискретный спектр для сигнала интерференционного отклика . Два подмножества спектральных составляющих (см. (4)) показаны соответственно сплошными линиями и заштрихованными линиями. На фигуре отмечены значения интересующих спектральных компонент и .

На Фиг. 2в показан дискретный спектр для дополнительного сигнала , получаемого перемножением последовательных дискретных отсчетов сигнала интерференционного отклика с дискретным сигналом единичной амплитуды на собственной частоте гироскопа . На фигуре отмечены значения интересующих спектральных компонент и . Как видно, спектр, приведенный на фигуре, является перевернутой слева направо копией спектра, приведенного на Фиг. 2б.

На Фиг. 3, структурная схема волоконно-оптического гироскопа с закрытым контуром, дополненная системой стабилизации масштабного коэффициента.

Предлагаемый способ может быть реализован с помощью устройства, представленного на Фиг. 3. Волоконно-оптический гироскоп с закрытым контуром содержит источник широкополосного оптического излучения 1, волоконный Х-разветвитель 2, многофункциональную интегрально-оптическую схему 3 (МИОС) на основе монокристаллической пластины ниобата лития (LiNbO3), совмещающую Y-разветвитель, поляризатор и фазовый модулятор. Чувствительным элементом ВОГ является кольцевой оптоволоконный интерферометр 4. Цепь регистрации оптического сигнала ВОГ содержит фотоприемное устройство 5, электрическую схему усиления 6 и аналого-цифровой преобразователь 7. Схему цифровой обработки ВОГ, реализованную, как правило, на единой интегральной микросхеме, можно условно разделить на следующие программные блоки: блок цифровой демодуляции 8, блок генерации модулирующего сигнала 9 (цифровой генератор сигналов сложной формы), блок программного усиления модулирующего сигнала 10 (программный умножитель), блок программного усиления выходного сигнала ВОГ 11 (программный умножитель), блок подстройки масштабного коэффициента 12 (цифровой регулятор). Контур обратной связи замыкают цифро-аналоговый преобразователь 13 и электрическая схема усиления 14.

Излучение от источника 1 поступает на вход Х-разветвителя 2 и далее на вход схемы МИОС 3, где Y-разветвитель обеспечивает разделение входящего излучения на два луча равной интенсивности, каждый из которых далее обходит кольцевой интерферометр 4. После прохождения интерферометра лучи вновь объединяются в Y-разветвителе МИОС, суммарный луч проходит через Х-разветвитель 2, после чего поступает на фотоприемное устройство 5, регистрирующее две чередующихся последовательности сигналов интенсивности и , соответствующих чередующимся последовательностям в фазоразностном сигнале и . Ток фотоприемного устройства 5 проходит через схему усиления 6 и попадает на аналого-цифровой преобразователь 7. Цифровой сигнал далее поступает в блок цифровой демодуляции 8, который обеспечивает регистрацию отдельных уровней интенсивности интерференционного сигнала и формирование дополнительного сигнала путем перемножения последовательных дискретных отсчетов сигнала интерференционного отклика с дискретным сигналом единичной амплитуды на собственной частоте гироскопа . Блок генерации модулирующего сигнала 9 формирует несколько сигналов:

- Представленный двумя чередующимися последовательностями и импульсный модулирующий сигнал, в состав которого входят пилообразный сигнал компенсации, совмещенный с сигналом вспомогательной квадратурной модуляции, (уровни , а также вспомогательный сигнал, предназначенный для оценки величины отклонения МК (уровни ).

- Выходной сигнал вращения, пропорциональный угловой скорости ВОГ и равный по величине фазовому сдвигу Саньяка.

Выходной сигнал модуляции масштабируется блоком программного усиления модулирующего сигнала 10 и поступает на цифро-аналоговый преобразователь 13, после чего проходит через электрическую схему усиления 14 и подается на входящий в состав МИОС фазовый модулятор, замыкая таким образом главный контур обратной связи ВОГ. Блок подстройки масштабного коэффициента 12 осуществляет регулирование коэффициента программного усиления блока 10 или коэффициент усиления электрической схемы усиления 14 на основе сигнала ошибки , получаемого с использованием значений мгновенной амплитуды отдельных спектральных компонент , выделенных из сигналов и , с целью стабилизации текущего значения масштабного коэффициента. Блок программного усиления выходного сигнала 11 приводит выходной сигнал вращения с блока генерации модулирующего сигнала 9 к необходимым единицам измерения угловой скорости.

