×
26.08.2017
217.015.d93e

Результат интеллектуальной деятельности: Способ переработки танталониобиевого концентрата

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гидрометаллургии. Танталониобиевый концентрат, содержащий 39,6-43,0 мас.% висмута, обрабатывают при начальной комнатной температуре смесью плавиковой кислоты с концентрацией 270-330 г/л HF и серной кислоты с концентрацией 400-500 г/л HSO при Т:Ж=1:(1,9-3,0) с переводом висмута в виде фторида в осадок, который отделяют от фильтрата, содержащего тантал и ниобий. Фторидный висмутсодержащий осадок обрабатывают раствором 92-94% серной кислоты при температуре 95-105°С. Полученный сульфатный осадок висмута обрабатывают азотной кислотой с концентрацией 200-300 г/л HNO при Т:Ж=1:(6,6-10,0) с получением азотнокислого висмутсодержащего раствора. Cпособ позволяет повысить степень извлечения тантала из концентрата в раствор до 99,6% и ниобия до 99,36%. Извлечение висмута из сульфатного осадка в азотнокислый раствор достигает 90,2%. При этом снижается энергоемкость способа и уменьшается расход реагентов. 3 з.п. ф-лы, 5 пр.

Изобретение относится к области гидрометаллургии редкометалльного сырья, в частности к технологии переработки рудных танталониобиевых концентратов, содержащих висмут, и может быть использовано в химической промышленности для извлечения из них тантала, ниобия и висмута.

В настоящее время разложение химически устойчивых минералов танталита и колумбита осуществляется наиболее эффективно гидрофторированием или обработкой смесью плавиковой и серной кислот. Для полного разложения танталита и колумбита используют обработку высококонцентрированными кислотами при повышенной температуре. Из полученных растворов тантал и ниобий обычно извлекают экстракцией органическими растворителями. Однако при переработке комплексного висмутсодержащего танталониобиевого концентрата возникает проблема дополнительного извлечения висмута.

Известен способ переработки танталониобиевого концентрата (см. Николаев А.И., Майоров В.Г., Бакланова И.В. Регулирование концентрации HF в технологических растворах при экстрактонном разделении тантала (V) и ниобия (V) // Журн. прикл. химии. 2002. Т. 75, Вып. 11. С. 1784-1788), включающий двухступенчатую обработку концентрата смесью плавиковой кислоты с концентрацией 390 г/л (19,5 моль/л) HF и серной кислоты с концентрацией 196 г/л (2 моль/л) H2SO4, причем расход плавиковой кислоты составляет 90% от стехиометрии. Кислотную обработку на первой ступени ведут при Т:Ж=1:1,8 и температуре 85°С в течение 4 часов с переводом ниобия и тантала в раствор фторометаллатных кислот, а нерастворимых примесных элементов - в осадок. Фторометаллатные кислоты ниобия и тантала отделяют фильтрованием от осадка и направляют на их экстракционное разделение. Отфильтрованный осадок поступает на вторую ступень кислотной обработки, которую проводят при тех же режимных параметрах, что и на первой ступени. Извлечение из концентрата в раствор за две ступени разложения составляет, %: Ta2O5 84,8, Nb2O5 96,1.

Данный способ характеризуется пониженным извлечением тантала и ниобия из концентрата в раствор и проведением кислотной обработки при повышенной температуре. Это снижает технологичность способа.

Известен также принятый в качестве прототипа способ переработки танталониобиевого, в частности колумбитового, концентрата (см. пат. 2576562 РФ, МПК С22В 34/24, 3/06, 3/26 (2006.01), 2016), включающий подготовку концентрата, его обработку смесью, взятой со значительным избытком плавиковой кислоты с концентрацией 230-250 г/л HF и серной кислоты с концентрацией 390-410 г/л H2SO4 при Т:Ж=1:(4,5-5,0) и нагреве реакционной смеси до температуры 75-85°С в течение 8 часов. Полученную пульпу охлаждают до 38-45°С и фильтруют с отделением осадка от фильтрата, содержащего тантал и ниобий. Осадок промывают с получением промывных вод и подвергают переработке. Фильтрат объединяют с промывными водами с получением раствора, который направляют на коллективную противоточную экстракцию тантала и ниобия. Извлечение тантала и ниобия из концентрата в объединенный раствор, направляемый на экстракцию, составило %: Ta2O5 80-96, Nb2O5 82,9-97,5.

