×
26.08.2017
217.015.df28

Результат интеллектуальной деятельности: СПОСОБ КЛАССИФИКАЦИИ СМАЗОЧНЫХ МАТЕРИАЛОВ ПО ПАРАМЕТРАМ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии классификации жидких смазочных материалов. При осуществлении способа испытывают пробу смазочного материала в присутствии воздуха с перемешиванием, постоянного объема, минимум, при трех температурах, выбранных в зависимости от базовой основы, назначения и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления. Через равные промежутки времени отбирают пробу окисленного смазочного материала и проводят оценку процесса окисления. Согласно изобретению пробу окисленного смазочного материала взвешивают, определяют массу испарившегося смазочного материала и коэффициент испаряемости, как отношение массы испарившегося смазочного материала к массе до испытания. Отбирают часть пробы для фотометрирования и определения оптической плотности окисленного смазочного материала. По полученным данным определяют показатель термоокислительной стабильности как сумму оптической плотности и коэффициента испаряемости. Строят графические зависимости показателя термоокислительной стабильности от времени, минимум, при трех температурах испытания, по которым определяют потенциальный ресурс, характеризующий время достижения установленного значения показателя термоокислительной стабильности при каждой температуре испытания. По этим данным строят графические зависимости потенциального ресурса от температуры испытания, по которым определяют скорость изменения потенциального ресурса от температуры испытания и критическую температуру, а классификацию смазочных материалов устанавливают по значениям критической температуры и скорости изменения потенциального ресурса при выбранных температурах испытания. Достигается совершенствование системы классификации смазочных материалов, а также осуществление обоснованного выбора смазочных материалов для двигателей различной степени нагруженности с максимальным ресурсом. 5 ил., 2 табл.

Изобретение относится к технологии классификации жидких смазочных материалов.

Известен способ определения термоокислительной стабильности смазочных материалов, включающий нагревание смазочного материала в присутствии воздуха, перемешивание, фотометрирование и определение параметров процесса окисления (Патент РФ №2219530 С1, дата приоритета 11.04.2002, дата публикации 20.12.2003, авторы Ковальский Б.И. и др., RU).

Наиболее близким по технической сущности и достигаемому результату является принятый в качестве прототипа способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием, постоянного объема при оптимальной температуре, выбранной в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока, вязкость исходного и окисленного смазочного материала и проводят оценку процесса окисления, причем испытания смазочного материала проводят, как минимум, при трех температурах ниже критической, определяют относительную вязкость как отношение вязкости окисленного смазочного материала к вязкости исходного, а термоокислительную стабильность определяют по показателю отношения коэффициента поглощения светового потока к относительной вязкости, строят графическую зависимость показателя термоокислительной стабильности от коэффициента поглощения светового потока, по которой определяют однородность состава продуктов окисления и температурную область работоспособности исследуемого смазочного материала (Патент РФ №2334976 С1, дата приоритета 26.12.2006, дата публикации 27.09.2008, авторы Ковальский Б.И. и др., RU, прототип).

Общим недостатком аналога и прототипа является то, что известные способы не учитывают влияние температуры на ресурс смазочных материалов и не могут применяться для их классификации по группам эксплуатационных свойств.

Задачей изобретения является определение показателей термоокислительной стабильности смазочных материалов и обоснование их применения для классификации смазочных материалов по группам эксплуатационных свойств.

Для решения поставленной задачи предложен способ классификации смазочных материалов по параметрам термоокислительной стабильности, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием, постоянного объема, минимум при трех температурах, выбранных в зависимости от базовой основы, назначения и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, через равные промежутки времени отбирают пробу окисленного смазочного материала и проводят оценку процесса окисления. Согласно изобретению пробу окисленного смазочного материала взвешивают, определяют массу испарившегося смазочного материала и коэффициент испаряемости как отношение массы испарившегося смазочного материала к массе до испытания, отбирают часть пробы для фотометрирования и определения оптической плотности окисленного смазочного материала, по полученным данным определяют показатель термоокислительной стабильности, как сумму оптической плотности и коэффициента испаряемости, строят графические зависимости показателя термоокислительной стабильности от времени, минимум, при трех температурах испытания, по которым определяют потенциальный ресурс, характеризующий время достижения установленного значения показателя термоокислительной стабильности при каждой температуре испытания, по этим данным строят графические зависимости потенциального ресурса от температуры испытания, по которым определяют скорость изменения потенциального ресурса от температуры испытания и критическую температуру, а классификацию смазочных материалов устанавливают по значениям критической температуры и скорости изменения потенциального ресурса при выбранных температурах испытания.

