×
25.08.2017
217.015.bfaf

Результат интеллектуальной деятельности: ЛИТЕЙНЫЙ МАГНИЕВЫЙ СПЛАВ С РЕДКОЗЕМЕЛЬНЫМИ МЕТАЛЛАМИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к магниевым сплавам, содержащим редкоземельные металлы, и может быть использовано в машиностроении, авиастроении и ракетной технике в качестве легкого высокопрочного конструкционного материала для изготовления различных деталей, особенно подвергающихся нагревам в процессе эксплуатации. Предложен литейный магниевый сплав с редкоземельными металлами. Сплав содержит, мас. %: Y от более 5,0 до 7,0; Gd от 5,0 до менее 7,0; Sm 1,0-5,0 при выполнении соотношения (Y+Gd):Sm от 2,8 до менее 14,0; Zr 0,2-0,6; Mg - остальное. Сплав характеризуется высокими показателями прочности и жаропрочности, достигаемыми при оптимальном сочетании легирующих компонентов и сокращенном времени упрочняющей термической обработки. 3 ил., 2 табл., 7 пр.

Изобретение относится к области металлургии, в частности магниевых сплавов, содержащих редкоземельные металлы и может быть использовано в качестве легкого литейного конструкционного материала в таких отраслях современной техники, как авиация, ракетостроение, космонавтика и автомобилестроение для изготовления различных деталей, работающих при близких к комнатной и повышенных (до 300°С) температурах.

Магниевые сплавы характеризуются малой плотностью в сочетании с достаточно высокими прочностными свойствами, хорошо поглощают механические вибрации и находят широкое применение в изделиях, для которых большое значение имеет снижение собственного веса. Развитие авиационной и других областей техники требует разработки новых легких магниевых сплавов с высокой прочностью и жаропрочностью. Эти требования вытекают из того, что значительно увеличились скорости полета объектов авиационной техники, и соответственно увеличилась мощность используемых в них двигателей. Вследствие этого повысились температуры аэродинамических нагревов возможных деталей из магниевых сплавов и температуры их нагревов от работающих вблизи двигателей. В последнее время удалось значительно повысить уровень механических характеристик магниевых сплавов, особенно при повышенных температурах, и расширить области их применения. В основном это было обусловлено использованием для легирования магния редкоземельных металлов. Первоначально такими металлами были церий, лантан, неодим и иттрий. На базе системы Mg-Y-Nd с небольшой модифицирующей добавкой циркония были разработаны промышленные сплавы WE43 и WE54, отличающиеся стойкостью при работе в условиях нагрева. Последующие исследования выявили и другие редкоземельные металлы, использование которых позволило в большей степени обеспечить температурах, и, в первую очередь, одним из таких элементов в качестве эффективного легирующего компонента стал рассматриваться гадолиний.

В предшествующем уровне техники значительное внимание было уделено сплавам системы Mg-Y-Gd-Zr, которые демонстрируют более высокий уровень прочностных свойств по сравнению со сплавами серии WE. Как правило, сплавы Mg-Y-Gd-Zr упрочняются при термической обработке, предусматривающей старение (отжиг при 200-250°С), сопровождающееся распадом пересыщенного твердого раствора на основе магния, и рекомендуются для применения в этом состоянии. При этом наиболее высокие прочностные свойства достигаются после старения при 200°С в течение порядка 60-100 ч. При использовании более высоких температур старения вплоть до 250°С максимум упрочнения при старении достигается за более короткий промежуток времени, но при существенно более низких прочностных свойствах (Рохлин Л.Л., Добаткина Т.В., Никитина Н.И., Тарытина И.Е. Исследование свойств высокопрочного магниевого сплава системы Mg-Y-Gd-Zr // Металловедение и термическая обработка металлов. - 2010. - №.12. - С. 15-18). Необходимость проведения длительного старения сплавов Mg-Y-Gd-Zr для достижения высоких прочностных свойств обусловлена природой взаимодействия иттрия и гадолиния с магнием также, как и высокие прочностные свойства при введении этих элементов в магниевые сплавы.

Известны сплавы, совместно содержащие иттрий и гадолиний, согласно следующим патентам:

Патент Японии JP 10147830 следующего химического состава, масс. %:

Y 6,0-12,0
Gd 1,0-6,0
Zr или Mn 0-2,0
Mg Остальное

Недостатком этого сплава является то, что для достижения максимальных прочностных свойств он должен подвергаться длительной термической обработке (старению).

