×
26.08.2017
217.015.db9c

Результат интеллектуальной деятельности: Способ и система автоматического управления

Вид РИД

Изобретение

Аннотация: Изобретение относится к автоматике и может быть использовано в чистых помещениях для поддержания постоянной оптимальной температуры. В способе автоматического управления системами выходную переменную исполнительного механизма подают на вход управляемого объекта, измеряют фактическую величину выходной переменной управляемого объекта, которую вместе с командной величиной входной переменной управляемого объекта используют для формирования управляющего сигнала, который подают на вход исполнительного механизма за счет использования отрицательной обратной связи по выходной переменной управляемого объекта. Согласно изобретению автоматически управляют в адаптивном диапазоне коэффициентом k=ε/ε регулирования за счет тождественности исследуемой погрешности ε нормируемому эквиваленту ε желаемой погрешности, которую адаптируют по диапазону при сравнении в каждый момент времени произведения величин входной Е и выходной U переменных с нормированным эквивалентом их максимальных величин, соответствующим степенному полиному средней арифметической величины командной входной и выходной переменных управляемого объекта. В результате достигается автоматизация регулирования системами в адаптивном диапазоне за счет адаптивной оценки сигнала по программно управляемой нормируемой мере. 2 н. и 2 з.п. ф-лы, 5 ил.

Предлагаемые изобретения относятся к автоматике и могут быть использованы в чистых помещениях для поддержания постоянной оптимальной температуры.

Известен способ автоматического управления системами, включающий в себя использование командных и фактических величин выходных переменных для регулирования управляемой системы [Носов Г.Р. и др. Автоматика и автоматизация мобильных сельскохозяйственных машин. - К.: Высшая школа., 1984, с. 171]. Для его осуществления известно устройство, включающее в себя соединенные в блоки элементы преобразования и усиления выходной переменной управляемого объекта, а также блок для измерения возмущенного воздействия на управляемом объекте.

Недостатком способа и устройства является низкая эффективность из-за недостаточной точности управления переходными процессами при требуемом быстродействии.

За прототип принят способ автоматического управления системами [патент РФ №2153697, G05B 17/00, 2000, Фурунжиев Р.И.], при котором выходную переменную исполнительного механизма подают на вход управляемого объекта, измеряют фактическую величину выходной переменной управляемого объекта, которую вместе с величиной выходной переменной исполнительного механизма и командной величиной выходной переменной управляемого объекта используют для формирования управляющего сигнала, который подают на вход исполнительного механизма, причем дополнительно используют отрицательную обратную связь по выходной переменной исполнительного механизма, что измеряют скорость и ускорение изменения фактической величины выходной переменной управляемого объекта и подают ее на вход блока формирования желаемых свойств движения выходной переменной управляемого объекта вместе с фактической величиной выходной переменной управляемого объекта и величиной выходной переменной исполнительного механизма.

В регуляторе, включающем в себя объединенные в блоки элементы преобразования и усиления скорости сигнала управляемого объекта, каналы измерения величины, скорости и ускорения выходной переменной которого связаны со входами регулятора, выход которого связан со входом исполнительного привода, выход последнего связан со входом управляемого объекта, имеются признаки: каналы измерения выходной переменной скорости и ускорения управляемого объекта связаны со входами блока, формирующего желаемые свойства движения выходной переменной управляемого объекта.

Прототипы обладают существенными недостатками: невозможностью автоматизации в адаптивном диапазоне из-за необходимости ручной настройки коэффициента регулирования по субъективной мере оценки. Аппаратно управляемый коэффициент регулирования существенно снижает универсальность использования способа и устройства и их метрологическую эффективность за счет высокой методической и динамической погрешности.

Технической задачей предлагаемого решения является автоматизация регулирования системами в адаптивном диапазоне с помощью гибкого коэффициента регулирования за счет тождественности исследуемой погрешности нормируемому эквиваленту желаемой погрешности.