На фиг.1 представлены зависимости показателя термоокислительной стабильности от времени и температуры окисления (а) и потенциального ресурса (б) от температуры окисления (ПТОС=0,7) минерального моторного масла Tavota Gastle 10W-30 SL: 1-180°C; 2-170°C; 3-160°C; на фиг. 2 - зависимости показателя термоокислительной стабильности от времени и температуры окисления (а) и потенциального ресурса (б) от температуры окисления (ПТОС=0,7) минерального моторного масла Mobil 10W-40 SC/CC: 1-200°С; 2-190°С; 3-180°С; 4-170°С; на фиг. 3 - зависимости показателя термоокислительной стабильности от времени и температуры окисления (а) и потенциального ресурса (б) от температуры окисления (ПТОС=0,7) частично синтетического моторного масла Роснефть Maximum 10W-40 SLICF: 1-180°С; 2-170°С; 3-160°С; на фиг. 4 - зависимости показателя термоокислительной стабильности от времени и температуры окисления (а) и потенциального ресурса (б) от температуры окисления (ПТОС=0,7) частично синтетического моторного масла Zic 5000 10W-40 CG-4/SM: 1-200°С; 2-190°С; 3-180°С; на фиг. 5 - зависимости показателя термоокислительной стабильности от времени и температуры окисления (а) и потенциального ресурса (б) от температуры окисления (ПТОС=0,7) синтетического моторного масла ALPHAS Engine oil 5W-30 SN/CF: 1-180°C; 2-170°C; 3-160°C.

Способ классификации смазочных материалов по параметрам термоокислительной стабильности осуществляют следующим образом. Пробу смазочного материала постоянной массы, например 100±0,1 г, термостатируют при заданной температуре в зависимости от базовой основы (минеральное, частично синтетическое, синтетическое), назначения (моторное, трансмиссионное, индустриальное, гидравлическое) и группы эксплуатационных свойств (для бензиновых двигателей SD, SF, SG, SH, SJ, SK, SL, SM, SN) с перемешиванием механической мешалкой для смешивания с кислородом воздуха. Температура испытания и частота вращения мешалки поддерживаются автоматически. Через равные промежутки времени пробу окисленного смазочного материала взвешивают, определяют массу испарившегося масла G, определяют коэффициент испаряемости КG

где m - масса испарившегося смазочного материала за время окисления, г;

М - масса смазочного материала до испытания, г.

Затем отбирают часть окисленной пробы для фотометрирования и определения оптической плотности D

где F0 - световой поток, падающий на поверхность смазочного масла;

F - световой поток, прошедший через слой окисленного смазочного масла. По данным D и KG определяют показатель термоокислительной стабильности ПТОС

Испытания смазочного материала продолжают до достижения показателя термоокислительной стабильности значений, равных 0,75-0,8. Данный смазочный материал испытывают по той же технологии при других температурах. По полученным данным показателя термоокислительной стабильности строят графические зависимости его от времени и температуры испытания (фиг. 1а-5а), по которым определяют время достижения показателя термоокислительной стабильности значения, равного 0,7, характеризующего потенциальный ресурс Р испытуемого смазочного материала при разных температурах. По полученным данным потенциального ресурса Р строят графические зависимости его от температуры испытания (фиг. 1б-5б), которые описываются полиномом второго порядка

Регрессионные уравнения изменения потенциального ресурса от температуры испытания моторных масел сведены в табл. 1.

