×
25.08.2017
217.015.c5ad

Результат интеллектуальной деятельности: Способ оценки единовременного максимально возможного объема твердых селевых выносов в селевое русло реки при сходе селя

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам оценки селевой опасности территории. Сущность: определяют абсолютную высоту истока реки в селевом бассейне. Определяют высотную зональность расположения селевого бассейна (высокогорье, среднегорье, низкогорье) и его морфометрические характеристики (площадь водосбора, приведенную протяженность и средний уклон главного русла реки). Используя космические снимки или результаты аэрофотосъемки, определяют наличие на территории селевого бассейна ледников, ледниково-подпрудных или моренных озер, а также “мертвых льдов”. В зависимости от высотной зональности расположения селевого бассейна и наличия в нем ледников, ледниково-подпрудных или моренных озер, а также “мертвых льдов” определяют генетический тип возможных селепроявлений (ледниковый, ледниково-дождевой, дождевой или снегодождевой). Определяют средний уклон и длину выделенного участка селевого русла. С учетом полученных данных рассчитывают величины разовых максимально возможных объемов твердых селевых выносов в главное русло реки и на выделенный участок селевого русла. Технический результат: расширение возможностей использования, повышение точности и оперативности оценки, снижение трудозатрат. 4 з.п. ф-лы, 2 ил.

Изобретение относится к области гидрометеорологии и может быть использовано при составлении карт селеопасных территорий и разработке различных противоселевых мероприятий для защиты тех или иных народно-хозяйственных объектов.

Селевые потоки являются одним из самых опасных и распространенных гидрологических явлений в районах создания современных горнолыжных курортов европейского класса. При выборе горных участков для освоения часто не учитывается возможность воздействия селевого потока на тот или иной проектируемый объект (населенный пункт, железную или автомобильную дорогу и др.), что порой бывает губительным не только для сооружений, но и для человека. Поэтому разработка различных противоселевых мероприятий должна осуществляться с учетом возможной селевой активности горных территорий.

Согласно [1] для инженерного проектирования различных противоселевых сооружений необходимо знать, как минимум, максимальный объем твердых селевых выносов в селевое русло, что является одним из основных характеристик селевой активности.

До настоящего времени единой методики по определению объема твердых селевых выносов в селевое русло не существует. Практически, все способы предполагают определение объема селевых выносов либо по гидрографу селя, либо по следам его прохождения путем замеров объемов отложений на всех участках аккумуляции селевых выносов методом изъятия шурфов и сопоставления полученных результатов с прямыми замерами в очагах селеформирования. Такие способы являются достаточно сложными и требующими больших финансовых затрат.

Известен способ определения объема твердых селевых выносов в селевое русло путем организации стационарных наблюдений и проведения замеров на территории селевого бассейна в течение длительного времени (100 лет) [2].

Известный способ имеет ряд недостатков. Во-первых, не всегда удается организовать стационарные наблюдения на территории селевого бассейна в течение длительного времени (100 лет). Во-вторых, селевые объемы определяются по конусам выноса. При этом не учитывается унесенная рекой грязекаменная масса. Не учитывается также высотная зональность расположения селевого бассейна, а также такие морфометрические его характеристики, как площадь водосбора, средний уклон и длина русла реки. В результате этого снижается точность и оперативность оценки твердых селевых выносов в селевое русло при сходе селя.

Известен также способ определения объема твердых селевых выносов в селевое русло по аэрофотоснимкам разных лет залета - до и после схода селя, который включает анализ снимков селевого русла с использованием метода дешифрования и определения на этой основе твердых селевых выносов по всему руслу селевого бассейна [3].

Недостатком данного способа является низкая достоверность результатов предварительного (камерального) дешифрования и истолкования изображений цветных фотоснимков. Особенно, если эти снимки являются снимками неизученных районов, где есть возможность спутать селевые отложения с лавинными отложениями.

Наиболее близким по технической сущности к заявляемому объекту является способ определения объема твердых селевых выносов в селевое русло при сходе селя путем определения высотной зональности расположения селевого бассейна и морфометрического параметра бассейна - его площади, с последующим определением величины максимально возможного объема твердых селевых выносов на всем участке селевого русла по эмпирическим зависимостям [4] прототип.