Поставленная задача достигается тем, что

1. в способе автоматического управления системами, при котором выходную переменную исполнительного механизма подают на вход управляемого объекта, измеряют фактическую величину выходной переменной управляемого объекта, которую вместе с командной величиной входной переменной управляемого объекта используют для формирования управляющего сигнала, который подают на вход исполнительного механизма за счет использования отрицательной обратной связи по выходной переменной управляемого объекта. В отличие от прототипа, коэффициентом автоматически управляют в адаптивном диапазоне регулирования за счет тождественности исследуемой погрешности нормируемому эквиваленту желаемой погрешности, которую адаптируют по диапазону при сравнении в каждый момент времени произведения величин входной Е и выходной U переменных с нормированным эквивалентом их максимальных величин. Нормированный эквивалент соответствует степенному полиному средней арифметической величины командной входной и выходной переменных управляемого объекта.

Способ поясняют фиг. 5, на которых представлены структуры устройства на уровне структурной и функциональной схем. Зависимости амплитудно-временных динамических характеристик U и погрешности ε от вида управляющего воздействия показаны на фиг. 1-2.

В предлагаемом способе автоматического управления системами выходную переменную ε(E, U)=ε исполнительного механизма находят по формуле:

где k - коэффициент регулирования.

Для выявления закономерностей коэффициента k введем соотношение U=E/m, которое сокращает число переменных П-регулирования, при этом погрешность (1) будет равна:

Нормированный эквивалент представляет собой симметричный критерий регулирования, позволяющий проводить регулирование с автоматическим поиском коэффициента в адаптивном диапазоне контроля.

Выходную переменную ε(E, U)=ε подают на вход управляемого объекта, измеряют фактическую величину U выходной переменной управляемого объекта, которую вместе с командной величиной входной переменной Е управляемого объекта используют для формирования управляющего сигнала ε(U2, E)=ε. Для двух сигналов i=1,2 нормированной уставки U1=Е и измеряемого U2=U выражение приводится к квадратичной оценке:

Суть симметричного мультипликативного критерия (СМК) заключается в нормировании произведения случайных сигналов тождественно максимальному эквиваленту . С изменением адаптивного диапазона случайным образом по тому же правилу изменяется произведение случайных переменных Ui и их тождественность нормируемому эквиваленту, оптимально отражающему гибкость адаптации диапазона автоматического контроля.

СМК Q позиционного регулирования представлен отношением произведений случайных i-тых сигналов Ui к нормированному максимуму

реализуемому средним арифметическим XCA в степени n по числу i=1, n сигналов управления.

Относительная погрешность εn СМК-регулирования соответствует соотношению

Управляющий сигнал подают на вход исполнительного механизма, причем используют отрицательную обратную связь по выходной переменной U управляемого объекта. Для автоматизации регулирования автоматически управляют в адаптивном диапазоне коэффициентом k=ε21 регулирования за счет тождественности исследуемой погрешности ε1 нормируемому эквиваленту ε2 желаемой погрешности:

Коэффициент регулирования находится из системы уравнений погрешности при стандартном критерии ε1 и гибком МСК ε2:

Уравнение для коэффициента k находится из отношений погрешностей:

Погрешность адаптируют по диапазону при сравнении в каждый момент времени произведения величин входной Е и выходной U переменных с нормированным эквивалентом их максимальных величин, соответствующим степенному полиному средней арифметической величины командной входной и выходной переменных управляемого объекта.

