×
25.08.2017
217.015.c136

Результат интеллектуальной деятельности: Способ получения тонких слоев силиката висмута

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии изготовления тонких слоев силиката висмута, которые обладают высокой диэлектрической постоянной и могут найти применение для создания диэлектрических слоев на токопроводящих поверхностях, используемых в качестве фоторефрактивного материала в устройствах записи и обработки информации, в тонкопленочных конденсаторах. Способ осуществляют путем плазменно-электролитического оксидирования поверхности титана в силикатном электролите, содержащем NaSiO, в униполярном гальваностатическом режиме при эффективной плотности тока 0,20-0,25 А/см в течение 10-15 мин с последующей пропиткой сформированного слоя раствором основного азотнокислого висмута в расплаве канифоли, разбавленным скипидаром, и пиролизом при температуре 650-700°C. Технический результат - сокращение времени осуществления способа, упрощение способа и его аппаратурного оформления. 1 з.п. ф-лы, 2 табл., 2 пр., 3 ил.

Изобретение относится к технологии изготовления тонких слоев силиката висмута, которые обладают высокой диэлектрической постоянной и могут найти применение для создания диэлектрических слоев на токопроводящих поверхностях, используемых в качестве фоторефрактивного материала в устройствах записи и обработки информации, в тонкопленочных конденсаторах и т.д.

В широко известных способах получения покрытий из силиката висмута золь-гель методом в качестве прекурсоров обычно используют растворы тетраэтоксисилана и нитрата висмута, относительную стабильность которых обеспечивают добавлением сильных кислот (HCl, HNO3 и др.). Нестабильность растворов нитрата висмута в органических растворителях приводит к образованию осадков, что затрудняет приготовление растворов с точной концентрацией по висмуту и снижает воспроизводимость результатов.

Известен способ получения прозрачных пленок силиката висмута на кварце золь-гель методом из пленкообразующего раствора, содержащего тетраэтоксисилан, этоксиэтанол, ацетилацетон, азотную кислоту и 2-3% нитрата висмута (III) (Клебанский Е.О., Кудзин А.Ю., Пасальский В.М. и др. Тонкие золь-гель пленки силиката висмута // Физика твердого тела, 1999. Т. 41. Вып. 6. С. 1003-1005). Жидкие реактивы перед употреблением перегоняли. Нитрат висмута (III) растворяли в этоксиэтаноле при 30°C, прибавляли азотную кислоту и ацетилацетон (стабилизатор). Полученный раствор смешивали с раствором тетраэтоксисилана в этоксиэтаноле и выдерживали 24 ч. Стабильность конечного раствора во времени составляла 1 месяц. Недостатками известного способа являются малое время устойчивого состояния пленкообразующего раствора, а также применение органического стабилизатора, который приводит к зауглероживанию пленок и снижает воспроизводимость их свойств.

Известен способ получения на стеклянной подложке тонкопленочного покрытия на основе оксидных соединений кремния (IV) и висмута (III) (RU 2542997, опубл. 2015.02.27) с использованием пленкообразующего раствора на основе этилового спирта, содержащего тетраэтоксисилан, в присутствии добавки соляной кислоты и электролита-стабилизатора, в качестве которого используют кристаллогидрат нитрата висмута (III), при следующем содержании компонентов, мас. %: тетраэтоксисилан 0,59-6,77; кристаллогидрат нитрата висмута (III) 3,50-24,89; соляная 0,01-0,02; этиловый спирт - остальное. После созревания в течение 24-48 часов пленкообразующий раствор наносят на стеклянную подложку методом вытягивания и подвергают ступенчатой термообработке при температуре 60°C в течение 60 мин, затем при температуре 600°C в течение 60 мин. Недостатком известного способа является длительность процесса (24-48 часов).

Наиболее близким к заявляемому является способ получения покрытий из силиката висмута состава Bi12SiO20 на проводящих и непроводящих поверхностях, в частности на подложках из титана (Детиненко В.А., Жбанов О.В., Клипко А.Т., Покровский Л.Д. Получение пленок силиката висмута и их диффузионное взаимодействие с электродами // Автометрия. 1976. - №1. С. 53-54) методом ВЧ-распыления при следующих параметрах процесса: рабочая частота ~30 МГц; стартовый вакуум 10-6 торр; рабочий вакуум 7⋅10-3 торр и парциальных давлениях кислорода и аргона 30 и 70% соответственно. Диаметр мишени ~120 мм. Состав шихты включает 3 мол.% SiO2 и 97 мол.% Bi2O3. Сначала на кварцевую подложку термическим напылением в вакууме наносят слой титана, а затем на его поверхности методом ВЧ-напыления при 500-550°C формируют слой поликристаллического силиката висмута.