Недостатком известного способа является то, что он является достаточно трудоемким и может быть использован только для грубой оценки объемов твердых выносов для всего селевого русла и только применительно к дождевым селям. Для оценки селевых выносов на отдельных участках селевого русла, где планируется строительство различных народнохозяйственных объектов, способ вообще не пригоден ввиду ограниченности функциональных его возможностей. Кроме того, в известном способе не учитываются такие генетические типы возможных селепроявлений, как гляциальный и гляциально-дождевой, а также влияние на искомый результат таких важнейших параметров морфометрии селевого бассейна, как уклон и длина русла реки. В результате указанных недостатков существенно снижается точность и оперативность оценки максимально возможного объема твердых селевых выносов в селевое русло при сходе селя.

Техническим результатом от использования заявленного способа является расширение функциональных возможностей способа, снижение трудозатрат по его реализации, а также повышение точности и оперативности оценки максимально возможного объема селевых выносов как для всего селевого русла, так и для отдельных его участков.

Технический результат достигается тем, что в известном способе оценки максимально возможного объема твердых селевых выносов в селевое русло при сходе селя предварительно определяют абсолютную высоту истока реки в селевом бассейне (Н), затем, используя данные результаты, определяют высотную зональность расположения селевого бассейна (высокогорье, среднегорье, низкогорье) и морфометрические его характеристики: площадь водосбора (S), приведенную протяженность (L) и средний уклон (α) главного русла реки, затем, используя космические снимки или аэрофотосъемки, определяют наличие на территории селевого бассейна, ледников, ледниково-подпрудных или моренных озер, а также «мертвых льдов», после чего, в зависимости от высотной зональности расположения селевого бассейна, определяют генетический тип возможных селепроявлений (ледниковый, ледниково-дождевой, дождевой или снегодождевой), затем определяют средний уклон (ϕ) и длину выделенного участка селевого русла (l), после чего определяют величину единовременного максимально возможного объема твердых селевых выносов в главное русло реки (), а затем и на выделенный участок селевого русла (W) по формуле:

,

где - максимально возможный объем твердых селевых выносов в главное русло реки после схода селя, определенный с учетом высотной зональности расположения селевого бассейна, морфометрических его характеристик и генетического типа возможных селепроявлений, м3;

L - приведенная протяженность главного русла реки, км;

l - длина выделенного участка в селевом русле, км;

ϕ - средний уклон выделенного участка в селевом русле, в промилях;

α - средний уклон селевого русла, в промилях;

Технический результат достигается и тем, что величина единовременного максимально возможного объема твердых селевых выносов в главное русло реки () определяют:

- для высокогорья с абсолютной высотой истока, расположенного выше 2500 м н.у.м., с ледниковыми и ледниково-дождевыми генетическими типами селей, по формуле:

,

где b1, с1, d1 - корреляционные коэффициенты, равные соответственно:

b1=-14⋅103, м3/км2; c1=-127⋅106, м3·0/00, d1=359⋅103, м3/км;

- для высокогорья с абсолютной высотой истока, расположенного выше 2500 м н.у.м. с ледниково-дождевыми и дождевыми генетическими типами селей по формуле

,

где c2, d2 - корреляционные коэффициенты, равные соответственно:

с2=650, м3/0/00; d2=21⋅103, м3/км;

- для высокогорья с абсолютной высотой истока, расположенного выше 2500 м н.у.м., с дождевым и снегодождевым генетическими типами селей по формуле

,

где b3, c3, - корреляционные коэффициенты, равные соответственно:

b3=3745, м3/км2; с3=41, м3/0/00;

- для среднегорья с абсолютной высотой истока 2500-1500 м н.у.м., с дождевым и снегодождевым генетическими типами селей по формуле

,

где c4, d4 - корреляционные коэффициенты, равные соответственно:

с4=156, м3/0/00; d4=3960, м3/км;

- для низкогорья с абсолютной высотой истока ниже 1500 м н.у.м., с дождевым и снегодождевым генетическими типами селей по формуле

,

где c5, d5 - корреляционные коэффициенты, равные соответственно:

с5=-22 м3/0/00; d5=8309, м3/км.

Технический результат достигается также и тем, что приведенную протяженность русла реки (L) определяют путем суммирования протяженности основного русла реки с протяженностью всех его притоков второго порядка, км.

Технический результат достигается и тем, что высотную зональность расположения селевого бассейна определяют по следующим признакам:

- высокогорные селевые бассейны - это бассейны, у которых абсолютная высота истока (Н), находится выше 2500 м н.у.м.;

- среднегорные селевые бассейны - это селевые бассейны, у которых абсолютная высота истока (Н), находится на уровне от 2500 до 1500 м н.у.м.;

- низкогорные селевые бассейны - это селевые бассейны, у которых абсолютная высота истока (Н), находится на уровне ниже 1500 м.