Используя данное уравнение (4) можно определить потенциальный ресурс исследуемых масел при более низких и высоких температурах. Данное уравнение (4) представляет параболу, вершина которой соответствует критической температуре, при которой ресурс минимальный, а процессы окисления протекают с большой скоростью, вызывая аномальные явления. Поэтому критическая температура является показателем, который необходимо применять для сравнения различных смазочных материалов и их классификации.

Продифференцировав уравнение (4), определяют среднюю скорость изменения потенциального ресурса Vp

Этот показатель предложено использовать при сравнении различных смазочных материалов и их классификации. Таким образом, при классификации смазочных материалов предлагается два показателя: критическая температура и скорость изменения потенциального ресурса при заданной температуре испытания. Данные этих показателей для исследованных моторных масел различной базовой основы представлены в таблице 2.

Согласно данных таблицы 2 установлено, что моторные масла Tavota Gastle и Роснефть Maximum относятся к одной группе SL, однако критическая температура во втором масле ниже, а скорость изменения потенциального ресурса выше, т.е. ресурс данного масла с понижением температуры испытания будет увеличиваться более интенсивно, чем у первого масла, поэтому данное масло должно работать в двигателе при более низких температурах и его классификация завышена.

Классификация синтетического масла ALPHAS завышена, т.к. критическая температура ниже, чем у масла Tavota Gastle, хотя средняя скорость изменения потенциального ресурса выше (-3,65).

Для масел Mobil и Zic 5000 классификация занижена, т.к. критические температуры у них самые высокие и средние скорости изменения потенциального ресурса тоже самые высокие.

Предлагаемое техническое решение позволяет совершенствовать систему классификации смазочных материалов, осуществлять их обоснованный выбор для двигателей различной степени нагруженности с максимальным ресурсом.

Способ классификации смазочных материалов по параметрам термоокислительной стабильности, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием постоянного объема, минимум, при трех температурах, выбранных в зависимости от базовой основы, назначения и группы эксплуатационных свойств в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала и проводят оценку процесса окисления, отличающийся тем, что пробу окисленного смазочного материала взвешивают, определяют массу испарившегося смазочного материала и коэффициент испаряемости как отношение массы испарившегося смазочного материала к массе до испытания, отбирают часть пробы для фотометрирования и определения оптической плотности окисленного смазочного материала, по полученным данным определяют показатель термоокислительной стабильности как сумму оптической плотности и коэффициента испаряемости, строят графические зависимости показателя термоокислительной стабильности от времени, минимум, при трех температурах испытания, по которым определяют потенциальный ресурс, характеризующий время достижения установленного значения показателя термоокислительной стабильности при каждой температуре испытания, по этим данным строят графические зависимости потенциального ресурса от температуры испытания, по которым определяют скорость изменения потенциального ресурса от температуры испытания и критическую температуру, а классификацию смазочных материалов устанавливают по значениям критической температуры и скорости изменения потенциального ресурса при выбранных температурах испытания.
СПОСОБ КЛАССИФИКАЦИИ СМАЗОЧНЫХ МАТЕРИАЛОВ ПО ПАРАМЕТРАМ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ
СПОСОБ КЛАССИФИКАЦИИ СМАЗОЧНЫХ МАТЕРИАЛОВ ПО ПАРАМЕТРАМ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ
Источник поступления информации: Роспатент

Показаны записи 151-160 из 338.
14.06.2018
№218.016.61f6

Электролизер для получения алюминия

Изобретение относится к электролизерам для получения алюминия. Электролизер включает размещенный в анодном кожухе самоспекающийся анод, токоподводящие штыри и систему газоотсоса, при этом самоспекающийся анод на границе между коксопековой композицией и зоной полукокса разделен горизонтальной...
Тип: Изобретение
Номер охранного документа: 0002657395
Дата охранного документа: 13.06.2018
14.06.2018
№218.016.61fe

Устройство управления тепловым режимом непрерывного литья и прессования цветных металлов и сплавов

Изобретение относится к области цветной металлургии, в частности к устройствам управления тепловым режимом непрерывного литья и прессования. Устройство непрерывного литья и прессования цветных металлов и сплавов содержит корпус, дозатор, основание дозатора, колесо-кристаллизатор с кольцевой...
Тип: Изобретение
Номер охранного документа: 0002657396
Дата охранного документа: 13.06.2018
16.06.2018
№218.016.6301