Известный способ характеризуется недостаточно высоким извлечением тантала и ниобия из концентрата в объединенный раствор, повышенным расходом смеси кислот, необходимостью нагрева реакционной смеси, продолжительным вскрытием концентрата. Все это снижает технологичность способа.

Настоящее изобретение направлено на достижение технического результата, заключающегося в повышении технологичности способа переработки танталониобиевого концентрата за счет повышения степени извлечения тантала и ниобия при дополнительном извлечении висмута. Технический результат заключается также в снижении энергоемкости способа и уменьшении расхода реагентов.

Технический результат достигается тем, что в способе переработки танталониобиевого концентрата, включающем обработку концентрата смесью плавиковой и серной кислот при избытке плавиковой кислоты, фильтрацию пульпы с отделением осадка от фильтрата, содержащего тантал и ниобий, промывку осадка, объединение фильтрата и промывных вод с получением раствора, который направляют на коллективную экстракцию тантала и ниобия, и обработку осадка, согласно изобретению танталониобиевый концентрат дополнительно содержит висмут в количестве 39,6-43,0 мас. %, обработку концентрата ведут смесью плавиковой кислоты с концентрацией 270-330 г/л HF и серной кислоты с концентрацией 400-500 г/л H2SO4 при Т:Ж=1:(1,9-3,0) и начальной комнатной температуре смеси кислот, при этом висмут в виде фторида переводят в осадок, который обрабатывают раствором концентрированной серной кислоты при температуре 95-105°С, а полученный сульфатный осадок висмута обрабатывают азотной кислотой с концентрацией 200-300 г/л HNO3 с получением висмутсодержащего раствора.

Достижению результата способствует то, что обработку концентрата ведут при начальной температуре смеси кислот 18-22°С.

Достижению результата способствует также то, что обработку фторидного висмутсодержащего осадка ведут раствором 92-94% серной кислоты.

Достижению результата способствует и то, что обработку сульфатного осадка висмута азотной кислотой ведут при Т:Ж=1:(6,6-10,0).

Сущность изобретения заключается в получении из минерального висмутсодержащего танталониобиевого концентрата двух полупродуктов: фторидного осадка с высоким содержанием висмута, который сульфатизируют при нагревании и обрабатывают полученный сульфатный осадок азотной кислотой с переводом висмута в раствор, и концентрированного раствора фторометаллатных кислот тантала и ниобия, из которых тантал и ниобий извлекают экстракцией органическими растворителями для последующего получения пентаоксидов тантала и ниобия.

Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.

Наличие висмута в танталониобиевом концентрате в количестве 39,6-43,0 мас. % обусловлено минералогическим составом концентрата, в котором одним из основных носителей тантала и ниобия является висмутотанталит - Bi(Ta, Nb)O4.

Обработка концентрата смесью плавиковой кислоты с концентрацией 270-330 г/л HF и серной кислоты с концентрацией 400-500 г/л H2SO4 позволяет эффективно извлекать ниобий и тантал в раствор, оставляя висмут в осадке. Предпочтительно, чтобы избыток плавиковой кислоты не превышал 60% от стехиометрии. Плавиковая кислота является не только вскрывающим, но и комплексообразующим реагентом, обеспечивая четкое разделение продуктов взаимодействия с получением селективных фторометаллатных растворов. Образование комплексных соединений приводит к снижению концентрации свободных фтор-ионов в растворе, интенсифицируя тем самым взаимодействие реагентов с концентратом, и обеспечивает высокое извлечение ниобия и тантала в раствор. Концентрация плавиковой кислоты менее 270 г/л HF приводит к снижению извлечения ниобия и тантала, а концентрация плавиковой кислоты более 330 г/л HF ведет к неоправданному расходу дефицитной плавиковой кислоты.

Серная кислота, содержащая 400-500 г/л H2SO4, хорошо диссоциирует, повышая кислотность в реакционном объеме, что способствует извлечению ниобия и тантала из концентрата. Снижение концентрации серной кислоты ниже 400 г/л H2SO4 практически не отражается на степени извлечения Ta2O5, но приводит к понижению степени извлечения Nb2O5. Концентрация серной кислоты более 500 г/л технологически нецелесообразна, так как не обеспечивает повышения степени извлечения ниобия и тантала из концентрата.