Патент Китая CN 100387743 А следующего химического состава, масс. %:

Y 1,0-6,0
Gd 6,0-15,0
Zr 0,35-0,8
Са 0-1,5
Mg остальное

Недостатком этого сплава, как и предыдущего, является то, что для достижения максимальных прочностных свойств он должен подвергаться длительной термической обработке (старению).

Патент Китая CN 103388095 А следующего химического состава, масс. %:

Y 2,5-3,5
Gd 8,5-10,0
Zr 0,4-0,6
Mg остальное

Как и в случае двух предыдущих сплавов, сплав, согласно патенту Китая CN 103388095 А, имеет недостаток, заключающийся в том, что для достижения максимальных прочностных свойств он должен подвергаться длительной термической обработке (старению). Кроме того, в сплаве предусмотрено низкое содержание иттрия, вследствие чего он должен характеризоваться пониженными прочностными свойствами.

Патент Китая CN 101532106 В следующего химического состава, масс. %:

Y 2,0-5,0
Gd 7,0-14,0
Sm 0,3-5,0
Zr 0,2-0,6
Mg остальное

Недостатком этого сплава является присутствие в большом количестве очень дорогого и дефицитного металла гадолиния, определяющего цену сплава в целом. Присутствие в сплаве в таком большом количестве гадолиния должно также приводить в состаренном состоянии к снижению характеристик пластичности до недопустимого для конструкционного материала низкого уровня.

патент Японии JP 6049580 А следующего химического состава, масс. %:

Gd:Sm 1,0:0,3-3,5
Gd+Sm 4,0~25,0

0,8-5% одного из группы элементов: Са, Y, Sc и лантаноиды (исключая Gd, Sm)

Zr или Mn≤2.

Этот сплав имеет тот недостаток, что предусматривает низкое содержание иттрия, присутствие которого в значительной степени обеспечивает высокие прочностные характеристики сплавов Mg-Y-Gd-Zr.

Наиболее близким к заявленному составу сплава и выбранным за прототип является высокопрочный сплав на основе магния, содержащий иттрий и гадолиний, согласно Авторскому свидетельству СССР SU 1010880 следующего химического состава, масс. %:

Y 5,0-6,5
Gd 3,5-5,5
Zr 0,15-0,7
Mg остальное

Исследования показали, что высокие механических свойства этого известного сплава системы Mg-Y-Gd-Zr достигаются после старения в течение длительных многочасовых выдержек - при температуре 200°С в течение 60-128 ч. (Рохлин Л.Л., Добаткина Т.В., Никитина Н.И., Тарытина И.Е. Исследование свойств высокопрочного магниевого сплава системы Mg-Y-Gd-Zr // Металловедение и термическая обработка металлов. - 2010. - №.12. - С. 15-18). Таким образом, недостатком известного сплава является то, что высокие прочностные свойства в нем могут быть получены только после достаточно продолжительной термической обработки старением. Длительный технологический процесс и связанное с этим повышенное потребление энергоресурсов приводят к существенному удорожанию производства изделий из магниевого сплава указанного состава и снижают производительность труда при производстве из него изделий.

Конструкционные магниевые сплавы используются как в виде деформированных изделий, получаемых после обработки давлением слитков (деформируемые сплавы), так и в виде фасонного литья (литейные сплавы). Литейные магниевые сплавы уступают деформируемым сплавам по прочностным свойствам, но их технология более экономична и проста, что позволяет изготавливать более сложные изделия и обеспечивается большая производительность.

Задача, на решение которой направлено настоящее изобретение, заключается в создании нового литейного магниевого сплава с редкоземельными металлами оптимального состава.

Техническим результатом изобретения является сокращение продолжительности упрочняющей термической обработки старением, обеспечивающей высокие значения характеристик прочности и жаропрочности в сплавах с иттрием, гадолинием и цирконием.