Устройство для автоматизированной очистки внутрискважинного оборудования

Изобретение относится к нефтяной промышленности и может быть применено для промывки приема и полости электроцентробежных насосов от твердых взвешенных частиц песка, асфальтосмолистых веществ и солей. Устройство содержит корпус с выходными отверстиями по обеим его торцам. Внутри корпуса...
Тип: Изобретение
Номер охранного документа: 0002657563
Дата охранного документа: 14.06.2018
03.07.2018
№218.016.69e2

Способ формирования щелевой полости любой конфигурации в скальном массиве с использованием параллельно сближенных шпуровых и скважинных зарядов

Изобретение относится к горной и горностроительной промышленности. Способ включает бурение по линии формируемой полости двух видов шпуров или скважин разного диаметра поочередно: первые - большего диаметра - запрессовки, вторые - меньшего диаметра - выброса, размещение в них взрывчатого...
Тип: Изобретение
Номер охранного документа: 0002659446
Дата охранного документа: 02.07.2018
04.07.2018
№218.016.6a2a

Вакуумный ковш для забора жидкого металла

Изобретение относится к области металлургии. Вакуумный ковш для забора жидкого металла содержит металлический корпус (1), футерованный огнеупорным материалом, грузоподъемную траверсу, съемную крышку (3), снабженную устройством (4) для соединения внутреннего пространства ковша с вакуум-линией, и...
Тип: Изобретение
Номер охранного документа: 0002659556
Дата охранного документа: 02.07.2018
04.07.2018
№218.016.6a7f

Способ гашения анодного эффекта в алюминиевом электролизере

Изобретение относится к производству алюминия в электролизерах с обожженными анодами. Способ включает подачу воздушно-глиноземной смеси в течение 5÷60 с под углом от 3 до 10° по отношению к аноду при соотношении глинозема и сжатого воздуха 1:0,1÷0,15. Обеспечивается гашение анодного эффекта. 1...
Тип: Изобретение
Номер охранного документа: 0002659512
Дата охранного документа: 02.07.2018
05.07.2018
№218.016.6c27

Нагнетательная пневмотранспортная установка

Изобретение относится к пневматическим установкам нагнетательного типа для транспортирования сыпучих материалов в замкнутом объеме и может быть использовано при строительстве и эксплуатации снежно-ледовых зимних дорог и ледовых аэродромов. Технический результат заключается в расширении арсенала...
Тип: Изобретение
Номер охранного документа: 0002659714
Дата охранного документа: 03.07.2018
24.07.2018
№218.016.73d9

Припой для пайки алюминия и его сплавов

Изобретение может быть использовано при получении паяных конструкций из алюминия и его сплавов. Припой в виде проволоки содержит компоненты в следующем соотношении, мас.%: кремний 12±0,3, цинк 12,5±2,5, алюминий - остальное. Припой обеспечивает проведение качественной пайки при температурах не...
Тип: Изобретение
Номер охранного документа: 0002661975
Дата охранного документа: 23.07.2018
09.08.2018
№218.016.7962

Способ кондуктометрического определения содержания метилметакрилата в водных экстрактах стоматологических изделий

Изобретение относится к аналитической химии, в частности к проведению химического анализа жидкой пробы водного экстракта полиметилметакрилового изделия для зубопротезирования, и может быть использовано при проведении экспресс-анализов в практике стоматологических клиник и кабинетов. Способ...
Тип: Изобретение
Номер охранного документа: 0002663458
Дата охранного документа: 06.08.2018
23.08.2018
№218.016.7e63

Способ выравнивания подошвы анода алюминиевого электролизера

Изобретение относится к способу выравнивания подошвы анода алюминиевого электролизера. Способ включает подачу под анод глинозема под давлением 1-2 атм, при этом первую подачу глинозема осуществляют через 2-4 часа после установки нового анода в электролизер, дальнейшие подачи глинозема...
Тип: Изобретение
Номер охранного документа: 0002664585
Дата охранного документа: 21.08.2018
Показаны записи 131-139 из 139.
25.04.2019
№219.017.3b15

