×
25.01.2019
219.016.b3d9

Результат интеллектуальной деятельности: Способ обработки магниевого сплава системы Mg-Y-Nd-Zr методом равноканального углового прессования

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к термомеханической обработке сплавов на основе магния, и может быть использовано в авиастроении, ракетной технике, в конструкциях автомобилей, хорошая биосовместимость позволяет использовать магниевые сплавы в медицине. Способ термомеханической обработки сплава на основе магния системы Mg-Y-Nd-Zr включает гомогенизирующий отжиг при температуре 500-530°С в течение 7-9 часов с последующим охлаждением на воздухе и равноканальное угловое прессование, которое проводят ступенчато в интервале температур 425-300°C с суммарной истинной степенью деформации 6,0-8,0, при этом равноканальное угловое прессование на каждой ступени осуществляют при температуре на 25°С ниже температуры предыдущей ступени до получения структуры, состоящей из зерен размером менее 1 мкм. Техническим результатом изобретения является повышение пластичности сплавов системы Mg-Y-Nd-Zr при сохранении достаточной прочности за счет смены преимущественного механизма деформации с базисного на призматическое скольжение. 1 пр.

Изобретение относится к области металлургии, в частности к термомеханической обработке сплавов на основе магния, и может быть использовано в авиастроении для изготовления различных деталей вертолетов и самолетов, в ракетной технике, например, для изготовления корпусов ракет, обтекателей и т.д., в конструкциях автомобилей. Хорошая биосовместимость позволяет использовать магниевые сплавы в медицине.

Вместе с тем магниевые сплавы обладают рядом недостатков. Из-за гексагональной структуры магниевые сплавы обладают низкой пластичностью и соответственно низкой технологичностью. Диффузионные процессы в магниевых сплавах протекают медленно, особенно в низколегированных магниевых сплавах, в связи с чем, их нужно длительное время нагревать под закалку, что осложняет их термическую обработку и приводит к рекристаллизационному росту зерна и снижению прочности.

Известны попытки измельчения структуры магниевых сплавов с помощью методов интенсивной пластической деформации, в частности равноканального углового прессования (РКУП).

Так известен способ получения биоразлагаемых магниевых сплавов, содержащих иттрий и неодим, включающий выплавку сплава и равноканальное угловое прессование в два этапа, причем первый этап осуществляют при температуре между 250°С и 400°С, а второй этап - при температуре между 150°С и 300°С (US 20170056562 A1, C22F 1/06, 02.03.2017, US 20150157767 A1, С22С 1/06, 11.06.2015, US 9522220 B2, C22F 1/06, 20.12.2016). Полученный сплав имеет хорошую прочность, но низкую пластичность из-за внесения в состав керамических наночастиц. Низкая пластичность существенно ограничит область применения сплава.

Известен способ получения магниевого сплава серии Mg-РЗМ-Zr, включающий обработку на твердый раствор при температуре 300-500°С, предварительную деформацию, формирующую структуру с размером зерна порядка 100 мкм, и равноканальное угловое прессование с получением структуры с размером зерна 100-450 нм (CN 104480330 A, C22F 1/06, 01.04.2015). Способ позволяет значительно измельчить структуру сплава и повысить его прочность, однако рост пластичности сплава затруднен из-за неравномерного распределения интерметаллических фаз, образованных магнием и РЗМ. Низка пластичность сама по себе является недостатком, ограничивающим возможности применения сплава. Кроме того, неравномерно распределенные фазы не могут гарантировать стабильность коррозионных свойств полученных сплавов по всей поверхности изделия, что приведет к неравномерности коррозии и, в конечном итоге, анизотропии свойств в процессе эксплуатации.

Из RU 2351686 C1, C22F 1/06, 10.04.2009 известен также способ термомеханической обработки сплавов на основе магния, включающий проведение гомогенизирующего отжига при температуре 415-520°С в течение 4-24 часов с последующей экструзией при температуре 300-450°С со степенью вытяжки 7-18 и равноканальное угловое прессование с истинной степенью деформации 6-8 (RU 2351686 C1, C22F 1/06, 10.04.2009). Указанный способ является наиболее близким к предложенному изобретению. Несмотря на значительное измельчение структуры сплавы на основе магния системы Mg-Y-Nd-Zr, полученные по представленной выше технологии, имеют низкую пластичность, причиной которой является неравномерное распределение выделяющейся фазы Mg41Nd5, тормозящей базисное скольжение. Кроме того, представленная выше схема предложена для обработки сплавов с низким содержанием легирующих элементов. Применение данной схемы, подразумевающей РКУП при температурах 250-320°С без постепенного понижения температуры, к сплавам на основе магния системы Mg-Y-Nd-Zr приведет к значительному падению пластичности уже в процессе обработки, что приведет к разрушению заготовки.