Технический результат достигается тем, что литейный магниевый сплав, содержащий иттрий, гадолиний, самарий и цирконий, согласно изобретению, содержит компоненты при следующем соотношении, мас. %:

иттрий (Y) от более 5 до 7,
гадолиний (Gd) от 5 до менее 7,
самарий (Sm) 1-5, при выполнении соотношения (Y+Gd):Sm 2,8-14,0
цирконий (Zr) 0,2-0,6
магний (Mg) остальное

Сущность изобретения заключается в следующем. Основные легирующие элементы, иттрий, гадолиний и самарий, входящие в состав сплава образуют с магнием весьма широкие области твердых растворов, сужающиеся с понижением температуры, чем, главным образом, и обусловлено значительное повышение прочностных свойств магния при введении этих элементов. Цирконий при этом в основном способствует измельчению зерна литой структуры и обеспечивает достаточный запас пластичности сплавов. С понижением температуры растворимость иттрия, гадолиния и самария в твердом магнии уменьшается, так что в сплавах, их содержащих, образуется пересыщенный магниевый твердый раствор, распад которого при старении сопровождается эффектом упрочнения. Однако действие каждого из вышеперечисленных легирующих элементов в магнии на упрочнение при старении существенно различно. Это проявляется в величине и скорости упрочнения при старении, а также необходимом для достаточного упрочнения количества легирующего элемента в соответствии с различной растворимостью каждого из легирующих элементов в твердом магнии. Иттрий и гадолиний характеризуются значительной растворимостью в твердом магнии, что обеспечивает возможность получения высокой прочности сплавов при распаде пересыщенного магниевого твердого раствора во время старения. Растворимость же самария в твердом магнии значительно меньше и соответственно, оказывается значительно меньшим эффект упрочнения при старении в сплавах магния с самарием. С другой стороны, распад пересыщенного магниевого твердого раствора в сплавах магния с гадолинием и особенно сплавов с иттрием происходит значительно медленнее и требует большего времени старения для достижения существенного упрочнения, чем в сплавах магния с самарием. Это отчетливо видно на рис. 1, где приведены экспериментальные данные, характеризующие изменение твердости с увеличением времени старения двойных сплавов Mg-Y, Mg-Gd и Mg-Sm при постоянной температуре 200°С, наиболее часто используемой для магниевых сплавов. Учитывая результаты работ по старению двойных сплавов магния с иттрием, гадолинием и самарием, можно было предполагать, что дополнительное легирование самарием сплавов магния с иттрием и гадолинием будет способствовать сокращению времени старения, необходимому для достижения в сплавах с иттрием и гадолинием свойственного им высокого упрочнения. Проведенные исследования подтвердили это.

Упрочнение известного сплава системы Mg-Y-Gd-Zr при старении связано с выделением из магниевого твердого раствора наноразмерных упрочняющих частиц метастабильных фаз, богатых иттрием и гадолинием, которые предшествуют образованию равновесной фазы Mg24(Y,Gd)5. Учитывая это, ускорение распада пересыщенного твердого раствора на основе магния, содержащего гадолиний и иттрий при добавке в сплав самария можно объяснить подтвержденным экспериментально общим уменьшением растворимости иттрия и гадолиния в твердом магнии при температурах старения и тем самым увеличением степени его пересыщения перед распадом. Самарий может также входить в состав выделяющихся в структуре сплава при старении упрочняющих частиц, наряду с иттрием и гадолинием, и можно предположить, что это будет способствовать ускорению распада магниевого твердого раствора, содержащего иттрий и гадолиний при введение в сплав Mg-Y-Gd-Zr самария.

Учитывая кинетику упрочнения при старении двойных сплавов Mg-Y, Mg-Gd и Mg-Sm, указанную выше, следует предполагать, что содержание самария, вводимого в сплав Mg-Y-Gd-Zr, должно быть ограничено в соответствии с содержанием иттрия и гадолиния. В противном случае можно ожидать снижение прочностных свойств сплава или недостаточное сокращение времени старения для достижения их на высоком уровне.

Примеры осуществления

Предлагаемый сплав и сплав-прототип были приготовлены в одинаковых условиях. Сплавы для исследования выплавляли в электрической печи сопротивления в стальных тиглях с использованием защитного флюса ВИ-2, состоящего из 38-46% MgCl2, 32-40%) KCl, 3-5% CaF2, 5-8% BaCl2, 1,5% MgO,<8% (NaCl+CaCl2). Из тигля расплав отливался в изложницу из нержавеющей стали, нагретую до 750°С, которая затем медленно погружалась в холодную воду. Такой способ отливки обеспечивал направленную кристаллизацию расплава вдоль вертикальной оси изложницы и, как следствие, плотную однородную структуру слитка с минимальной пористостью. Составы сплавов выбирались с соотношением Y:Gd=1:1 (масс. %), близким к соотношению их в сплаве-прототипе, а самарий в диапазоне 1-5 масс. % с различным соотношением его к сумме иттрия и гадолиния. Составы сплавов указаны в таблице 1.

