×
10.05.2014
216.012.c0b6

СПОСОБ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ ЭКСПОЗИЦИИ СКЛОНА В КОНТРОЛЬНЫХ ТОЧКАХ ЛАВИННОГО ОЧАГА С ИСПОЛЬЗОВАНИЕМ ЛАЗЕРНОГО ДАЛЬНОМЕРА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области метеорологии и гляциологии и может быть использовано при определении толщины снежного покрова на склонах для прогноза лавинной опасности и определения снегонакопления в горах. Согласно заявленному способу с помощью лазерного дальномера, размещенного в долине, определяют расстояние до контрольной точки на склоне (L), азимут (А) и угол зондирования (β). Затем, сместив зондирующий луч на некоторое расстояние АВ по горизонтали влево или вправо, определяют расстояние (L) до произвольной вспомогательной точки на склоне и азимут зондирования этой точки (А). После этого из проекции на горизонтальную плоскость величин L, L и АВ, образующих треугольник с соответствующими им сторонами b, а и с, определяют угол α между проекциями отрезков L и L на горизонтальную плоскость и по данному углу и проекциям сторон L и L находят истинное значение проекции АВ и углы φ и γ, образованные соответственно на стыке проекций отрезков L и L с проекцией отрезка АВ. Затем определяют экспозицию склона через азимут зондирования контрольной точки на склоне, либо через азимут зондирования произвольной вспомогательной точки на склоне или через азимут зондирования произвольной вспомогательной точки на склоне. Технический результат - повышение точности дистанционного измерения экспозиции склона. 4 з.п. ф-лы, 4 ил.
Реферат Свернуть Развернуть

Предлагаемое изобретение относится к области метеорологии и гляциологии, а именно к способам дистанционного определения экспозиции склона, характеризующего пространственную ориентацию элементарного склона относительно сторон света, и может быть использовано при определении толщины снежного покрова на склонах для прогноза лавинной опасности и определения снегонакопления в горах.

Экспозиция склона является одной из важнейших морфометрических характеристик рельефа. Экспозиция склонов - расположение склонов горных хребтов, холмов и др. элементов рельефа по отношению к странам света или преобладающим ветрам. Согласно определению экспозиция точки на склоне равна азимуту проекции нормали точки на горизонтальную плоскость и выражается в градусах.

Известны различные способы определения экспозиции склона в горах с помощью таких простейших приборов, как компас [1].

Суть способа заключается в том, что предварительно с помощью компаса измеряют положение склона относительно частей света, т.е. азимут горизонтали склона в точке измерения, а затем определяют экспозицию склона как азимут проекции нормали склона в этой точке на горизонтальную плоскость.

Известный способ прост в реализации. Однако он не приемлем для определения экспозиции склона при наличии глубокого снежного покрова на склоне, да еще при наличии серьезной опасности, связанной со сходом лавин.

В последнее время для лыжников создан миниатюрный компас, который позволяет, находясь на склоне, измерить экспозицию и крутизну склона с помощью откидывающейся крышечки и отметок на его корпусе [2]. Однако данный прибор имеет те же недостатки, что и обычный компас.

Наиболее близким по технической сущности к заявленному объекту является способ дистанционного определения параметров склона и снежного покрова в лавинных очагах с использованием лазерной локации. Задача этих съемок - получение высокоточных цифровых моделей рельефа поверхности земли и поверхности снежного покрова [3].

К недостаткам известного способа можно отнести высокую стоимость авиационной техники и невозможность ее использования при снегопадах, что затрудняет реализацию способа для целей активного воздействия на снеголавинный режим в горах.

Техническим результатом, ожидаемым от использования заявленного способа, является снижение трудозатрат по его реализации и повышение точности дистанционного измерения экспозиции склона в лавинных очагах с использованием лазерного дальномера.