Настоящее изобретение направлено на разработку технологии получения магниевых сплавов системы Mg-Y-Nd-Zr, обладающих необходимым сочетанием прочности и пластичности.

Техническим результатом изобретения является повышение пластичности сплавов системы Mg-Y-Nd-Zr при сохранении достаточной прочности за счет смены преимущественного механизма деформации с базисного на призматическое скольжение.

Технический результат достигается тем, что в способе термомеханической обработки сплава на основе магния системы Mg-Y-Nd-Zr, включающем гомогенизирующий отжиг сплава и равноканальное угловое прессование, гомогенизирующий отжиг осуществляют при температуре 500-530°С в течение 7-9 часов с последующим охлаждением на воздухе, а равноканальное угловое прессование проводят ступенчато в интервале температур 425-300°C с суммарной истинной степенью деформации 6,0-8,0, при этом равноканальное угловое прессование на каждой ступени осуществляют при температуре на 25°С ниже температуры предыдущей ступени до получения структуры, состоящей из зерен размером менее 1 мкм.

Сущность изобретения заключается в следующем.

Проведение гомогенизации при температуре 500-530°С позволяет получить достаточно равномерную структуру перед началом деформирования, устранить неоднородность состава сплава после литья, а также получить пересыщенный твердый раствор редкоземельных металлов в магнии. Понижение температуры гомогенизации ниже 500°С приводит к неполному растворению фазы Mg41Nd5, остатки которой будут располагаться по границам исходного зерна и ухудшать механические свойства, а также к незначительному пересыщению магниевого твердого раствора редкоземельными металлами, что в конечной структуре сплава приведет к уменьшению количества дисперсных частиц Mg41Nd5 и соответственно к снижению прочности. Повышение температуры гомогенизации выше 530°С приводит к частичному оплавлению границ зерен, также влияющему на прочность сплава.

Проведение гомогенизирующего отжига в течение 7-9 часов позволяет эффективно растворить фазу Mg41Nd5, а также добиться равномерного распределения легирующих элементов в сплаве. Гомогенизация меньше 7 часов приведет к неполному растворению фазы Mg41Nd5, а повышение времени свыше 9 часов - к сильному росту зерна. Оба фактора существенно снижают пластичность сплава.

Скорость охлаждения на воздухе позволяет подавить в сплаве диффузионные процессы и предотвратить распад пересыщенного твердого раствора, влияющие на достижение необходимой пластичности сплава. Снижение скорости охлаждения приведет к частичному выделению фазы Mg41Nd5 в процессе охлаждения, преимущественно по границам, и снижению степени пересыщения магниевого твердого раствора, а, следовательно, снижению пластичности сплава.

Экспериментально установлено, что температура деформирования в интервале 425-300°С позволяет достичь эффективного измельчения зерна. Повышение температуры начала РКУП выше 425°С приведет к активному росту зерна. Снижение температуры окончания РКУП ниже 300°С способствует активации двойникования, что в итоге снижает пластичность сплава. Кроме того, в этом случае снижение пластичности сплава может привести к разрушению образцов в процессе обработки.

Проведение деформации в интервале 6,0-8,0 позволяет получить на выходе преимущественно зеренную ультрамелкозернистую структуру. Понижение степени деформации ниже 6,0 способствует формированию неразвитой преимущественно субзеренной структуры с высокой долей малоугловых границ. Повышение степени деформации выше 8,0 не имеет смысла, поскольку не приводит к дальнейшему измельчению зерна и увеличению доли большеугловых границ.

Проведение деформирования при РКУП с температурным шагом, равным 25°С объясняется следующим. Понижение температуры РКУП на 25°С приводит к повышению прочности сплава за счет постепенного измельчения зерна, а промежуточные подогревы между проходами деформации приводят к релаксации структуры в процессе обработки, что не дает пластичности падать. Кроме того, такой деформационный шаг позволяет получить равномерно распределенные мелкодисперсные частицы фазы Mg41Nd5. Уменьшение указанного параметра приведет к увеличению количества промежуточных подогревов, что в свою очередь способствует снижению плотности дислокаций, росту зерна и укрупнению частиц фазы Mg41Nd5, что приведет в дальнейшем к снижению прочности Увеличение температурного шага деформирования не позволяет провести достаточную релаксацию структуры между проходами РКУП, что негативно скажется на пластичности сплава.

Пример осуществления изобретения.