Известный способ является сложным, продолжительным по времени и требует использования сложного вакуумного оборудования. Кроме того, он требует предварительного нанесения титана на непроводящую подложку.

Задачей изобретения является создание простого способа получения тонких слоев силиката висмута на титане, не требующего сложного аппаратурного оформления.

Технический результат способа заключается в сокращении времени осуществления, упрощении способа и его аппаратурного оформления.

Указанный технический результат достигают способом получения тонких слоев силиката висмута на титане с использованием диоксида кремния SiO2 и высокотемпературной обработки, в котором, в отличие от известного, на поверхности титана методом плазменно-электролитического оксидирования (ПЭО) в силикатном электролите в униполярном гальваностатическом режиме при эффективной плотности тока 0,20-0,25 А/см2 формируют слой оксида кремния SiO2, затем пропитывают этот слой раствором основного азотнокислого висмута в расплаве канифоли, разбавленным скипидаром, и подвергают пиролизу при температуре 650-700°C в течение 0,5-1,0 часа.

В преимущественном варианте осуществления способа ПЭО проводят в водном электролите, содержащем 0,10-0,15 М силиката натрия Na2SiO3.

Способ осуществляют следующим образом.

На подложке из титана путем электрохимической обработки в электролите, содержащем 0,10-0,15 М силиката натрия Na2SiO3, формируют слой диоксида кремния SiO2. Электрохимическую анодную обработку титана осуществляют методом плазменно-электролитического оксидирования в униполярном гальваностатическом режиме в условиях непрерывных плазменных микроразрядов в приповерхностной области при эффективной плотности тока i=0,20-0,25 А/см2 в течение 10-15 мин. Используемые высокие плотности тока обеспечивают формирование слоя, содержащего максимально большое количество диоксида кремния и образующегося затем силиката висмута.

После ПЭО-обработки образцы промывают водой и сушат на воздухе при комнатной температуре.

Сформированный оксидный слой SiO2 толщиной 24-28 мкм пропитывают органическим раствором висмута, приготовление которого осуществляют по известной методике [Визир В.А., Мартынов М.А. Керамические краски. Киев, «Техника», 1964, с. 191]. Для этого в расплавленной канифоли растворяют основной азотнокислый висмут и затем этот расплав разбавляют скипидаром.

После пропитки образец обжигают при 650-700°C в течение 0,5-1,0 часа.

В результате на поверхности образца образуется слой толщиной около 30 мкм, который, по данным рентгенофазового анализа, содержит Bi2SiO5 в орторомбической сингонии и некоторое количество SiO2 в кристаллической модификации, о чем свидетельствуют рентгенограммы, которые приведены на фиг. 1, где фиг. 1а соответствует слою, полученному после обработки титановой подложки методом ПЭО, а фиг. 1б - после ПЭО с последующей пропиткой органическим раствором висмута и пиролизом пропитанного слоя.

Данные по толщине, фазовому и элементному составу слоев, полученных после ПЭО и после окончательной обработки, приведены в таблице 1.

На фиг. 2 приведены СЭМ изображения поверхности после ПЭО-обработки (2а - в амплитудном и 2б - в фазовом представлении) и после окончательной обработки (2в - в амплитудном, 2г - в фазовом представлении).

На фиг. 3 показано СЭМ изображение при разном увеличении отдельных участков поверхности слоя силиката висмута, нанесенного предлагаемым способом.

Морфология поверхности определяется условиями проведения ПЭО и практически не зависит от пропитки и пиролиза.

В результате окончательной обработки висмут при достаточно однородном распределении на поверхности преимущественно концентрируется в выпуклых кораллообразных структурах, титан - в промежуточных углублениях (порах), что соответствует светлым и темным участкам на фиг 2в и 3.

В таблице 2 приведен элементный состав участков поверхности, изображенных на фиг. 3.

Примеры конкретного осуществления способа

Образцы из титанового сплава ВТ1-0 размером 2,0 см × 0,5 см толщиной 0,5 мм предварительно подвергали механической обработке, затем химически полировали в смеси кислот HF:HNO3=1:3, промывали в проточной и дистиллированной воде и сушили на воздухе.

Слой диоксида кремния формировали методом ПЭО, используя в качестве источника тока тиристорный агрегат ТЕР4-63/460Н с однополярной импульсной формой тока, на анодно-поляризованном титановом образце, при этом противоэлектродом служил выполненный из стали полый змеевик, через который пропускали холодную воду для охлаждения электролита.