Все слитки сплавов подвергались гомогенизации при 515°С в течение 6 ч с последующим охлаждением на воздухе. При этом происходила их мягкая закалка с образованием пересыщенного магниевого твердого раствора. Затем сплавы изотермически старились при обычной для магниевых сплавов температуре упрочняющего старения 200°С общей продолжительностью до 128 ч. Упрочнение сплавов в процессе старения за счет распада пересыщенного твердого раствора на основе магния контролировалось путем измерения твердости по методу Бринелля согласно ISO 6506-1:2005 (ГОСТ 9012-59). На рис. 2 показано изменение твердости в процессе старения выплавленных сплавов, содержащих иттрий, гадолиний, самарий, и сплава-прототипа, содержащего иттрий и гадолиний без добавки самария. Ход кривых изменения твердости с увеличением времени старения для всех сплавов соответствует характеру изменения твердости для магниевых сплавов, содержащих иттрий и гадолиний с определенным инкубационным периодом, однако продолжительность инкубационного периода с незначительным приростом твердости и начало резкого ее повышения для всех сплавов в зависимости от состава оказывается различной. Максимальные значения твердости, достигаемые в процессе старения, и продолжительность инкубационного периода для всех рассматриваемых сплавов представлены в таблице 2. Так, для сплава-прототипа (№8) без добавки самария, и сплавов №4, 5, с пониженным количеством иттрия и гадолиния (3-4%) по сравнению со сплавом-прототипом и содержащих небольшое количество самария 1-2%, заметный рост твердости наблюдается только после 8 ч старения. В сплаве №3, содержащем в таком же количестве иттрий и гадолиний, как и сплав-прототип, но с добавкой самария 3% инкубационный период сокращается до 4 ч, при этом максимальная твердость достигает более высоких значений, чем в сплаве-прототипе. Ускорение упрочнения при старении, по сравнению со сплавом-прототипом, показывает также сплав №6, содержащий по 7% иттрия и гадолиния и 1% самария (продолжительность инкубационного периода - 4 ч). Сплав №7, содержащий по 3% иттрия и гадолиния и 5% самария также показывает более быстрое упрочнение при старении, чем сплав-прототип, но вследствие существенного меньшего содержания в нем основных упрочняющих элементов, иттрия и гадолиния, его твердость на максимуме оказывается более низкой.

Составы сплавов №1, 2, 3, 6, в которых достигается наибольшее упрочнение при сокращенной продолжительности старения, соответствуют составу предлагаемого сплава.

Жаропрочность предлагаемого сплава и сплава-прототипа оценивалась методом измерения горячей твердости при повышенных температурах 250 и 300°С после гомогенизации и последующего упрочняющего старения. Для сравнения в тех же условиях был приготовлен и испытан широко используемый промышленный магниевый литейный сплав МЛ5 ГОСТ 2856-79 системы Mg-Al-Zn-Mn. На рис. 3 показана твердость предлагаемого сплава (№1, 2, 3, 6), сплава-прототипа и сплава МЛ5 при комнатной температуре и температурах 250 и 300°С после гомогенизации (а) и последующего упрочняющего старения (б). Сплавы, содержащие иттрий, гадолиний и самарий, подвергались гомогенизации при 515°С, 6 ч и последующему старению при 200°С, 32 ч. Сплав МЛ5 подвергался термической обработке по рекомендуемым режимам: гомогенизация - 415°С, 8 ч и старение - 200°С, 8 ч.

Из представленных на рис. 3 данных видно, что в сплавах, содержащих иттрий, гадолиний и самарий в соответствии с предлагаемым составом, горячая твердость оказывается более высокой при всех использованных при испытаниях температурах в обоих состояниях по сравнению со сплавом-прототипом, а также широко используемым промышленным магниевым сплавом МЛ5. При этом старение при 200°С обеспечивает высокий уровень твердости как при комнатной, так и при повышенных температурах 250 и 300°С.