Технический результат достигается также и тем, что генетический тип возможных селепроявлений определяют по следующим признакам:

- при наличии оледенения площадью более 2-х км2 ледниково-подпрудных или моренных озер, морен, а также «мертвых льдов» селепроявление относят к ледниковому генетическому типу;

- при площади оледенения менее 2-х км2 или его отсутствии, но при наличии моренного материала и «мертвых льдов» селепроявление относят к ледниково-дождевому генетическому типу;

- при отсутствии оледенения, ледниково-подпрудных или моренных озер, морен, «мертвых льдов» селепроявление относят к дождевому или снегодождевому генетическому типу.

Для вывода приведенных расчетных зависимостей была создана специальная база данных комплексных наблюдений за сходом селей и условиями их формирования на территории Северного Кавказа. Ее основой стали данные о селепроявлениях, собранные в течение 62 лет с 1950 до 2012 года. Всего было рассмотрено 520 селевых бассейнов, около 600 случаев схода селей. В результате с помощью методов математической статистики и корреляционного анализа были получены расчетные эмпирические зависимости, учитывающие морфометрию и генетический тип селевых бассейнов, а также высотную зональность, т.е. их расположения над уровнем моря.

Учет указанных параметров позволяет существенно повысить точность и оперативность оценки максимально возможного объема селевых выносов не только по всей длине русла, но и на различных его участках при сходе селя.

На фиг. 1 показано схематично селевое русло в плане, на фиг. 2 - космический снимок селевого русла реки Геналдон (Республика Северная Осетия-Алания).

На фиг. 1 и фиг. 2 приняты следующие обозначения:

1 - селевой бассейн в плане; 2 - главное русло реки; 3 - основные притоки реки (притоки второго порядка); 4 - участок селевого русла; 5 - исток реки; 6 - устье реки; 7 - ледник; 8 – ледниково-подпрудное озеро; 9 - моренное озеро; 10 - мертвые льды; Н1 - абсолютная высота истока реки; h1 - абсолютная высота устья реки; Н2 - абсолютная высота верхней границы участка русла реки; h1 - абсолютная высота нижней границы участка русла реки.

Предлагаемый способ реализуется следующим образом:

Предварительно по космическим снимкам или аэрофотосъемкам (снимок схематично представлен на фиг. 1) определяют границы селевого бассейна 1. Затем выделяют главное русло реки 2 с его основными притоками 3, а также участок 4, где планируется строительство объектов, для которого, как и для всего русла 2, требуется оценить единовременный максимально возможный объем твердых селевых выносов при сходе селя. После этого определяют абсолютную высоту (H1) истока реки 5 и по его значению определяют высотную зональность расположения селевого бассейна (высокогорье, среднегорье, низкогорье). Затем определяют морфометрические характеристики селевого бассейна: площадь водосбора (S), приведенную протяженность (L) селевого русла реки 2 от истока 5 до его устья 6, а также средний его уклон (α). Величину (L) определяют суммированием протяженности главного русла реки 2 с протяженностью всех его притоков 3 второго порядка. После этого, используя космические снимки или аэрофотосъемки, определяют наличие на территории селевого бассейна 1 ледников 7, ледниково-подпрудных 8, или моренных озер 9, а также «мертвых льдов» 10, и в зависимости от высотной зональности расположения селевого бассейна 1 и наличия или отсутствия в нем ледников 7, ледниково-подпрудных 8, или моренных озер 9, а также «мертвых льдов» 10 определяют генетический тип возможных селепроявлений (ледниковый, ледниково-дождевой, дождевой или снегодождевой). Затем по картографическому материалу определяют средний уклон (ϕ) и длину (l) выделенного участка селевого русла 4. После чего определяют величину единовременного максимально возможного объема твердых селевых выносов () в главное русло реки 2, а затем и на выделенный участок селевого русла 4 (W) по формуле:

.

Средний уклон главного русла реки (α) и средний уклон выделенного участка русла 4 (ϕ) определяют по формулам

; ,

где (H1-h1) - перепад высот для главного русла реки.

H1 - абсолютня высота истока реки,

h1 - абсолютная высота устья реки.

l - протяженность выделенного участка селевого русла (А-В).

2-h2) - перепад уровней высот начала и конца выделенного участка.

Н2 - абсолютная высота верхней границы участка 4.

h2 - абсолютная высота нижней границы участка 4.