Кислотная обработка концентрата при Т:Ж=1:(1,9-3,0) обеспечивает достаточно высокое извлечение ниобия и тантала в раствор, при этом висмут в виде фторида остается в осадке. При количестве жидкой фазы менее 1,9 будет снижаться извлечение висмута в виде фторида в осадок, а ниобия и тантала - в раствор. Количество жидкой фазы более 3 ведет к увеличению объема материальных потоков, что снижает технологичность способа.

Обработка концентрата при начальной комнатной температуре смеси кислот обусловлена тем, что реакция взаимодействия висмутсодержащего танталониобиевого концентрата со смесью плавиковой и серной кислот является экзотермической. Поэтому выделенного тепла достаточно для осуществления процесса разложения концентрата без внешнего нагревания. Это позволяет снизить энергоемкость способа при обеспечении высокого извлечения тантала и ниобия в раствор, а висмута в виде его фторида - в осадок. Кроме того, при разложении концентрата значительно снижается газовыделение, что улучшает экологичность способа.

Обработка фторидного осадка висмута раствором концентрированной серной кислоты при температуре 95-105°С позволяет максимально удалить фтор из фторидного осадка и обеспечивает получение хорошо растворимых сульфатных соединений висмута, удобных для дальнейшей переработки. При температуре ниже 95°С возрастает продолжительность процесса, а температура выше 105°С нежелательна по причине увеличения энергозатрат.

Обработка сульфатного осадка висмута азотной кислотой с концентрацией 200-300 г/л HNO3 позволяет максимально полно извлечь висмут в раствор. При концентрации менее 200 г/л снижается извлечение висмута, а концентрация более 300 г/л нецелесообразна по причине незначительного увеличения извлечения висмута.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в снижении энергоемкости способа и уменьшении расхода реагентов при обеспечении высокой степени извлечения тантала и ниобия в раствор, а также в дополнительном извлечении висмута, что повышает технологичность способа.

В частных случаях осуществления изобретения предпочтительны следующие режимные параметры.

Проведение обработки концентрата при начальной температуре смеси кислот 18-22°С является достаточной для осуществления процесса разложения концентрата без внешнего нагревания. Обработка концентрата при начальной температуре смеси кислот ниже 18°С ведет к увеличению продолжительности разложения. Обработка концентрата при начальной температуре выше 22°С приводит к нежелательному переходу висмута в раствор и повышению газовыделения, что ухудшает экологичность способа.

Обработка фторидного висмутсодержащего осадка раствором 92-94% серной кислоты обеспечивает высокую степень отгонки фтора, при этом висмут в виде сульфатных соединений остается в осадке. При концентрации серной кислоты менее 92% возрастает расход кислоты, а при концентрации более 94% не происходит существенного повышения степени отгонки фтора.

Обработка сульфатного осадка висмута азотной кислотой при Т:Ж=1:(6,6-10,0) обеспечивает максимально полное извлечение висмута в раствор. При меньшем содержании азотной кислоты в соотношении Т:Ж=1:6,6 происходит снижение растворимости сульфата висмута в кислоте, а большее содержание азотной кислоты в соотношении Т:Ж=1:10 технологически неоправданно.

Вышеуказанные частные признаки изобретения позволяют наболее технологично осуществить способ с точки зрения дополнительного извлечения висмута.

Сущность и преимущества предлагаемого изобретения могут быть пояснены следующими примерами.

Пример 1. Берут 15 г танталониобиевого концентрата с крупностью частиц менее 100 мкм, содержащего, мас. %: 34,5 Ta2O5, 5,3 Nb2O5, 39,6 Bi2O, 8,0 SiO2. Осуществляют обработку концентрата смесью плавиковой кислоты с концентрацией 330 г/л HF и серной кислоты с концентрацией 500 г/л H2SO4 при начальной температуре 22°С и Т:Ж=1:2,2. Образовавшуюся пульпу перемешивают в течение 5 часов с переводом ниобия и тантала в раствор в виде фторометаллатных кислот, а висмута - в осадок в виде фторида. При этом температура реакционной смеси поднимается до 52°С. Затем пульпу разделяют фильтрованием с получением фильтрата, содержащего тантал и ниобий, и осадка, который промывают водой и сушат. Получают 7,05 г сухого фторидного висмутсодержащего осадка. Фильтрат объединяют с промывными водами с получением раствора, который направляют на коллективную экстракцию тантала и ниобия. Степень извлечения из концентрата в раствор составила, %: 99,6 Ta2O5, 99,36 Nb2O5, при этом в осадок перешло 97,2% Bi2O3. Для отгонки фтора осадок, содержащий 21,32 мас. % F, обрабатывают раствором 94% серной кислоты при температуре 100°С. Затем полученный сульфатный осадок висмута, содержащий 0,3 мас. % F, обрабатывают азотной кислотой с концентрацией 300 г/л HNO3 при Т:Ж=1:10 с получением висмутсодержащего азотнокислого раствора. Степень извлечения висмута из сульфатного осадка в азотнокислый раствор составила 90,2% Bi2O3.