Таким образом, введение дополнительно легирующей добавки самария в сплав, содержащий иттрий и гадолиний, согласно авторскому свидетельству СССР SU 1010880 способствует их упрочнению при комнатной и повышенных температурах (до 300°С) и значительно сокращает время старения, необходимое для достижения наибольшего упрочнения, что делает упрочняющую термическую обработку сплавов с добавками самария энергетически более экономной и повышает производительность труда.


ЛИТЕЙНЫЙ МАГНИЕВЫЙ СПЛАВ С РЕДКОЗЕМЕЛЬНЫМИ МЕТАЛЛАМИ
ЛИТЕЙНЫЙ МАГНИЕВЫЙ СПЛАВ С РЕДКОЗЕМЕЛЬНЫМИ МЕТАЛЛАМИ
ЛИТЕЙНЫЙ МАГНИЕВЫЙ СПЛАВ С РЕДКОЗЕМЕЛЬНЫМИ МЕТАЛЛАМИ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 108.
20.05.2019
№219.017.5d26

Способ обескремнивания нефелинового концентрата и устройство для его осуществления

Изобретение относится к области металлургии, в частности к переработке нефелинового концентрата с получением из него синтетического боксита, содержащего до 80% AlO и до 1,5% SiO. Способ включает приготовление шихты из концентрата и углерода и карботермическую восстановительную плавку шихты в...
Тип: Изобретение
Номер охранного документа: 0002688083
Дата охранного документа: 17.05.2019
11.07.2019
№219.017.b28b

Способ изготовления тонкой проволоки из биосовместимого сплава tinbtazr

Изобретение относится к способам изготовления тонкой проволоки из биосовместимого сплава TiNbTaZr для кава-фильтров и стентов. Способ включает выплавку заготовки и ее деформационно-термическую обработку. Возможность получения изделий повышенной прочности, пластичности и улучшенных...
Тип: Изобретение
Номер охранного документа: 0002694099
Дата охранного документа: 09.07.2019
11.07.2019
№219.017.b29f

Устройство для измерения толщины и диэлектрической проницаемости тонких пленок

Изобретение относится к области оптического приборостроения и касается устройства для исследования толщины и диэлектрических свойств тонких пленок. Устройство включает в себя два лазера с различной длиной волны, делительный кубик, расширитель светового потока, линзу, два поляризатора,...
Тип: Изобретение
Номер охранного документа: 0002694167
Дата охранного документа: 09.07.2019
14.08.2019
№219.017.bf38

Борированный порошок для плазменного напыления

Изобретение относится к материалу для нанесения покрытия, в частности борированному порошку для плазменного напыления. Может использоваться для формирования износостойких покрытий. Частицы борированного порошка для плазменного напыления, состоят из ядра и борсодержащей оболочки, которая...
Тип: Изобретение
Номер охранного документа: 0002697147
Дата охранного документа: 12.08.2019
16.08.2019
№219.017.c0a8

Способ регистрации следовых количеств веществ в газовой среде

Изобретение относится к оптике и аналитической технике и может быть применено для определения наличия следовых количеств летучих веществ. Способ регистрации следовых количеств веществ в газовой среде, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра под действием света в...
Тип: Изобретение
Номер охранного документа: 0002697477
Дата охранного документа: 14.08.2019
16.08.2019
№219.017.c0ae

Способ получения биоцемента для заполнения костных дефектов на основе дикальцийфосфата дигидрата и сульфата кальция двуводного

Изобретение относится к медицине и касается получения биоцемента для заполнения костных дефектов. Для этого цементный раствор получают в результате смешения порошка трикальцийфосфата и сульфата кальция полуводного с водным раствором дигидроортофосфата магния 4-водного - раствор 50-66% соли...
Тип: Изобретение
Номер охранного документа: 0002697396
Дата охранного документа: 14.08.2019
23.08.2019
№219.017.c2d7

Способ изготовления керамики на основе композита нитрид кремния - нитрид титана

Изобретение относится к способу получения керамического композита из нитрида кремния, упрочненного нитридом титана, обладающего совокупностью физико-механических свойств, таких как высокая прочность и твердость, низкий коэффициент термического расширения, износостойкость и электрическая...
Тип: Изобретение
Номер охранного документа: 0002697987
Дата охранного документа: 21.08.2019
01.11.2019
№219.017.dc2d