Приведенные параметры легко определяются по картографическому материалу с помощью ГИС программы.

Величина , в зависимости от морфометрических характеристик селевого бассейна и генетического типа возможных селепроявлений, определяется по соответствующим, приведенным выше расчетным формулам.

Пример выполнения способа.

В качестве примера рассмотрим селевой бассейн реки Геналдон, расположенный в республике Северная Осетия-Алания, представленный на фиг. 2. Селевой бассейн размещен на уровне высот 3400 - 1140 м. Требуется оценить единовременный максимально возможный объем твердых селевых выносов после схода селя в главное русло реки и на отдельный его участок 4 селевого русла, ограниченный высотами 1840-1680 м.

Определяем объем твердых селевых выносов в главное русло реки после схода селя. Для этого сначала по космоснимку селевого бассейна (фиг. 2) определяем генезис возможного селепроявления. Поскольку на снимке определяется наличие площади оледенения более 2 км2, то это свидетельствует о том, что здесь возможны сели ледникового, ледниководождевого генетического типов. Затем с помощью ГИС программы по картографическому материалу определяем морфометрию селевого бассейна: площадь бассейна (S=73,2 км2) и длину основного русла реки с притоками 3 второго порядка (L=25,3 км).

После этого определяем средний уклон основного русла реки (α):

.

Далее определяем максимально возможный объем твердых селевых выносов в главное русло реки после схода селя по формуле:

Затем определяем объем твердых селевых выносов на выделенный участок 4 селевого русла реки 2. Для этого с помощью ГИС программы по картографическому материалу определяем длину выделенного участка селевого русла (l=2,5 км) и средний уклон (ϕ) русла реки на данном участке по формуле

.

После этого определяем величину возможного максимального объема твердых селевых выносов на выделенном участке селевого русла:

.

По данным экспертной оценки [5] объем твердых отложений самого разрушительного селевого потока в долине реки Геналдон, происшедшего 20 сентября 2002 года, составил 7500000 м3. Разница между расчетным значением, определенным предлагаемым способом и данными экспертной оценки, составляет менее 12%, что является достаточно хорошим результатом.

Используя полученные результаты можно грамотно спланировать строительство различных объектов вдоль русла, а также обеспечить инженерную защиту территорий и сооружений от опасных геологических процессов.

Таким образом, предложенный способ позволяет существенно снизить трудозатраты на ее реализацию и повысить оперативность и точность оценки объема твердых селевых выносов как по всему селевому руслу, так и на отдельных его участках, где не ведутся стационарные наблюдения за сходом селей и не определяются объемы и даты их схода.

Литература

1. СНИП 2.01.15-90. Инженерная защита территорий, зданий и сооружений от опасных геологических процессов. Основание положения проектирования. М.: 1997, 32 с.

2. Флейшман С.М. Сели. - Л.: Гидрометеоиздат, 1978 - 312 с.). Полученный результат используется для оценки селевой активности селевых бассейнов.

3. Садов А.В. Аэрометоды изучения селей / А.В. Садов. - М.: Недра, 1972. - 124 с.

4. Соколовский Д.Л. Связь стока с осадками в различных географических условиях. Метеорология и гидрология, №6, 1936.

5. Черноморец С.С. Селевые очаги до и после катастроф / С.С. Черноморец. - М.: Научный мир, 2005. - 184 с.


Способ оценки единовременного максимально возможного объема твердых селевых выносов в селевое русло реки при сходе селя
Способ оценки единовременного максимально возможного объема твердых селевых выносов в селевое русло реки при сходе селя
Способ оценки единовременного максимально возможного объема твердых селевых выносов в селевое русло реки при сходе селя
Способ оценки единовременного максимально возможного объема твердых селевых выносов в селевое русло реки при сходе селя
Способ оценки единовременного максимально возможного объема твердых селевых выносов в селевое русло реки при сходе селя
Источник поступления информации: Роспатент

Показаны записи 1-10 из 33.
27.02.2013
№216.012.2c79

Способ определения прироста толщины снежного покрова на лавиноопасных склонах

Изобретение относится к области метеорологии и может быть использовано для дистанционного контроля прироста толщины снежного покрова на лавиноопасных склонах. Согласно заявленному способу предварительно для подветренной части лавиноопасного склона в нелавиноопасный период, например летом,...
Тип: Изобретение
Номер охранного документа: 0002476912
Дата охранного документа: 27.02.2013
10.04.2013
№216.012.344b