Таким образом, заявляемое решение приводит к повышению точности выходного сигнала ВОГ за счет устранения зависимости частоты формирования вспомогательного сигнала, предназначенного для оценки величины отклонения масштабного коэффициента, от текущего значения угловой скорости, устранения зависимости величины указанного вспомогательного сигнала от величины действующего на ВОГ углового ускорения, что приводит к возможности исключения влияния последнего на точность определения масштабного коэффициента и исключения возможности возникновения режимов вращения ВОГ, нарушающих работу алгоритма стабилизации масштабного коэффициента.


СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ЗАКРЫТЫМ КОНТУРОМ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 112.
10.05.2018
№218.016.3975

Способ изготовления нанокомпозитов в стекле

Изобретение относится к изготовлению нанопористых электродов для батарей, аккумуляторов и солнечных элементов, катализаторов и др. Способ изготовления металл-стеклянных и полупроводник-стеклянных нанокомпозитов заключается в приложении электрического поля к нанопористому силикатному стеклу,...
Тип: Изобретение
Номер охранного документа: 0002647132
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.3b57

Способ контроля остойчивости судна в условиях экстремального волнения

Изобретение относится к способу контроля остойчивости судна в условиях экстремального волнения. Для контроля остойчивости судна измеряют период бортовой качки, рассчитывают метацентрическую высоту определенным образом, рассчитывают характеристики ударного воздействия разрушающихся волн на...
Тип: Изобретение
Номер охранного документа: 0002647357
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.4730

Устройство для измельчения пищевых продуктов

Изобретение относится к устройствам для измельчения и может быть использовано в пищевой промышленности на консервных или овощесушильных предприятиях. Устройство для измельчения содержит полый перфорированный ротор, полый перфорированный прессующий вал, очистительные ножи и разгрузочные шнеки,...
Тип: Изобретение
Номер охранного документа: 0002650554
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.4797

Оптическое волокно для записи брэгговской решетки лазером с длиной волны в ближнем и среднем уф диапазоне, способ получения защитного фторполимерного покрытия оптического волокна и способ нанесения этого покрытия на кварцевую часть волокна

Группа изобретений относится к оптическим волокнам, в структуре световедущей части которых сформированы брэгговские решетки. Оптическое волокно с фторполимерным защитным покрытием, прозрачным на длине волны лазерного источника, позволяет записывать брэгговскую решетку прямо через такое...
Тип: Изобретение
Номер охранного документа: 0002650787
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.47e5

Узкополосный фильтр

Узкополосный фильтр состоит из двух одинаковых прозрачных треугольных призм, которые изготовлены из материала с высоким показателем преломления. Между ними нанесены чередующиеся слои, изготовленные из материалов с низким и высоким показателями преломления. Технический результат - упрощение...
Тип: Изобретение
Номер охранного документа: 0002650750
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4807

Лидарный комплекс

Лидарный комплекс содержит лазерный источник зондирования, оптическую систему, направляющую лазерное излучение в инспектируемое пространство, приемный телескоп, спектроанализатор и фотоприемное устройство. Оптическая система содержит плоское зеркало эллиптической формы, выполненное с выборками...
Тип: Изобретение
Номер охранного документа: 0002650776
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4f51

Способ обнаружения наблюдателя

Предлагаемое изобретение относится к области технической оптики и касается способа обнаружения наблюдателя. Способ включает в себя локализацию возможного места размещения наблюдателя и энергетическое освещение фронтальной поверхности оптического прибора наблюдателя экипированной группой из...
Тип: Изобретение
Номер охранного документа: 0002652659
Дата охранного документа: 28.04.2018
20.06.2018
№218.016.643b

Устройство для контроля деформаций поверхности конструкций и сооружений большой площади

Изобретение относится к контрольно-измерительной технике, а именно к оптико-электронным устройствам для бесконтактного измерения и деформаций поверхностей большой площади или протяженности, и может быть использовано для контроля неплоскостности, непараллельности крупногабаритных конструкций в...
Тип: Изобретение
Номер охранного документа: 0002658110
Дата охранного документа: 19.06.2018
20.06.2018
№218.016.6442

Способ контроля процесса эвакуации экипажа и пассажиров при возникновении морских катастроф

Изобретение относится к способам контроля эвакуации экипажа и пассажиров при возникновении морских катастроф. Для контроля процесса эвакуации экипажа и пассажиров при возникновении морских катастроф используют способ контроля мореходности судна, основанный на измерении периода бортовой качки и...
Тип: Изобретение
Номер охранного документа: 0002658232
Дата охранного документа: 19.06.2018
20.06.2018
№218.016.6445

Способ записи брэгговской решётки лазерным излучением в двулучепреломляющее оптическое волокно