Технический результат достигается тем, что в известном способе дистанционного определения экспозиции склона в лавинных очагах путем измерения расстояния до контрольных точек (фиг.1, 2) с использованием лазерного дальномера, размещенного в долине, определяют расстояние до контрольной точки на склоне (L1), азимут (A1) и угол зондирования (β), затем, сместив зондирующий луч на некоторое расстояние АВ по горизонтали влево или вправо, определяют расстояние (L2) до произвольной вспомогательной точки на склоне и азимут зондирования этой точки (А2), затем из проекции на горизонтальную плоскость величин L1, L2 и АВ, образующих треугольник - А1В1С, определяют угол α между проекциями отрезков L1 и L2 на горизонтальную плоскость, а также значение проекции АВ и углы φ и γ, образованные соответственно на стыке проекций отрезков L1 и L2 с проекцией отрезка АВ на горизонтальную плоскость, после этого для случая А12 определяют экспозицию склона (Э) через азимут зондирования контрольной точки на склоне по формуле

Э=А1+φ+90,

либо через азимут зондирования произвольной вспомогательной точки на склоне по формуле

Э=А2+270-γ,

а для случая, когда точка «В» выбирается справа от точки «А» {А12), экспозицию склона находят через азимут зондирования контрольной точки на склоне по формуле

Э=А1+270-γ,

либо через азимут зондирования произвольной вспомогательной точки на склоне по формуле

Э=А2+γ+90,

где

А1 - азимут зондирования контрольной точки на склоне, град.;

А2 - азимут зондирования произвольной вспомогательной точки на склоне, град.;

φ - угол между проекциями на горизонтальную плоскость отрезков L1 и АВ, град.;

γ - угол между проекциями на горизонтальную плоскость отрезков L2 и АВ, град.;

90 - постоянная величина, характеризующая перпендикулярность нормали к отрезку АВ в проекции на горизонтальную плоскость, град.

Технический результат достигается и тем, что проекцию L1 на горизонтальную плоскость (b) определяют по формуле

b=L1·cosβ,

а проекцию L2 на горизонтальную плоскость (b) определяют по формуле

а=L2·cosβ,

где β - угол зондирования контрольной и вспомогательной точек на склоне.

Технический результат достигается и тем, что угол α между проекциями на горизонтальную плоскость величин L1 и L2 находят: для случая А12 по формуле

α=А1-A2,

а для случая А12 по формуле

α=А2-A1.

Технический результат достигается также и тем, что проекцию отрезка АВ на горизонтальную плоскость определяют по теореме косинусов

,

где

с - проекция отрезка АВ на горизонтальную плоскость;

а и b - проекции величин соответственно L2 и L1 на горизонтальную плоскость.

Технический результат достигается и тем, что угол φ между проекциями на горизонтальную плоскость величин L1 и АВ определяют по теореме синусов

.

Сущность изобретения поясняется рисунками, где для случая А12 представлена схема зондирования контрольной (А) и вспомогательной (В) точек на склоне (фиг.1) и проекции величин L1 L2 и АВ на горизонтальную плоскость (фиг.2).

На рисунке (фиг.3) представлена аналогичная схема для случая А12 и проекции величин L1, L2 и АВ на горизонтальную плоскость (фиг.4).

На рисунках приняты следующие обозначения: L1 и L2 - расстояние, измеренное лазерным дальномером соответственно до контрольной (А) и вспомогательной (В) точек на склоне. Угол зондирования (он один и тот же для рассматриваемых точек) обозначен позицией β. Величины L1, L2 и отрезок АВ, соединяющий точки «А» и «В» на склоне, образуют на рисунках треугольник ABC. Стороны данного треугольника обозначены через а, b и с, где b и а - проекции на горизонтальную плоскость соответственно величин L1 L2, а с - проекция отрезка АВ, соединяющего контрольную и вспомогательную точки на склоне. Стрелкой на рисунках (фиг.1 и фиг.3) обозначено направление перемещения зондирующего луча лазерного дальномера влево или вправо от контрольной точки при зондировании склона. Буквой «N» обозначено направление на Север. На рисунках горизонталь обозначена через «х-х». Экспозиция склона, которая согласно определению равна азимуту проекции нормали склона на горизонтальную плоскость, обозначена буквой «Э».