Способ тестирования устойчивости снежного покрова на лавиноопасных склонах

Изобретение относится к способам тестирования устойчивости снежного покрова на лавиноопасных склонах горнолыжных комплексов с целью обеспечения безопасности проведения рекреационных мероприятий. Согласно способу тестирование устойчивости снежного покрова на лавиноопасных склонах осуществляют...
Тип: Изобретение
Номер охранного документа: 0002478930
Дата охранного документа: 10.04.2013
20.05.2013
№216.012.411f

Способ прогнозирования начала самопроизвольного обрушения снежных карнизов на лавиноопасных склонах

Изобретение относится к области мероприятий, направленных на обеспечение безопасности работ при обрушении снежных карнизов на лавиноопасных склонах горнолыжных комплексов путем визуального их осмотра и определения длины консольной их части. В способе прогнозирования начала самопроизвольного...
Тип: Изобретение
Номер охранного документа: 0002482241
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.4120

Способ обрушения снежных карнизов на лавиноопасных склонах

Изобретение относится к области оценки устойчивости снежного покрова на лавиноопасных склонах горнолыжных комплексов с целью обеспечения безопасности проведения рекреационных мероприятий. Согласно способу перед обрушением снежных карнизов на лавиноопасных склонах путем подрезки консольной их...
Тип: Изобретение
Номер охранного документа: 0002482242
Дата охранного документа: 20.05.2013
27.05.2013
№216.012.42bd

Азотный генератор искусственных ледяных кристаллов

Изобретение относится к области технических средств, предназначенных для генерации ледяных кристаллов, и может быть использовано для регулирования метеорологических процессов. Азотный генератор искусственных ледяных кристаллов содержит размещенный на борту самолета сосуд Дьюара с жидким азотом....
Тип: Изобретение
Номер охранного документа: 0002482662
Дата охранного документа: 27.05.2013
10.10.2013
№216.012.7116

Самолетный генератор ледяных кристаллов

Генератор ледяных кристаллов содержит, размещенный на борту самолета сосуд Дьюара с жидким азотом, крышку с манометром и зажимами для крепления к горловине сосуда Дьюара. По оси крышки размещен питающий трубопровод, один конец которого снабжен распылителем и выставлен за борт самолета в...
Тип: Изобретение
Номер охранного документа: 0002494607
Дата охранного документа: 10.10.2013
27.10.2013
№216.012.794b

Способ получения углеродных наноструктурных материалов

Изобретение может быть использовано при изготовлении материалов для электронной техники, присадок для ракетных топлив, катализаторов, смазочных масел и полимерных покрытий. Климатическую камеру 1 предварительно охлаждают холодильной установкой 4 до отрицательных температур. Затем в камеру 1...
Тип: Изобретение
Номер охранного документа: 0002496713
Дата охранного документа: 27.10.2013
27.12.2013
№216.012.91d9

Способ раннего обнаружения атмосферных вихрей в облаках некогерентным радаром

Изобретение относится к области радиолокационной метеорологии и может быть использовано на практике для раннего обнаружения таких атмосферных циклонических вихрей, как торнадо и смерчи некогерентным радаром. Достигаемый технический результат - повышение информативности и точности раннего...
Тип: Изобретение
Номер охранного документа: 0002503030
Дата охранного документа: 27.12.2013
10.03.2014
№216.012.aa35

Способ дистанционного определения крутизны склона в контрольных точках лавинного очага с использованием лазерного дальномера

Изобретение относится к области измерения уклонов и может быть использовано для определения крутизны склона в лавинных очагах. Сущность: с помощью лазерного дальномера, размещенного в долине, определяют расстояние до произвольной контрольной точки «А» на склоне (L), угол зондирования (β) и...
Тип: Изобретение
Номер охранного документа: 0002509288
Дата охранного документа: 10.03.2014
10.05.2014
№216.012.c0b6

Способ дистанционного определения экспозиции склона в контрольных точках лавинного очага с использованием лазерного дальномера

Изобретение относится к области метеорологии и гляциологии и может быть использовано при определении толщины снежного покрова на склонах для прогноза лавинной опасности и определения снегонакопления в горах. Согласно заявленному способу с помощью лазерного дальномера, размещенного в долине,...
Тип: Изобретение
Номер охранного документа: 0002515083
Дата охранного документа: 10.05.2014
Показаны записи 1-10 из 29.
27.09.2014
№216.012.f6e6