Элементный состав поверхности покрытий определяли с помощью микрозондового рентгеноспектрального анализатора SUPERPROBE JXA-8100 фирмы JEOL, на котором одновременно получены снимки поверхности. Изучение поверхности электродов также проводили на сканирующем электронном микроскопе Hitachi S-5500 (Hitachi, Япония) с системой энергодисперсионного рентгеноспектрального микроанализа (EDX) производства «Thermo Scientific».

Фазовый состав определяли методом рентгенофазового анализа на дифрактометре D8 ADVANCE (Германия) в Cuka-излучении с идентификацией соединений в автоматическом режиме поиска EVA с использованием банка данных (PDF-2).

Пример 1

Подготовленный образец из титанового сплава ВТ1-0 оксидировали в электролите, содержащем 21,2 г/л Na2SiO3⋅5H2O при эффективной плотности тока 0,20 А/см2 в течение 15 мин. Начальная температура электролита 18°C, конечная 22°C.

После ПЭО образцы ополаскивали дистиллированной водой и сушили на воздухе при комнатной температуре.

В 10 г расплавленной канифоли растворяли 2 г основного азотнокислого висмута и разбавляли этот расплав скипидаром в объемном соотношении 1:1. Полученным раствором пропитывали образец, обработанный методом ПЭО, и обжигали при 700°C в течение 0,5 часа. В результате на поверхности образца получено покрытие, в состав которого, по данным рентгенофазового анализа, входят Bi2SiO5 и SiO2.

Пример 2

Способ осуществляли в условиях примера 1 в электролите, содержащем 31,8 г/л Na2SiO3, при эффективной плотности тока 0,25 А/см2 в течение 10 мин. Начальная температура электролита 18°C, конечная 22°C.

Образец, обработанный методом ПЭО и пропитанный раствором азотнокислого висмута в расплаве канифоли, обжигали при 650°C в течение одного часа.

Результат аналогичен полученному в примере 1.


Способ получения тонких слоев силиката висмута
Способ получения тонких слоев силиката висмута
Источник поступления информации: Роспатент

Показаны записи 91-100 из 130.
05.09.2019
№219.017.c6ee

Способ получения гибридных композитных материалов с электропроводящим покрытием

Изобретение относится к способу получения конструкционных слоистых композитных материалов на основе препрегов из стеклоткани либо углеткани, пропитанных отверждаемым полимером и может найти применение при изготовлении фюзеляжей в авиационной и аэрокосмической технике, а также композитных...
Тип: Изобретение
Номер охранного документа: 0002699120
Дата охранного документа: 03.09.2019
08.09.2019
№219.017.c933

Способ получения пористых материалов на основе хитозана

Изобретение относится к получению пористого материала на основе хитозана, который может найти применение в клеточной и тканевой инженерии, в медицине в качестве раневых покрытий, кровоостанавливающих и тампонирующих материалов, материалов для заполнения дефектов мягких и костных тканей, в...
Тип: Изобретение
Номер охранного документа: 0002699562
Дата охранного документа: 06.09.2019
02.10.2019
№219.017.cf84

Способ получения пигмента для термостабилизирующих покрытий

Изобретение относится к светоотражающим пигментам для применения в составе покрытий класса «солнечные отражатели», которые могут быть использованы для пассивной тепловой защиты космических аппаратов. Пигмент получают путем синтеза в автоклаве при температуре 220°С, давлении 22-23 атм в течение...
Тип: Изобретение
Номер охранного документа: 0002700607
Дата охранного документа: 18.09.2019
15.10.2019
№219.017.d595

Способ изготовления стеклометаллокомпозита

Изобретение относится к способам соединения разнородных материалов, а именно стекла и металла, в частности алюминия либо его сплава, с получением стеклометаллокомпозитов, и может найти применение при изготовлении панелей для различных конструкций в строительстве и других отраслях, труб,...
Тип: Изобретение
Номер охранного документа: 0002702799
Дата охранного документа: 11.10.2019
15.10.2019
№219.017.d5c4

Способ вскрытия флюорита

Изобретение относится к способам переработки минерального сырья, в частности флюорита и флюоритовых концентратов, с получением соединений фтора, используемых в качестве фторирующих агентов. Способ переработки сырья включает сульфатизацию, осуществляемую путем обжига с 20% избытком фторида...
Тип: Изобретение
Номер охранного документа: 0002702883
Дата охранного документа: 11.10.2019
17.10.2019
№219.017.d6ec

Способ получения защитных антикоррозионных покрытий на сплавах алюминия со сварными швами