Обработке подвергали сплав WE43, состава Mg-3,56%Y-2,20%Nd-0,47%Zr. В исходном состоянии сплав был гомогенизирован при температуре 525°С в течение 8 часов и охлажден на воздухе. Из слитка были вырезаны заготовки диаметром 10 мм и длиной 60 мм. Заготовки деформировали методом равноканального углового прессования (РКУП) по маршруту Вс на установке с углом пересечения каналов 120°. Деформирование проводили по двум технологическим режимам. Истинная степень деформации и суммарное количество проходов составило 7,8 и 12, соответственно, для обоих режимов.

Режим обработки магниевого сплава системы Mg-Y-Nd-Zr.

Сплав обрабатывался по двум технологическим режимам. Режим 1 заключается в деформировании сплава при температуре 400°С на 6 проходов РКУП, а затем снижении температуры обработки на 50°С, до 350°С, и проведении еще 6 проходов РКУП. Режим 2 заключается в ступенчатом деформировании, начиная с температуры 425°С и заканчивая при температуре 300°С, с шагом понижения температуры 25°С. При этом при каждой температуре деформации проводится 2 проходу РКУП (425°С, 2 прохода → 400°С, 2 прохода → 375°С, 2 прохода → 350°С, 2 прохода → 325°С, 2 прохода → 300°С, 2 прохода).

Деформирование по обоим режимам привело к измельчению структуры. В исходном состоянии средний размер зерна составлял 70 мкм.

Режим 1 (по прототипу). После РКУП по режиму 1 формируется структура со средним размером зерна 1,00±0,14 мкм, а также частицы фазы Mg41Nd5 со средним размером 0,41±0,18 мкм, которые образовались в процессе нагревов под обработку и деформации. Текстура при этом из базисной трансформируется в наклоненную базисную. Эта текстура характерна для магниевых сплавов, деформированных РКУП и, в целом, приводит к увеличению пластичности при малоизменяющейся, а иногда и ухудшающейся даже при сильном измельчении зерна прочности. Изменение механических свойств после РКУП по режиму 1 относительно исходного состояния составляет: условный предел текучести изменяется со 150 до 180 МПа, предел прочности - с 220 до 250 МПа, а относительное удлинение - с 10,5 до 7%. В этом случае формирование наклоненной базисной текстуру не приводит к дополнительному росту пластичности из-за осаждения частиц фазы Mg41Nd5 в базисных плоскостях и торможения базисного скольжения.

Режим 2 (по изобретению). После РКУП по режиму 2 формируется структура со средним размером зерна 0,69±0,13 мкм, а также частицы фазы Mg41Nd5 со средним размером 0,45±0,18 мкм, которые образовались в ходе нагревов под обработку и деформации. Также в ходе деформации происходит формирование острой призматической текстуры (что подтверждается полюсными фигурами и значениями ориентационных факторов). Повышение механических свойств после РКУП по режиму 2 относительно исходного состояния составляет: условный предел текучести изменяется со 150 до 260 МПа, предел прочности - с 220 до 300 МПа, а относительное удлинение - с 10,5 до 13,2%. Повышение прочности происходит за счет измельчения зерна. Пластичность растет за счет трансформации текстуры из базисной в исходном состоянии в острую призматическую. Такая текстура не характерна для магниевых сплавов после РКУП, так как обычно формируется наклоненная базисная текстура как в случае режима 1. Однако при термомеханической обработке по заявленной технологии происходит осаждение частиц фазы Mg41Nd5 в базисных плоскостях, что тормозит в них движение дислокаций и приводит к активации призматического скольжения, что в свою очередь приводит к росту относительного удлинения.

Способ термомеханической обработки сплава на основе магния системы Mg-Y-Nd-Zr, включающий гомогенизирующий отжиг сплава и равноканальное угловое прессование, отличающийся тем, что гомогенизирующий отжиг осуществляют при температуре 500-530°С в течение 7-9 часов с последующим охлаждением на воздухе, а равноканальное угловое прессование проводят ступенчато в интервале температур 425-300°С с суммарной истинной степенью деформации 6,0-8,0, при этом равноканальное угловое прессование на каждой ступени осуществляют при температуре на 25°С ниже температуры предыдущей ступени до получения структуры, состоящей из зерен размером менее 1 мкм.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 322.
20.06.2016
№217.015.03df

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением на станах винтовой прокатки. Оправка имеет переменный профиль. Возможность удаления дефектов непрерывнолитой заготовки, уменьшение разностенности получаемых гильз обеспечивается за счет того, что в оправке с переднего торца,...
Тип: Изобретение
Номер охранного документа: 0002587702
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
Показаны записи 1-10 из 24.
27.03.2013
№216.012.3130