Предлагаемый способ реализуется следующим образом:

1) Предварительно в долине в точке «С», с которой хорошо просматривается контрольная точка «А» на склоне (фиг.1), устанавливается система измерений (теодолит с лазерным дальномером).

2) Затем с помощью лазерного дальномера определяют расстояние (L1) до контрольной точки «А» на склоне, азимут (А1) и угол зондирования (β).

3) После чего, сместив зондирующий луч на некоторое расстояние АВ по горизонтали влево (или вправо), определяют расстояние (L2) до произвольной вспомогательной точки (В) на склоне и азимут зондирования этой точки (А2). При этом расстояние АВ составляет ориентировочно 10-50 метров.

4) Затем определяют проекцию на горизонтальную плоскость величин L1, L2 (фиг.2) по формулам

b=L1·cosβ,

а=L2·cosβ,

где β - угол зондирования контрольной и вспомогательной точек на склоне.

5) После этого определяют угол α между проекциями на горизонтальную плоскость величин L1 и L2,

для случая А12 по формуле

α=А1-A2,

а для случая А12 по формуле

α=А21,

где А1 и А2 - азимут зондирования контрольной (А) и вспомогательной (В) точек на склоне.

6) После этого, зная α, определяют проекцию отрезка АВ на горизонтальную плоскость по теореме косинусов

,

где

с - проекция отрезка АВ на горизонтальную плоскость; а и b - проекции величин соответственно L2 и L1 на горизонтальную плоскость.

7) Затем определяют угол ϕ между проекциями на горизонтальную плоскость величин L1 и АВ по теореме синусов

и угол γ между проекциями на горизонтальную плоскость величин L2 и АВ по формуле

φ=180-α-ϕ.

8) После этого определяют экспозицию склона в контрольной точке «А». При этом для случая А12 экспозицию склона через азимут зондирования контрольной точки на склоне определяют по формуле

Э=А1+φ+90,

либо через азимут зондирования произвольной вспомогательной точки на склоне по формуле

Э=А2+270-γ,

а для случая А12 экспозицию склона находят через азимут зондирования контрольной точки на склоне по формуле

Э=A1+270-φ,

либо через азимут зондирования произвольной вспомогательной точки на склоне по формуле

Э=A2+γ+90,

где

А1 - азимут зондирования контрольной точки на склоне, град.;

А2 - азимут зондирования произвольной вспомогательной точки на склоне, град.;

γ - угол между отрезками L1 и АВ в проекции на горизонтальную плоскость, град.;

φ - угол между отрезками L2 и АВ в проекции на горизонтальную плоскость, град;

90 - постоянная величина, характеризующая условие перпендикулярности нормали к отрезку АВ в проекции на горизонтальную плоскость, град.

Пример выполнения способа

В качестве примера дистанционного определения экспозиции склона в контрольной точке с использованием лазерного дальномера приведем результаты измерений, полученные в летний период при зондировании склона горы «Кизиловка», расположенного вблизи г.Нальчика. В качестве примера рассматривался случай, ограниченный условием A1>A2. Отсутствие снега на склоне при этом не играет никакой роли.

В соответствии с заявленным способом в летнее время был выбран склон на горе «Кизиловка», у основания которого была установлена система измерений (теодолит с лазерным дальномером) и выбрана контрольная точка на склоне «А».

В результате зондирования контрольной точки «А» были получены следующие результаты:

расстояние до контрольной точки L2=800 м;

азимут А1=120°;

угол зондирования β=60°.

После этого, сместив зондирующий луч на некоторое расстояние по горизонтали влево от точки «А», выбрали произвольную вспомогательную точку «В» на склоне. В результате зондирования данной точки «В» на склоне были получены следующие результаты:

расстояние до вспомогательной точки L2=805 м;

азимут A1=118°;

угол зондирования (как и в первом случае) β=60°.

Затем определили проекцию на горизонтальную плоскость величин L1 L2 по формулам

b=L1·cosβ=800·cos60=400 м,

a=L2·cosβ=805·cos60=402,5 м.

Затем нашли угол α между проекциями на горизонтальную плоскость величин L1 и L2 по формуле

α=A1-A2=120-118=2 град.