Изобретение относится к способам получения защитных антикоррозионных покрытий на изделиях, конструкциях и сооружениях со сварными соединениями, выполненных из сплавов алюминия, преимущественно конструкционных, которые предназначены для эксплуатации в неблагоприятных условиях под воздействием...
Тип: Изобретение
Номер охранного документа: 0002703087
Дата охранного документа: 15.10.2019
22.10.2019
№219.017.d8d3

Анодный материал для литий-ионного аккумулятора и способ его получения

Изобретение может быть использовано при получении анодного материала литий-ионных аккумуляторов, применяемых для энергообеспечения крупногабаритных энергоустановок гибридного и электрического автотранспорта, систем бесперебойного электроснабжения, робототехнических средств и автономных...
Тип: Изобретение
Номер охранного документа: 0002703629
Дата охранного документа: 21.10.2019
30.10.2019
№219.017.dbc1

Способ формирования композиционных покрытий на магнии

Изобретение относится к способу обработки магниевых сплавов, а именно к композиционным покрытиям, формируемым сочетанием плазменного электролитического оксидирования и распыления фторполимера, и может быть применено в машиностроении, в том числе автомобильной промышленности, приборостроении,...
Тип: Изобретение
Номер охранного документа: 0002704344
Дата охранного документа: 28.10.2019
29.11.2019
№219.017.e781

Способ получения супергидрофобных покрытий с антиобледенительными свойствами на алюминии и его сплавах

Изобретение относится к получению на поверхности алюминия и его сплавов супергидрофобных покрытий, обладающих влагозащитными и антиобледенительными свойствами, и может быть использовано для обеспечения долговременной защиты от гололедно-изморозевых отложений и сопутствующей коррозии различных...
Тип: Изобретение
Номер охранного документа: 0002707458
Дата охранного документа: 26.11.2019
08.12.2019
№219.017.eaee

Способ получения гидрофобного нефтесорбента и устройство для его осуществления

Группа изобретений относится к производству дисперсных нефтесорбентов. Камеру гидрофобизации с загруженным пористым алюмосиликатным материалом вакуумируют до остаточного давления 10-60 кПа, обрабатывают материал в среде перегретого водяного пара. Температуру повышают до 500-550°С, поддерживая...
Тип: Изобретение
Номер охранного документа: 0002708309
Дата охранного документа: 05.12.2019
Показаны записи 81-85 из 85.
12.04.2023
№223.018.48b2

Способ получения боратов лантана, легированных европием и тербием

Изобретение относится к получению люминесцентных материалов, используемых в светотехнике, а также в нелинейной оптике в широком спектральном диапазоне. Для получения боратных люминофоров проводят термообработку органических солей редкоземельных элементов. В качестве прекурсора используют смесь...
Тип: Изобретение
Номер охранного документа: 0002761209
Дата охранного документа: 06.12.2021
21.05.2023
№223.018.6952

Способ лечения аденокарциномы эрлиха

Изобретение относится к области медицины, а именно к экспериментальной онкологии и лучевой терапии, и может быть использовано для лечения аденокарциномы Эрлиха методом лучевой терапии. Вводят в опухоль синтезированные микрочастицы биостекла «Bioglass 45S5». Затем выполяют локальное облучение...
Тип: Изобретение
Номер охранного документа: 0002794457
Дата охранного документа: 18.04.2023
03.06.2023
№223.018.7603

Способ очистки зольного графита

Изобретение относится к технологии получения малозольного графита, который может быть использован в качестве конструкционного материала в атомной энергетике, теплотехнике, для изготовления тиглей для плавки металлов, для получения многокомпонентного стекла, трубчатых нагревателей, а также...
Тип: Изобретение
Номер охранного документа: 0002777765
Дата охранного документа: 09.08.2022
17.06.2023
№223.018.7dc0

Способ лечения аденокарциномы эрлиха методом лучевой терапии

Изобретение относится к области медицины, а именно онкологии и лучевой терапии, и может быть использовано для лечения аденокарциномы Эрлиха методом лучевой терапии. Проводят локальное облучение новообразований тормозным излучением мощностью 6 МэВ суммарной очаговой дозой 20 Гр с предварительным...
Тип: Изобретение
Номер охранного документа: 0002781902
Дата охранного документа: 19.10.2022
17.06.2023
№223.018.80d7

Способ получения биостекла, легированного диоксидом циркония

Изобретение относится к способам получения биоактивного стекла, которое используется в медицине, в частности в травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии для восстановления функциональной целостности костной ткани. Предложен способ получения...
Тип: Изобретение
Номер охранного документа: 0002765471
Дата охранного документа: 31.01.2022
+ добавить свой РИД