Пример 2. Берут 15 г танталониобиевого концентрата с крупностью частиц менее 100 мкм, содержащего, мас. %: 34,5 Ta2O5, 5,3 Nb2O5, 39,6 Bi2O, 8,0 SiO2. Осуществляют обработку концентрата смесью плавиковой кислоты с концентрацией 330 г/л HF и серной кислоты с концентрацией 400 г/л H2SO4 при начальной температуре 18°С и Т:Ж=1:2,2. Образовавшуюся пульпу перемешивают в течение 4 часов с переводом ниобия и тантала в раствор в виде фторометаллатных кислот, а висмута - в осадок в виде фторида. При этом температура реакционной смеси поднимается до 45°С. Затем пульпу разделяют фильтрованием с получением фильтрата, содержащего тантал и ниобий, и осадка, который промывают водой и сушат. Получают 7,78 г сухого фторидного висмутсодержащего осадка. Фильтрат объединяют с промывными водами с получением раствора, который направляют на коллективную экстракцию тантала и ниобия. Степень извлечения из концентрата в раствор составила, %: 98,46 Ta2O5, 97,3 Nb2O5, при этом в осадок перешло 97,0% Bi2O3. Для отгонки фтора осадок, содержащий 20,34 мас. % F, обрабатывают раствором 92% серной кислоты при температуре 105°С. Затем полученный сульфатный осадок висмута, содержащий 0,2 мас. % F, обрабатывают азотной кислотой с концентрацией 200 г/л HNO3 при Т:Ж=1:6,6 с получением висмутсодержащего азотнокислого раствора. Степень извлечения висмута из сульфатного осадка в азотнокислый раствор составила 74% Bi2O3.

Пример 3. Берут 20 г танталониобиевого концентрата с крупностью частиц менее 100 мкм, содержащего, мас. %: 36,0 Ta2O5 5,4 Nb2O5, 43,0 Bi2O, 8,0 SiO2. Осуществляют обработку концентрата смесью плавиковой кислоты с концентрацией 300 г/л HF и серной кислоты с концентрацией 500 г/л H2SO4 при начальной температуре 21°С и Т:Ж=1:1,9. Образовавшуюся пульпу перемешивают в течение 4 часов с переводом ниобия и тантала в раствор в виде фторометаллатных кислот, а висмута - в осадок в виде фторида. При этом температура реакционной смеси поднимается до 50,5°С. Затем пульпу разделяют фильтрованием с получением фильтрата, содержащего тантал и ниобий, и осадка, который промывают водой и сушат. Получают 11,22 г сухого фторидного висмутсодержащего осадка. Фильтрат объединяют с промывными водами с получением раствора, который направляют на коллективную экстракцию тантала и ниобия. Степень извлечения из концентрата в раствор составила, %: 98,9 Ta2O5, 98,1 Nb2O5, при этом в осадок перешло 98,6% Bi2O3. Для отгонки фтора осадок, содержащий 18,5 мас. %, F, обрабатывают раствором 94% серной кислоты при температуре 95°С. Затем полученный сульфатный осадок висмута, содержащий 0,3 мас. % F, обрабатывают азотной кислотой с концентрацией 250 г/л при Т:Ж=1:6,6 с получением висмутсодержащего азотнокислого раствора. Степень извлечения висмута из сульфатного осадка в азотнокислый раствор составила 78% Bi2O3.