Ракетная пусковая установка

Изобретение относится к военной технике и может быть использовано в ракетном вооружении. Ракетная пусковая установка содержит основание, стойку, опорно-поворотное устройство, качающуюся платформу с направляющими для размещения ракет, приводы наведения со стопорными устройствами, блоки индикации...
Тип: Изобретение
Номер охранного документа: 0002529043
Дата охранного документа: 27.09.2014
27.10.2014
№216.013.01c6

Способ тестирования устойчивости снежного покрова на лавиноопасных склонах

Изобретение относится к области тестирования устойчивости снежного покрова на лавиноопасных склонах горнолыжных комплексов с целью обеспечения безопасности проведения рекреационных мероприятий. Сущность: осуществляют динамическое силовое воздействие на снежный пласт, прилегающий к пригребневой...
Тип: Изобретение
Номер охранного документа: 0002531852
Дата охранного документа: 27.10.2014
20.02.2015
№216.013.2bd3

Переносной противолавинный комплекс

Изобретение относится к гидрометеорологии, а именно к техническим средствам и методам воздействия на склоновые процессы с целью предупредительного спуска лавин путем обстрела снежных склонов из орудий и минометов. Противолавинный комплекс содержит пушку, размещенный на опорной плите с...
Тип: Изобретение
Номер охранного документа: 0002542676
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3c98

Способ определения толщины снежного покрова в лавинных очагах

Изобретение относится к способам дистанционного определения толщины снежного покрова и может быть использовано с целью прогнозирования лавинной опасности. Сущность: последовательно проводят летние и зимние зондирования склона с использованием лазерного дальномера. Зондируя склон под...
Тип: Изобретение
Номер охранного документа: 0002547000
Дата охранного документа: 10.04.2015
20.08.2015
№216.013.72fe

Одноволновый радиолокационный способ измерения размера градовых частиц в облаках в зоне их роста

Изобретение относится к области радиолокационной метеорологии и может быть использовано для измерения размера градовых частиц в зоне их роста. Сущность: по данным аэрологического зондирования атмосферы строят график изменения температуры и скорости восходящих воздушных потоков по высоте облака....
Тип: Изобретение
Номер охранного документа: 0002561008
Дата охранного документа: 20.08.2015
27.09.2015
№216.013.7e9f

Сдвиговое устройство для испытания на срез образцов мелкозернистых связных и несвязных грунтов и снега

Изобретение относится к определению механических характеристик грунтов в лабораторных и полевых условиях. Для этого используют сдвиговое устройство для испытания на срез образцов мелкозернистых связных и несвязных грунтов и снега. Устройство содержит две вертикальные и расположенные соосно...
Тип: Изобретение
Номер охранного документа: 0002564012
Дата охранного документа: 27.09.2015
20.12.2015
№216.013.9b2c

Способ активных воздействий на грозоградовые процессы

Изобретение относится к области активных воздействий на атмосферные процессы и предназначено для защиты от грозы и града сельскохозяйственных угодий, для регулирования электрического состояния атмосферы в зонах повышенного риска (космодромы, атомные станции, авиалинии) для защиты от молниевых...
Тип: Изобретение
Номер охранного документа: 0002571349
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9b2d

Противоселевое заторное сооружение

Изобретение относится к области противоселевых сооружений, а именно к области активных воздействий на селевые потоки с целью защиты от последних населенных пунктов, промышленных и гражданских сооружений, рекреационно-спортивных объектов и т.д. Сооружение включает металлическую объемно-каркасную...
Тип: Изобретение
Номер охранного документа: 0002571350
Дата охранного документа: 20.12.2015
13.01.2017
№217.015.6b60

Устройство для забора воды малых струящихся водопадов

Изобретение относится к области гидрологии, а именно к устройствам для забора проб воды при измерении локального и общего расхода воды малых струящихся водопадов, где площадь стекания воды может составлять несколько десятков квадратных метров. Устройство для забора воды содержит прикрепленную к...
Тип: Изобретение
Номер охранного документа: 0002592630
Дата охранного документа: 27.07.2016
25.08.2017
№217.015.b042

Способ определения маршрута натурного обследования близлежащих селевых бассейнов

Изобретение относится к области исследований опасных склоновых процессов и может быть использовано при обследовании селевых бассейнов. Сущность: предварительно выбранные маршруты натурных обследований близлежащих селевых бассейнов (1) объединяют в единый маршрут (5). Причем указанный...
Тип: Изобретение
Номер охранного документа: 0002613480
Дата охранного документа: 16.03.2017
+ добавить свой РИД