После нахождения угла α определили проекцию отрезка АВ на горизонтальную плоскость по теореме косинусов

.

Затем нашли угол ϕ между проекциями на горизонтальную плоскость величин L1 и АВ по теореме синусов

.

и угол γ между проекциями на горизонтальную плоскость величин L2 и АВ по формуле

γ=180-α-β=180-2-81,58=96,42 град.

После нахождения углов α и ϕ перешли к определению экспозиции склона в контрольной точке «А». По первому варианту расчета экспозицию склона «Э» нашли через азимут зондирования контрольной точки на склоне 4 по формуле

Э=А1+ϕ+90=120+81,58+90=291,58 град.,

а по второму варианту - через азимут зондирования произвольной вспомогательной точки на склоне А2 по формуле

Э=А2+270-γ=118+270-96,42=291,58 град.

По двум вариантам расчета получен один и тот же результат, что свидетельствует о правильности принципов, заложенных в основу способа.

Для случая А12 расчеты производятся по соответствующим для этого случая формулам, приведенным выше.

Предлагаемый способ в отличие от известных существенно снижает трудоемкость операций и повышает точность дистанционного измерения экспозиции склона в лавинных очагах с использованием лазерного дальномера.

Источники информации

1. Сайт: 12/opredelenie-storon-sveta/#ixzz1GNEQZg4k.

2. Сайт: www.risk.ru/users/forest/9898/.

3. Бойко Е.С. Использование метода воздушной лазерной локации при оценке снегонакопления в горных условиях // Материалы VI международной конференции. «Лазерное сканирование и цифровая аэросъемка. Сегодня и завтра». - М.: 2006. С.29-30 - ПРОТОТИП.


СПОСОБ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ ЭКСПОЗИЦИИ СКЛОНА В КОНТРОЛЬНЫХ ТОЧКАХ ЛАВИННОГО ОЧАГА С ИСПОЛЬЗОВАНИЕМ ЛАЗЕРНОГО ДАЛЬНОМЕРА
СПОСОБ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ ЭКСПОЗИЦИИ СКЛОНА В КОНТРОЛЬНЫХ ТОЧКАХ ЛАВИННОГО ОЧАГА С ИСПОЛЬЗОВАНИЕМ ЛАЗЕРНОГО ДАЛЬНОМЕРА
СПОСОБ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ ЭКСПОЗИЦИИ СКЛОНА В КОНТРОЛЬНЫХ ТОЧКАХ ЛАВИННОГО ОЧАГА С ИСПОЛЬЗОВАНИЕМ ЛАЗЕРНОГО ДАЛЬНОМЕРА
СПОСОБ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ ЭКСПОЗИЦИИ СКЛОНА В КОНТРОЛЬНЫХ ТОЧКАХ ЛАВИННОГО ОЧАГА С ИСПОЛЬЗОВАНИЕМ ЛАЗЕРНОГО ДАЛЬНОМЕРА
СПОСОБ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ ЭКСПОЗИЦИИ СКЛОНА В КОНТРОЛЬНЫХ ТОЧКАХ ЛАВИННОГО ОЧАГА С ИСПОЛЬЗОВАНИЕМ ЛАЗЕРНОГО ДАЛЬНОМЕРА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 31.
27.02.2013
№216.012.2c79

Способ определения прироста толщины снежного покрова на лавиноопасных склонах

Изобретение относится к области метеорологии и может быть использовано для дистанционного контроля прироста толщины снежного покрова на лавиноопасных склонах. Согласно заявленному способу предварительно для подветренной части лавиноопасного склона в нелавиноопасный период, например летом,...
Тип: Изобретение
Номер охранного документа: 0002476912
Дата охранного документа: 27.02.2013
10.04.2013
№216.012.344b

Способ тестирования устойчивости снежного покрова на лавиноопасных склонах

Изобретение относится к способам тестирования устойчивости снежного покрова на лавиноопасных склонах горнолыжных комплексов с целью обеспечения безопасности проведения рекреационных мероприятий. Согласно способу тестирование устойчивости снежного покрова на лавиноопасных склонах осуществляют...
Тип: Изобретение
Номер охранного документа: 0002478930
Дата охранного документа: 10.04.2013
20.05.2013
№216.012.411f