Способ плазменного напыления с насадкой к плазмотрону и устройство для его осуществления

Изобретение относится к области металлургии, к напылению плазменных покрытий и может быть использовано для формирования износостойких, коррозионностойких и функциональных покрытий с минимальным содержанием оксидов, формирующихся в процессе напыления. Способ и устройство напыления покрытий при...
Тип: Изобретение
Номер охранного документа: 0002704680
Дата охранного документа: 30.10.2019
01.11.2019
№219.017.dc41

Высокопрочная дисперсионно-твердеющая азотосодержащая коррозионно-стойкая аустенитная сталь

Изобретение относится к области металлургии, а именно к высокопрочным дисперсионно-твердеющим азотосодержащим коррозионно-стойким аустенитным сталям, используемым для изготовления высоконагруженных конструкций в машиностроении, судостроении, авиации и железнодорожном транспорте. Сталь содержит...
Тип: Изобретение
Номер охранного документа: 0002704703
Дата охранного документа: 30.10.2019
04.11.2019
№219.017.de5f

Способ получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция

Изобретение может быть использовано в реконструктивно-пластической хирургии для пластической реконструкции поврежденных костных тканей. Для получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция, для заполнения костных дефектов проводят синтез in...
Тип: Изобретение
Номер охранного документа: 0002705084
Дата охранного документа: 01.11.2019
Показаны записи 51-56 из 56.
29.12.2017
№217.015.fd6a

Способ получения порошка карбонитрида титана

Изобретение относится к получению порошка карбонитрида титана. Способ включает генерирование потока термической плазмы в плазменном реакторе с ограниченным струйным течением, подачу в поток термической плазмы паров тетрахлорида титана, газообразного углеводорода и азота с обеспечением их...
Тип: Изобретение
Номер охранного документа: 0002638471
Дата охранного документа: 13.12.2017
19.01.2018
№218.015.ff1d

Листопрокатная клеть

Изобретение относится к прокатному производству, конкретно к конструкциям прокатных валков в клетях листопрокатных станов дуо, в том числе одноклетьевых. Комплект прокатных валков содержит пару валков с бочками цилиндрической формы, на которых выполнены геликоидальные выступы, имеющие форму...
Тип: Изобретение
Номер охранного документа: 0002629579
Дата охранного документа: 30.08.2017
20.01.2018
№218.016.184f

Способ получения композиционного металломатричного материала, армированного сверхупругими сверхтвердыми углеродными частицами

Изобретение относится к получению композиционного металломатричного материала, армированного сверхупругими сверхтвердыми углеродными частицами. Способ включает приготовление смеси порошков металла и фуллеритов и ее прессование при давлении 5-8 ГПа и температурах 800-1000°С с обеспечением...
Тип: Изобретение
Номер охранного документа: 0002635488
Дата охранного документа: 13.11.2017
20.01.2018
№218.016.1b8b

Реактор со стабилизированной высокотемпературной приосевой струей

Изобретение относится к области высокотемпературных аппаратов, используемых в химических и металлургических производствах, в частности к реактору со стабилизированной высокотемпературной приосевой струей периферийным вихревым потоком. Реактор включает корпус с рубашкой охлаждения,...
Тип: Изобретение
Номер охранного документа: 0002636704
Дата охранного документа: 27.11.2017
25.08.2018
№218.016.7f8f

Способ обработки магниевого сплава системы mg-al-zn методом ротационной ковки

Изобретение относится к сплавам на основе магния, в частности к способам деформационной обработки магниевых сплавов, и может быть использовано для получения изделий, применяемых в качестве конструкционных материалов в авиации, ракетной технике, транспорте и т.д. Способ обработки магниевого...
Тип: Изобретение
Номер охранного документа: 0002664744
Дата охранного документа: 22.08.2018
25.01.2019
№219.016.b3d9

Способ обработки магниевого сплава системы mg-y-nd-zr методом равноканального углового прессования

Изобретение относится к области металлургии, в частности к термомеханической обработке сплавов на основе магния, и может быть использовано в авиастроении, ракетной технике, в конструкциях автомобилей, хорошая биосовместимость позволяет использовать магниевые сплавы в медицине. Способ...
Тип: Изобретение
Номер охранного документа: 0002678111
Дата охранного документа: 23.01.2019
+ добавить свой РИД