1. Выходную переменную ε исполнительного механизма 2 (фиг. 5а) подают на вход управляемого объекта 3, измеряют фактическую величину U выходной переменной управляемого объекта, которую вместе с командной величиной входной переменной Е управляемого объекта в коде U2 используют для формирования управляющего сигнала ε(E, U2)=ε2. Его подают на вход исполнительного механизма 2, причем используют отрицательную обратную связь по выходной переменной U управляемого объекта 3. Для автоматизации регулирования в адаптивном диапазоне выходную переменную U управляемого объекта, преобразуют в код U2, подают на вход блока контроллера 1, управляющий сигнал ε которого соответствует желаемым свойствам выходной переменной U управляемого объекта. Управляющий сигнал ε реализуют мультипликативно-симметричным критерием (МСК) погрешности (4), соответствующему квадрату отношения разности (E-U) и суммы (E+U) командной входной Е и выходной U переменных управляемого объекта 3 и выполняющим роль автоматического регулятора. адаптируется по диапазону за счет оценки фактических величин входной Е и выходной U переменной к нормированному эквиваленту их максимальных max (Е, U) величин (3) в каждый момент времени. Автоматически управляют в адаптивном диапазоне коэффициентом k=ε21 регулирования за счет тождественности исследуемой погрешности ε1 нормируемому эквиваленту ε2 желаемой погрешности, которую адаптируют по диапазону при сравнении в каждый момент времени произведения величин входной Е и выходной U переменных с нормированным эквивалентом их максимальных величин, соответствующим степенному полиному средней арифметической величины командной входной и выходной переменных управляемого объекта.

2. На фиг. 5а представлена структурная схема системы, отличающаяся тем, что исполнительным механизмом служит цифро-аналоговый преобразователь (2) и дополнительно введен аналого-цифровой преобразователь (4), включенный между выходом управляемого объекта (3) и информационным входом контроллера (1), который состоит из задатчика командной величины (1а), последовательно соединенных с ним по управляющему входу и информационному входу контроллера блоков задания исследуемой погрешности (16) и программно-управляемого коэффициента регулирования К* (1в), информационный выход которого служит выходом контроллера.

3. На фиг. 5в показана функциональная схема системы автоматического управления, отличающаяся тем, что блок программно-управляемого коэффициента регулирования контроллера состоит из сумматоров(1в1, 1в4), выходы которых соответственно соединены через первый (1в2) и второй (1в5) делители с блоком возведения в степень (1в6) и третьим делителем (1в3), связанным по второму входу с выходом блока возведения в степень, а по выходу - с информационным выходом блока программного управления коэффициента регулирования, управляющий вход которого объединен с одноименными входами второго делителя и сумматоров, информационные входы последних служат одноименным входом блока программно-управляемого коэффициента регулирования.

4. На фиг. 5б показана функциональная схема системы автоматического управления, отличающаяся тем, что блок задания исследуемой погрешности включает последовательное соединение алгебраического сумматора (1б1) и делителя (1б2), управляющий вход которого объединен с соответствующими входами сумматора и блока задания исследуемой погрешности ε1, информационным входом которого служит соответствующий вход сумматора, а выходом - выход делителя.

На схеме блока задания системы ε2 (фиг. 5в) выходную переменную Е блока задатчика командной величины подают на вход сумматоров 1в1. Измеряют фактическую величину выходной переменной U (тождественной цифровому эквиваленту U2), которую вместе с величиной входной переменной Е подают на сумматоров 1в4. Сигналы E-U и E+U подают на делители 1в2 и 1в5, а затем - на блок возведения в степень 1в6, которые используют для формирования управляющего сигнала ε (4). Параллельно сигнал E-U вместе с переменной Е подают на блок делителя 1в3, формируя сигнал ε1(U1, Е), которым делят управляющий сигнал ε2(U2, Е) с блока 1в6.

Блок 1 на фиг. 5а автоматическому регулятору, где автоматически управляют в адаптивном диапазоне коэффициентом k=ε21 регулирования за счет тождественности исследуемой погрешности ε1 нормируемому эквиваленту ε2 желаемой погрешности, которую адаптируют по диапазону при сравнении в каждый момент времени произведения величин входной Е и выходной U переменных с нормированным эквивалентом их максимальных величин, соответствующим степенному полиному средней арифметической величины командной входной и выходной переменных управляемого объекта 3. Сигнал U с управляемого объекта 3 преобразуют АЦП 4 в цифровой эквивалент (сигнал U2) и подают на вход сумматоров 1б.

Конкретное исполнение блоков может иметь следующие признаки (фиг. 5а): блок 1 является контроллером, необходим для задания сигнала Е и формирования управляющего сигнала ε(U2, E)=ε2. Блок 2 представляет собой исполняющий механизм (в виде ЦАП) для преобразования ε2 в аналоговый сигнал ε (4). Блок 3 является управляемым объектом. Сигнал U с выхода управляемого объекта 3 управления подается на вход АЦП 4, с которого сигнал в цифровом эквиваленте U2 поступает на блок контроллера (1).