Пример 4. Берут 15 г танталониобиевого концентрата с крупностью частиц менее 100 мкм, содержащего, мас. %: 36,0 Ta2O5, 5,4 Nb2O5, 43,0 Bi2O, 8,0 SiO2. Осуществляют обработку концентрата смесью плавиковой кислоты с концентрацией 270 г/л HF и серной кислоты с концентрацией 500 г/л H2SO4 при начальной температуре 20°С и Т:Ж=1:3. Образовавшуюся пульпу перемешивают в течение 4 часов с переводом ниобия и тантала в раствор в виде фторометаллатных кислот, а висмута - в осадок в виде фторида. При этом температура реакционной смеси поднимается до 46,5°С. Затем пульпу разделяют фильтрованием с получением фильтрата, содержащего тантал и ниобий, и осадка, который промывают водой и сушат. Получают 7,12 г сухого фторидного висмутсодержащего осадка. Фильтрат объединяют с промывными водами с получением раствора, который направляют на коллективную экстракцию тантала и ниобия. Степень извлечения из концентрата в раствор составила, %: 98,9 Ta2O5, 98,72 Nb2O5, при этом в осадок перешло 89,4% Bi2O3. Для отгонки фтора осадок, содержащий 16,52 мас. % F, обрабатывают раствором 94% серной кислоты при температуре 100°С. Затем полученный сульфатный осадок висмута, содержащий 0,3 мас. % F, обрабатывают азотной кислотой с концентрацией 250 г/л при Т:Ж=1:6,6 с получением висмутсодержащего азотнокислого раствора. Степень извлечения висмута из сульфатного осадка в азотнокислый раствор составила 78% Bi2O3.

Пример 5. Берут 15 г танталониобиевого концентрата с крупностью частиц менее 100 мкм, содержащего, мас. %: 36,0 Ta2O5, 5,4 Nb2O5, 43,0 Bi2O, 8,0 SiO2. Осуществляют обработку концентрата смесью плавиковой кислоты с концентрацией 300 г/л HF и серной кислоты с концентрацией 500 г/л H2SO4 при начальной температуре 20°С и Т:Ж=1:2,6. Образовавшуюся пульпу перемешивают в течение 2 часов с переводом ниобия и тантала в раствор в виде фторометаллатных кислот, а висмута - в осадок в виде фторида. При этом температура реакционной смеси поднимается до 46,5°С. Затем пульпу разделяют фильтрованием с получением фильтрата, содержащего тантал и ниобий, и осадка, который промывают водой и сушат. Получают 7,49 г сухого фторидного висмутсодержащего осадка. Фильтрат объединяют с промывными водами с получением раствора, который направляют на коллективную экстракцию тантала и ниобия. Степень извлечения из концентрата в раствор составила, %: 98,72 Ta2O5, 97,9 Nb2O5, при этом в осадок перешло 96,24% Bi2O3. Для отгонки фтора осадок, содержащий 16,7 мас. % F, обрабатывают раствором 94% серной кислоты при температуре 100°С. Затем полученный сульфатный осадок висмута, содержащий 0,3 мас. % F, обрабатывают азотной кислотой с концентрацией 300 г/л при Т:Ж=1:10 с получением висмутсодержащего азотнокислого раствора. Степень извлечения висмута из сульфатного осадка в азотнокислый раствор составила 89% Bi2O3.

Таким образом, из вышеприведенного описания и примеров видно, что по сравнению с прототипом предлагаемый способ позволяет повысить степень извлечения тантала из концентрата в раствор до 99,6% и ниобия до 99,36%. При этом извлечение висмута из танталониобиевого концентрата в висмутсодержащий фторидный осадок составляет 89,4-98,6%, а из сульфатного осадка в висмутсодержащий азотнокислый раствор 74-90,2%. Кислотная обработка на стадии разложения концентрата при начальной комнатной температуре, меньшей продолжительности обработки и более низком отношении Т:Ж позволяет снизить энергоемкость способа и уменьшить расход реагентов. Все это повышает технологичность способа переработки танталониобиевого концентрата. Способ согласно изобретению относительно прост и может быть реализован в промышленных условиях с привлечением стандартного оборудования.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 65.
10.09.2013
№216.012.67ef

Способ извлечения ванадия из кислых растворов

Изобретение относится к способам извлечения ванадия из кислых растворов и может быть использовано для экстракционного извлечения ванадия из сернокислых, солянокислых и азотнокислых растворов, образующихся при переработке различных видов ванадийсодержащего сырья и при рафинировании солей...
Тип: Изобретение
Номер охранного документа: 0002492254
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6d53