Изобретение относится к волоконно-оптическим технологиям, в частности к процессу формирования волоконных брэгговских решеток (ВБР) в световедущей части двулучепреломляющих оптических волокон (ОВ). В способе записи брэгговской решетки лазерным излучением в двулучепреломляющее оптическое волокно,...
Тип: Изобретение
Номер охранного документа: 0002658111
Дата охранного документа: 19.06.2018
Показаны записи 71-79 из 79.
10.05.2018
№218.016.4797

Оптическое волокно для записи брэгговской решетки лазером с длиной волны в ближнем и среднем уф диапазоне, способ получения защитного фторполимерного покрытия оптического волокна и способ нанесения этого покрытия на кварцевую часть волокна

Группа изобретений относится к оптическим волокнам, в структуре световедущей части которых сформированы брэгговские решетки. Оптическое волокно с фторполимерным защитным покрытием, прозрачным на длине волны лазерного источника, позволяет записывать брэгговскую решетку прямо через такое...
Тип: Изобретение
Номер охранного документа: 0002650787
Дата охранного документа: 17.04.2018
14.06.2018
№218.016.61e2

Способ изготовления фоторефрактивых световодов

Изобретение относится к волоконной оптике, в частности к технологии изготовления кварцевых волоконных световодов с сердцевиной из фоторефрактивного стекла для изготовления волоконных брегговских решеток (ВБР). В способе изготовления фоторефрактивных световодов MCVD для повышения...
Тип: Изобретение
Номер охранного документа: 0002657323
Дата охранного документа: 13.06.2018
02.02.2019
№219.016.b676

Способ определения разницы длин плеч в двухлучевом волоконно-оптическом интерферометре

Изобретение относится к области волоконно-оптических измерительных приборов. Способ определения разницы длин плеч в двухлучевом волоконно-оптическом интерферометре заключается в формировании направляемого в двухлучевой волоконно-оптический интерферометр частотно-модулированного оптического...
Тип: Изобретение
Номер охранного документа: 0002678708
Дата охранного документа: 31.01.2019
11.03.2019
№219.016.db95

Интегрально-оптический элемент и способ его изготовления

Изобретение относится к области интегральной оптики. Устройство представляет собой подложку в виде полированной пластины, выполненной из натрийборосиликатного стекла. Ликвировавшее отожженное при температуре 530°С в течение 72 часов стекло имеет состав NaO:BO:SiO=7:23:70. В подложке сформирован...
Тип: Изобретение
Номер охранного документа: 0002425402
Дата охранного документа: 27.07.2011
09.05.2019
№219.017.4faa

Волоконно-оптический датчик тока

Изобретение относится к области волоконно-оптических измерительных устройств и может быть использовано в интерференционных волоконно-оптических датчиках тока. Волоконно-оптический датчик тока содержит оптически соединенные источник светового излучения, разветвитель, ко второму входу которого...
Тип: Изобретение
Номер охранного документа: 0002433414
Дата охранного документа: 10.11.2011
24.05.2019
№219.017.5df6

Способ стабилизации параметров выходного оптического излучения источника усиленной спонтанной эмиссии

Изобретение относится к области волоконно-оптических источников усиленной спонтанной эмиссии. Способ решает задачу стабилизации в диапазоне температур нескольких параметров выходного оптического излучения источника усиленной спонтанной эмиссии, построенного по двухпроходной схеме с...
Тип: Изобретение
Номер охранного документа: 0002688962
Дата охранного документа: 23.05.2019
24.05.2019
№219.017.5f02

Хроматографический способ разделения компонентов смеси в растворе

Способ относится к аналитической химии и может быть использован для разделения компонентов в растворе и количественного определения состава смеси. Хроматографический способ разделения компонентов смеси в растворе включает подачу подвижной фазы с введенной в нее смесью разделяемых компонентов в...
Тип: Изобретение
Номер охранного документа: 0002688594
Дата охранного документа: 21.05.2019
02.03.2020
№220.018.0830

Способ определения передаточной функции фазового модулятора в интерферометре саньяка

Изобретение относится к области волоконной оптики. Способ определения передаточной функции фазового модулятора в интерферометре Саньяка включает подачу на электрический вход фазового модулятора управляющего сигнала напряжения, содержащего вспомогательный сигнал в форме меандра, амплитуда...
Тип: Изобретение
Номер охранного документа: 0002715479
Дата охранного документа: 28.02.2020
30.05.2023
№223.018.7421

Способ измерения фазового сигнала двулучевого волоконно-оптического интерферометра

Изобретение относится к области волоконно-оптических измерительных приборов и может быть использовано для повышения точности измерения фазового сигнала в двухлучевых интерферометрах Майкельсона или Маха-Цендера и массивах волоконно-оптических датчиков на их основе. Способ измерения фазового...
Тип: Изобретение
Номер охранного документа: 0002742106
Дата охранного документа: 02.02.2021
+ добавить свой РИД