Найдем оптимальную погрешность, для чего возьмем производную выражения (2) и приравняем ее к нулю:

Дифференцирование погрешности приводит к тождеству

из которого следует с учетом (2) оптимальная погрешность

Решение доказывает закономерность, что оптимальная погрешность П-регулирования стремится к фиксируемому, вручную настраиваемому коэффициенту k:

Следовательно, оптимальная погрешность П-регулирования пропорциональна фиксированному k=Const коэффициенту, исключающему автоматическое регулирование из-за слепого поиска неизвестного алгоритма тождественности изменяющемуся диапазону рационального коэффициента в диалоговом режиме с оператором итерационным методом проб и ошибок.

Автоматическое регулирование без участия оператора диктует гибкость коэффициента k, т.е. способность подстраиваться под адаптивный диапазон по целенаправленному алгоритму оптимизации.

Следовательно, алгоритм СМК-регулирования произведения амплитуд случайных сигналов, нормированных оптимальным эквивалентом для двух переменных, соответствует квадрату отношения их разницы к их сумме.

Заменим сигнал U соотношением U=E/m для сокращения переменных, тогда

после сокращения на норму Е, получаем

Докажем эффективность предлагаемого способа относительно прототипа по гибкости регулирования в адаптивном диапазоне, по повышению точности автоматического регулирования за счет снижения методической и динамической погрешности автоматического управления.

Для проведения качественного анализа алгоритма (5) оптимизации коэффициента k (m) систематизируем результаты в таблицу 1.

По табл. 1 построим график зависимости k от m.(фиг. 3), качественный анализ которого показывает, что экстремум функции k (m) достигает в точке m≈0,33, при этом k≈-0,125, а минимальные - в точках m≈0 и m=1, при этом k=0.

Для сравнения стандартного критерия εП с эквивалентом ε2 сведем в табл. 2 результаты зависимости k (m) и построим графики функций ε1 и ε2 (фиг. 4).

Анализ фиг. 4 показывает, что функция имеет минимумы в точках m=0 и m=1, а также экстремум функции k (m), настраиваемый автоматически и раскрывающий оптимальное значение коэффициента k. Из сравнения гибкого (2) и стандартного (не зависящего от m) критерия (3) следует, что стандартный критерий не позволяет находить значение k, оптимального для заданного диапазона, в отличие от эквивалентного критерия, адаптирующегося под диапазон регулирования. График коэффициента МСК имеет минимум в m=1, что подтверждает условие U=E/m, из чего следует, что при m=1 U=E. Значение функции ε2=1 в точке m=0 объясняется нулевым значением измеряемого сигнала U2=U=Q в начальный момент регулирования.

Результаты компьютерного моделирования зависимости амплитудно-временных динамических характеристик 1 и 2, соответствующих адаптивному и стандартному критериям, систематизированы на фиг. 1. Качественный анализ фиг. 6 показывает повышение эффективности выхода на режим характеристик от стандартного 1 до адаптивного 2 критерия. Для проведения количественного анализа на фиг. 7 зафиксируем значение t=0.2 и оценим значение погрешности при фиксированном времени (табл. 2).

Количественный анализ табл. 2 показывает снижение погрешности регулирования с 65% для стандартного 1 до 5% адаптивного 2 критерия. Погрешность адаптивного 2 в 13 раз лучше стандарта 1.

На фиг. 2 показаны графики погрешностей адаптивного критерия 2 и наиболее оптимально отрегулированного для k=0,3 стандартного 1 критерия. Для анализа оперативности зафиксируем уровень 0,2 погрешности и оценим текущее значение времени по оперативности (см. табл. 3).

Эффективность по оперативности рассчитаем из отношения интервалов регулирования стандартного 1 t2 и адаптивного 2 t1 критериев, что позволяет сравнить, во сколько один критерий эффективнее другого:

Как видно из фиг. 2, адаптивный 2 критерий эффективнее стандартного 1 в 5 раз, т.е. практически на порядок выше.