Способ получения частиц твердого электролита lialti(po) (0,1≤x≤0,5)

Изобретение относится к способу получения частиц твердого электролита LiAlTi(PO) (0,1≤x≤0,5), включающему смешивание первого раствора, содержащего азотную кислоту, воду, азотнокислый литий, азотнокислый алюминий, фосфорнокислый аммоний NHHPO или фосфорную кислоту, и второго раствора,...
Тип: Изобретение
Номер охранного документа: 0002493638
Дата охранного документа: 20.09.2013
27.12.2013
№216.012.9073

Способ получения шихты ниобата лития для выращивания монокристаллов

(57) Изобретение относится к способу получения соединений редких элементов, в частности шихты ниобата лития, которая может быть использована для выращивания монокристаллов методом вытягивания из расплава. В высокочистый ниобийсодержащий раствор вводят оксид магния в количестве, обеспечивающем...
Тип: Изобретение
Номер охранного документа: 0002502672
Дата охранного документа: 27.12.2013
20.02.2014
№216.012.a259

Способ переработки фосфополугидрата

Изобретение относится к переработке свежеполученного фосфополугидрата и может быть использовано для получения концентрата редкоземельных элементов (РЗЭ) и гипсового продукта для строительных материалов. Фосфополугидрат обрабатывают водным раствором, содержащим фтор-ион. Проводят выщелачивание...
Тип: Изобретение
Номер охранного документа: 0002507276
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a6c9

Способ переработки бадделеитового концентрата

Изобретение относится к технологии получения соединений циркония из бадделеитового концентрата, в частности оксохлорида и диоксида циркония, и может найти применение в волоконной оптике при получении функциональной керамики, специальных стекол, монокристаллов фианита. Смешивают молотый...
Тип: Изобретение
Номер охранного документа: 0002508412
Дата охранного документа: 27.02.2014
10.03.2014
№216.012.a9be

Способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты

Изобретение относится к способам выделения концентрата редкоземельных элементов (PЗЭ) из экстракционной фосфорной кислоты, получаемой в дигидратном процессе переработки апатитового концентрата, и может быть использовано в химической промышленности. В нагретую до 65-80°C экстракционную фосфорную...
Тип: Изобретение
Номер охранного документа: 0002509169
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ac3f

Способ получения минерального дубителя

Изобретение относится к химической технологии получения титансодержащих продуктов, используемых в качестве минеральных дубителей при выработке кож и меха. Производят смешение сульфатной титанилсодержащей и алюмосодержащей солей и сульфата аммония. В качестве сульфатной титанилсодержащей соли...
Тип: Изобретение
Номер охранного документа: 0002509810
Дата охранного документа: 20.03.2014
10.05.2014
№216.012.bfb2

Способ обработки радиактивного раствора

Изобретение относится к способу обработки радиоактивного раствора, содержащего радионуклиды кобальта совместно с органическим комплексообразователем и радионуклиды цезия. Способ включает введение в исходный радиоактивный раствор окисляющего реагента при обеспечении заданной величины рН раствора...
Тип: Изобретение
Номер охранного документа: 0002514823
Дата охранного документа: 10.05.2014
10.06.2014
№216.012.cf2c

Способ переработки кианитового концентрата

Изобретение относится к области переработки алюмосиликатного сырья, в частности кианита, и может быть использовано при производстве глинозема, пригодного для получения корундовых огнеупоров, мелкодисперсного аморфного кремнезема, керамики, силумина и алюминия. Кианитовый концентрат подвергают...
Тип: Изобретение
Номер охранного документа: 0002518807
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d509

Керамическая масса для изготовления облицовочной плитки

Изобретение относится к производству строительных материалов и может быть использовано при изготовлении облицовочной керамической плитки для внутренних и наружных отделочных работ, а также облицовочного кирпича. Керамическая масса включает, мас.%: отходы обогащения медно-никелевых руд...
Тип: Изобретение
Номер охранного документа: 0002520308
Дата охранного документа: 20.06.2014
Показаны записи 11-20 из 63.
10.09.2013
№216.012.67ef