Способ прогнозирования начала самопроизвольного обрушения снежных карнизов на лавиноопасных склонах

Изобретение относится к области мероприятий, направленных на обеспечение безопасности работ при обрушении снежных карнизов на лавиноопасных склонах горнолыжных комплексов путем визуального их осмотра и определения длины консольной их части. В способе прогнозирования начала самопроизвольного...
Тип: Изобретение
Номер охранного документа: 0002482241
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.4120

Способ обрушения снежных карнизов на лавиноопасных склонах

Изобретение относится к области оценки устойчивости снежного покрова на лавиноопасных склонах горнолыжных комплексов с целью обеспечения безопасности проведения рекреационных мероприятий. Согласно способу перед обрушением снежных карнизов на лавиноопасных склонах путем подрезки консольной их...
Тип: Изобретение
Номер охранного документа: 0002482242
Дата охранного документа: 20.05.2013
27.05.2013
№216.012.42bd

Азотный генератор искусственных ледяных кристаллов

Изобретение относится к области технических средств, предназначенных для генерации ледяных кристаллов, и может быть использовано для регулирования метеорологических процессов. Азотный генератор искусственных ледяных кристаллов содержит размещенный на борту самолета сосуд Дьюара с жидким азотом....
Тип: Изобретение
Номер охранного документа: 0002482662
Дата охранного документа: 27.05.2013
10.10.2013
№216.012.7116

Самолетный генератор ледяных кристаллов

Генератор ледяных кристаллов содержит, размещенный на борту самолета сосуд Дьюара с жидким азотом, крышку с манометром и зажимами для крепления к горловине сосуда Дьюара. По оси крышки размещен питающий трубопровод, один конец которого снабжен распылителем и выставлен за борт самолета в...
Тип: Изобретение
Номер охранного документа: 0002494607
Дата охранного документа: 10.10.2013
27.10.2013
№216.012.794b

Способ получения углеродных наноструктурных материалов

Изобретение может быть использовано при изготовлении материалов для электронной техники, присадок для ракетных топлив, катализаторов, смазочных масел и полимерных покрытий. Климатическую камеру 1 предварительно охлаждают холодильной установкой 4 до отрицательных температур. Затем в камеру 1...
Тип: Изобретение
Номер охранного документа: 0002496713
Дата охранного документа: 27.10.2013
27.12.2013
№216.012.91d9

Способ раннего обнаружения атмосферных вихрей в облаках некогерентным радаром

Изобретение относится к области радиолокационной метеорологии и может быть использовано на практике для раннего обнаружения таких атмосферных циклонических вихрей, как торнадо и смерчи некогерентным радаром. Достигаемый технический результат - повышение информативности и точности раннего...
Тип: Изобретение
Номер охранного документа: 0002503030
Дата охранного документа: 27.12.2013
10.03.2014
№216.012.aa35

Способ дистанционного определения крутизны склона в контрольных точках лавинного очага с использованием лазерного дальномера

Изобретение относится к области измерения уклонов и может быть использовано для определения крутизны склона в лавинных очагах. Сущность: с помощью лазерного дальномера, размещенного в долине, определяют расстояние до произвольной контрольной точки «А» на склоне (L), угол зондирования (β) и...
Тип: Изобретение
Номер охранного документа: 0002509288
Дата охранного документа: 10.03.2014
10.05.2014
№216.012.c0c5

Способ дистанционного определения экспозиции склона в контрольных точках лавинного очага с использованием лазерного дальномера

Изобретение относится к способу определения экспозиции склона и может быть использовано для определения экспозиции склона лавинного очага. Сущность: с помощью лазерного дальномера, размещенного в долине, определяют расстояние (L) до контрольной точки А на склоне, азимут и угол зондирования (β)....
Тип: Изобретение
Номер охранного документа: 0002515098
Дата охранного документа: 10.05.2014
+ добавить свой РИД