Способ и система автоматического управления
Способ и система автоматического управления
Способ и система автоматического управления
Способ и система автоматического управления
Источник поступления информации: Роспатент

Показаны записи 21-30 из 30.
26.08.2017
№217.015.e16b

Сушилка для пастообразных материалов на полидисперсном инертном носителе

Сушилка относится к области химической промышленности и служит для сушки гранулированных полимерных материалов и композитов на их основе. Сушилка для суспензий и пастообразных материалов на инертном носителе содержит биконическую камеру, сопряженную с цилиндрической сепарационной камерой, и...
Тип: Изобретение
Номер охранного документа: 0002625629
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e1cd

Способ получения композиционного сорбционно-активного материала

Изобретение направлено на разработку блочного композиционного сорбционно-активного материала. Способ получения включает вращение объемной проводящей металлической матрицы, погруженной в суспензию, имеющую следующий состав (масс.%): цеолит фожазитовой структуры 32-37; каолин 11-15; вода...
Тип: Изобретение
Номер охранного документа: 0002625873
Дата охранного документа: 19.07.2017
29.12.2017
№217.015.faaf

Способ определения динамики изменения скорости оседания эритроцитов

Изобретение относится к области медицины, а именно к способу определения динамики изменения скорости оседания эритроцитов. Способ определения динамики изменения скорости оседания эритроцитов, включает смешивание исследуемой пробы крови с антикоагулянтом, забор полученного раствора крови с...
Тип: Изобретение
Номер охранного документа: 0002640190
Дата охранного документа: 26.12.2017
20.01.2018
№218.016.0f17

Способ определения ударного объема сердца

Изобретение относится к области медицины, а именно к кардиологии, кардиохирургии, функциональной диагностике. Для определения ударного объема сердца проводят наложение двух электродов на участки тела, регистрацию сопротивления R между электродами при снятии реограммы (РГ), измерение гемоглобина...
Тип: Изобретение
Номер охранного документа: 0002633348
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.190e

Способ определения действительного значения физического параметра

Изобретение относится к области медицины, а именно к диагностике. Для определения концентрации глюкозы в крови регистрируют отношения измеренных натощак значений систолического и диастолического артериальных давлений на левой и правой руках: n - минимальное систолическое к максимальному...
Тип: Изобретение
Номер охранного документа: 0002636181
Дата охранного документа: 21.11.2017
13.02.2018
№218.016.25d8

Неинвазивный экспресс-анализ концентрации глюкозы в крови

Изобретение относится к области медицины, а именно к эндокринологии. Для экспресс-анализа концентрации глюкозы крови накладывают термисторы над поверхностной веной головы испытуемого и измеряют натощак и после приема пищи температуру и концентрацию глюкозы в крови. Определяют концентрацию...
Тип: Изобретение
Номер охранного документа: 0002644298
Дата охранного документа: 08.02.2018
13.02.2018
№218.016.2600

Осциллографический способ измерения артериального давления

Изобретение относится к области медицины, а именно к физиологии и кардиологии. Для измерения артериального давления регистрируют и проводят анализ осциллограмм артерий в частотах от 0 Гц до 60 Гц с последующим электрическим преобразованием. Компрессию пережимной измерительной манжеты продолжают...
Тип: Изобретение
Номер охранного документа: 0002644299
Дата охранного документа: 08.02.2018
13.02.2018
№218.016.26e3

Устройство для определения коэффициента трения кормов

Изобретение относится к сельскому хозяйству и может быть использовано для исследования коэффициентов трения покоя и движения кормов, в частности корнеклубнеплодов, о различные поверхности. Устройство для определения коэффициента трения корнеклубнеплодов, содержащее раму с прикрепленным к ней...
Тип: Изобретение
Номер охранного документа: 0002644035
Дата охранного документа: 07.02.2018
04.04.2018
№218.016.2ebe