Система улавливания паров нефти и нефтепродуктов при наливе-сливе и транспортировке в железнодорожных цистернах

Изобретение относится к нефтегазовой промышленности, в частности к установкам улавливания легких фракций нефти и нефтепродуктов при сливо-наливных операциях и транспортировании. Система улавливания паров нефти и нефтепродуктов при наливе-сливе и транспортировке в железнодорожных цистернах...
Тип: Изобретение
Номер охранного документа: 0002685672
Дата охранного документа: 22.04.2019
29.05.2019
№219.017.67fe

Устройство для испытания трущихся материалов и масел

Изобретение относится к устройствам для оценки смазывающих свойств масел и испытания различных материалов, в частности оно может быть использовано при подборе и оценке противоизносных свойств различных смазок. Технический результат - повышение точности передачи нагрузки на образец и увеличение...
Тип: Изобретение
Номер охранного документа: 0002428677
Дата охранного документа: 10.09.2011
19.06.2019
№219.017.899b

Способ определения температурной стойкости смазочных масел

Изобретение относится к технологии испытания смазочных материалов. При осуществлении способа отбирают пробу масла, делят ее на равные части, каждую из которых нагревают, при этом для каждой последующей части пробы масла температуру испытания повышают на постоянную величину и каждую часть пробы...
Тип: Изобретение
Номер охранного документа: 0002471187
Дата охранного документа: 27.12.2012
27.07.2019
№219.017.b9c4

Способ прогнозирования показателей термоокислительной стабильности смазочных материалов

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Технический результат заключается в снижении трудоемкости за счет сокращения времени испытания при выбранной температуре в связи с возможностью использования результатов, полученных...
Тип: Изобретение
Номер охранного документа: 0002695704
Дата охранного документа: 25.07.2019
03.08.2019
№219.017.bc3f

Способ определения влияния температуры испытания на свойства продуктов окисления смазочных материалов

Изобретение относится к технологии испытания смазочных материалов и может использоваться для определения изменения состава продуктов окисления. Сущность: пробу смазочного материала постоянной массы термостатируют минимум при трех температурах, при атмосферном давлении с перемешиванием. Через...
Тип: Изобретение
Номер охранного документа: 0002696357
Дата охранного документа: 01.08.2019
15.11.2019
№219.017.e246

Способ определения предельно допустимых показателей работоспособности смазочных материалов

Изобретение относится к технологии определения качества нефтепродуктов и может применяться для контроля термоокислительной стабильности и температурной области работоспособности смазочных материалов. Предложен способ определения предельно допустимых показателей работоспособности смазочных...
Тип: Изобретение
Номер охранного документа: 0002705942
Дата охранного документа: 12.11.2019
09.02.2020
№220.018.015f

Способ определения состояния работающих моторных масел и технического состояния двигателей внутреннего сгорания

Изобретение относится к технологии оценки качества работающих моторных масел и технического состояния двигателей внутреннего сгорания. Предложен способ определения состояния работающих моторных масел и технического состояния двигателей внутреннего сгорания путем фотометрирования проб работающих...
Тип: Изобретение
Номер охранного документа: 0002713810
Дата охранного документа: 07.02.2020
13.02.2020
№220.018.0229

Способ определения работоспособности смазочных масел

Изобретение относится к технологии оценки качества работающих моторных масел, технического состояния двигателей внутреннего сгорания и системы фильтрации. Предложен способ определения работоспособности смазочного масла, заключающийся в том, что отбирают пробы работающего масла из двигателя...
Тип: Изобретение
Номер охранного документа: 0002713920
Дата охранного документа: 11.02.2020
29.05.2020
№220.018.21ad

Способ определения температуры начала изменения показателей термоокислительной стабильности и предельной температуры работоспособности смазочных материалов

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Предложен способ, при котором пробы смазочного материала термостатируют минимум при трех выбранных температурах в присутствии воздуха с перемешиванием постоянной массы в течение...
Тип: Изобретение
Номер охранного документа: 0002722119
Дата охранного документа: 26.05.2020
+ добавить свой РИД