Способ извлечения ванадия из кислых растворов

Изобретение относится к способам извлечения ванадия из кислых растворов и может быть использовано для экстракционного извлечения ванадия из сернокислых, солянокислых и азотнокислых растворов, образующихся при переработке различных видов ванадийсодержащего сырья и при рафинировании солей...
Тип: Изобретение
Номер охранного документа: 0002492254
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6d53

Способ получения частиц твердого электролита lialti(po) (0,1≤x≤0,5)

Изобретение относится к способу получения частиц твердого электролита LiAlTi(PO) (0,1≤x≤0,5), включающему смешивание первого раствора, содержащего азотную кислоту, воду, азотнокислый литий, азотнокислый алюминий, фосфорнокислый аммоний NHHPO или фосфорную кислоту, и второго раствора,...
Тип: Изобретение
Номер охранного документа: 0002493638
Дата охранного документа: 20.09.2013
27.12.2013
№216.012.9073

Способ получения шихты ниобата лития для выращивания монокристаллов

(57) Изобретение относится к способу получения соединений редких элементов, в частности шихты ниобата лития, которая может быть использована для выращивания монокристаллов методом вытягивания из расплава. В высокочистый ниобийсодержащий раствор вводят оксид магния в количестве, обеспечивающем...
Тип: Изобретение
Номер охранного документа: 0002502672
Дата охранного документа: 27.12.2013
20.02.2014
№216.012.a259

Способ переработки фосфополугидрата

Изобретение относится к переработке свежеполученного фосфополугидрата и может быть использовано для получения концентрата редкоземельных элементов (РЗЭ) и гипсового продукта для строительных материалов. Фосфополугидрат обрабатывают водным раствором, содержащим фтор-ион. Проводят выщелачивание...
Тип: Изобретение
Номер охранного документа: 0002507276
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a6c9

Способ переработки бадделеитового концентрата

Изобретение относится к технологии получения соединений циркония из бадделеитового концентрата, в частности оксохлорида и диоксида циркония, и может найти применение в волоконной оптике при получении функциональной керамики, специальных стекол, монокристаллов фианита. Смешивают молотый...
Тип: Изобретение
Номер охранного документа: 0002508412
Дата охранного документа: 27.02.2014
10.03.2014
№216.012.a9be

Способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты

Изобретение относится к способам выделения концентрата редкоземельных элементов (PЗЭ) из экстракционной фосфорной кислоты, получаемой в дигидратном процессе переработки апатитового концентрата, и может быть использовано в химической промышленности. В нагретую до 65-80°C экстракционную фосфорную...
Тип: Изобретение
Номер охранного документа: 0002509169
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ac3f

Способ получения минерального дубителя

Изобретение относится к химической технологии получения титансодержащих продуктов, используемых в качестве минеральных дубителей при выработке кож и меха. Производят смешение сульфатной титанилсодержащей и алюмосодержащей солей и сульфата аммония. В качестве сульфатной титанилсодержащей соли...
Тип: Изобретение
Номер охранного документа: 0002509810
Дата охранного документа: 20.03.2014
10.05.2014
№216.012.bfb2

Способ обработки радиактивного раствора

Изобретение относится к способу обработки радиоактивного раствора, содержащего радионуклиды кобальта совместно с органическим комплексообразователем и радионуклиды цезия. Способ включает введение в исходный радиоактивный раствор окисляющего реагента при обеспечении заданной величины рН раствора...
Тип: Изобретение
Номер охранного документа: 0002514823
Дата охранного документа: 10.05.2014
10.06.2014
№216.012.cf2c

Способ переработки кианитового концентрата

Изобретение относится к области переработки алюмосиликатного сырья, в частности кианита, и может быть использовано при производстве глинозема, пригодного для получения корундовых огнеупоров, мелкодисперсного аморфного кремнезема, керамики, силумина и алюминия. Кианитовый концентрат подвергают...
Тип: Изобретение
Номер охранного документа: 0002518807
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d509

Керамическая масса для изготовления облицовочной плитки

Изобретение относится к производству строительных материалов и может быть использовано при изготовлении облицовочной керамической плитки для внутренних и наружных отделочных работ, а также облицовочного кирпича. Керамическая масса включает, мас.%: отходы обогащения медно-никелевых руд...
Тип: Изобретение
Номер охранного документа: 0002520308
Дата охранного документа: 20.06.2014
+ добавить свой РИД