Способ неинвазивного определения концентрации глюкозы в крови по глюкограмме

Изобретение относится к области медицины, а именно к эндокринологии. Для неинвазивного определения концентрации глюкозы в крови человека по электрическим характеристикам кожи и ткани проводят определение действительного значения концентрации глюкозы крови по калибровочной глюкосименсграмме...
Тип: Изобретение
Номер охранного документа: 0002644501
Дата охранного документа: 12.02.2018
29.05.2018
№218.016.5993

Способ определения функционального состояния системы гемостаза

Изобретение относится к медицине, а именно к гемокоагулогии. Способ определения функционального состояния системы гемостаза, заключающийся в том, что проводят измерение амплитуды записи процесса свертывания крови в его начале, определяют показатели начала и конца процесса свертывания...
Тип: Изобретение
Номер охранного документа: 0002655304
Дата охранного документа: 24.05.2018
Показаны записи 31-37 из 37.
13.10.2018
№218.016.9106

Способ определения составляющих импеданса биообъекта

Изобретение относится к медицине, может быть использовано для оценки функционального состояния организма. В качестве составляющих импеданса биологического объекта определяют активное сопротивление R и эквивалентную емкость С тканей биообъекта. При этом на биообъект подают импульс...
Тип: Изобретение
Номер охранного документа: 0002669484
Дата охранного документа: 11.10.2018
13.10.2018
№218.016.9114

Способ определения функционального состояния системы гемостаза

Изобретение относится к медицине и может быть использовано для определения функционального состояния системы гемостаза. Для этого проводят измерение амплитуды записи процесса свертывания крови в его начале. Определяют показатели начала и конца процесса свертывания электрокоагулограммы крови....
Тип: Изобретение
Номер охранного документа: 0002669347
Дата охранного документа: 10.10.2018
16.02.2019
№219.016.bb3e

Способ определения ударного объема сердца

Изобретение относится к области медицины, а именно к кардиологии, кардиохирургии, функциональной диагностике. Для определения ударного объема сердца выполняют наложение двух электродов на участки тела и регистрируют сопротивление между электродами. Ударный объем сердца определяют по исследуемой...
Тип: Изобретение
Номер охранного документа: 0002679948
Дата охранного документа: 14.02.2019
01.06.2019
№219.017.728a

Способ и система регулирования температуры и давления тензомостом

Изобретения относятся к измерительной технике, в частности к регулированию температуры и давления тензомостом. В способе регулирования температуры и давления тензомостом, включающем подачу тока на диагональ питания тензомоста и измерение напряжения на измерительной диагонали U, при смене...
Тип: Изобретение
Номер охранного документа: 0002690090
Дата охранного документа: 30.05.2019
23.07.2019
№219.017.b723

Способ определения динамики изменения скорости оседания эритроцитов

Изобретение относится к медицине и может быть использовано для определения динамики изменения скорости оседания эритроцитов (СОЭ). Для этого проводят смешивание исследуемой пробы крови с антикоагулянтом. Полученный раствор помещают в гематокритный капилляр и центрифугируют. Затем проводят...
Тип: Изобретение
Номер охранного документа: 0002695072
Дата охранного документа: 19.07.2019
15.08.2019
№219.017.bfed

Способ определения артериального давления

Изобретение относится к медицине, в частности к физиологии и кардиологии. Регистрируют и проводят анализ осциллограмм артерий в частотах от 0 Гц до 60 Гц с последующим электрическим преобразованием. Компрессию пережимной измерительной манжеты продолжают до момента появления волн ОСГ. Определяют...
Тип: Изобретение
Номер охранного документа: 0002697227
Дата охранного документа: 13.08.2019
03.09.2019
№219.017.c67d

Способ определения артериального давления

Изобретение относится к медицине, в частности к физиологии и кардиологии. Регистрируют и проводят анализ осциллограмм артерий в частотах от 0 Гц до 60 Гц с последующим электрическим преобразованием. Компрессию пережимной измерительной манжеты продолжают до момента появления волн объемной...
Тип: Изобретение
Номер охранного документа: 0002698986
Дата охранного документа: 02.09.2019
+ добавить свой РИД