Бета-титановый сплав и способ его термомеханической обработки

Изобретение относится к области металлургии и может быть использовано для изготовления полуфабрикатов и изделий из бета-титановых сплавов путем термомеханической обработки, сопровождающейся изменением свойств материала. Заявлены бета-титановый сплав с ультрамелкозернистой структурой и способ...
Тип: Изобретение
Номер охранного документа: 0002478130
Дата охранного документа: 27.03.2013
10.06.2013
№216.012.48a3

Ультрамелкозернистый медный сплав системы cu-cr и способ его получения

Изобретение относится к области ультрамелкозернистых (УМЗ) материалов с повышенной прочностью и электропроводностью, предназначенных для использования в электротехнической промышленности для изготовления деталей, проводников и электрических контактов, работающих в условиях повышенных температур...
Тип: Изобретение
Номер охранного документа: 0002484175
Дата охранного документа: 10.06.2013
20.08.2013
№216.012.6094

Ультрамелкозернистый двухфазный альфа-бета титановый сплав с повышенным уровнем механических свойств и способ его получения

Изобретение относится к области наноструктурных материалов с ультрамелкозернистой структурой, в частности, двухфазных альфа-бета титановых сплавов, которые могут быть использованы для изготовления полуфабрикатов и изделий в различных отраслях техники, машиностроения, медицины. Предложенный...
Тип: Изобретение
Номер охранного документа: 0002490356
Дата охранного документа: 20.08.2013
10.01.2014
№216.012.9497

Наноструктурный сплав титан-никель с эффектом памяти формы и способ получения прутка из него

Изобретение относится к деформационно-термической обработке сплавов с эффектом памяти формы, в частности сплавов на основе TiNi. Наноструктурный сплав титан-никель с эффектом памяти формы характеризуется структурой из наноскристаллических аустенитных зерен В2 фазы, в которой объемная доля зерен...
Тип: Изобретение
Номер охранного документа: 0002503733
Дата охранного документа: 10.01.2014
10.06.2014
№216.012.d03b

Способ совмещенного литья, прокатки и прессования и устройство для его реализации

Изобретение относится к обработке металлов давлением и может быть использовано для получения алюминиевых профилей методом непрерывной прокатки и прессования. Расплавленный металл из печи-миксера подают в охлаждаемые валки, на поверхности которых металл кристаллизуется. Закристаллизовавшийся...
Тип: Изобретение
Номер охранного документа: 0002519078
Дата охранного документа: 10.06.2014
27.09.2014
№216.012.f917

Способ комбинированной интенсивной пластической деформации заготовок

Изобретение относится к области обработки давлением и может быть использовано для получения нанокристаллических заготовок металлов и сплавов с улучшенными физико-механическими свойствами. Производят равноканальное угловое прессование цилиндрической заготовки. При этом в металле заготовки...
Тип: Изобретение
Номер охранного документа: 0002529604
Дата охранного документа: 27.09.2014
20.08.2015
№216.013.70e8

Способ непрерывного равноканального углового прессования металлических заготовок в виде прутка

Изобретение относится к обработке металлов давлением и может быть использовано преимущественно для получения профилей из цветных металлов и сплавов в виде прутка. Непрерывное равноканальное угловое прессование осуществляют в три последовательных этапа, после каждого этапа осуществляют смену...
Тип: Изобретение
Номер охранного документа: 0002560474
Дата охранного документа: 20.08.2015
10.12.2015
№216.013.96fb

Способ комбинированной интенсивной пластической деформации заготовки

Изобретение относится к обработке материалов давлением и может быть использовано для упрочнения металлов в процессе обработки. Осуществляют выдавливание и кручение заготовки через суженную и расширенную среднюю винтовую часть канала. Канал имеет входную и выходную части, вдоль оси которых...
Тип: Изобретение
Номер охранного документа: 0002570271
Дата охранного документа: 10.12.2015
27.05.2016
№216.015.43d8

Способ обработки низколегированных медных сплавов

Изобретение относится к области обработки специальных проводниковых сплавов, в частности к получению низколегированных медных сплавов, и может быть использовано в электротехнике для изготовления электродов сварочных машин, контактных проводов для электрофицированного транспорта, коллекторных...
Тип: Изобретение
Номер охранного документа: 0002585606
Дата охранного документа: 27.05.2016
25.08.2017
№217.015.bfaf

Литейный магниевый сплав с редкоземельными металлами

Изобретение относится к области металлургии, а именно к магниевым сплавам, содержащим редкоземельные металлы, и может быть использовано в машиностроении, авиастроении и ракетной технике в качестве легкого высокопрочного конструкционного материала для изготовления различных деталей, особенно...
Тип: Изобретение
Номер охранного документа: 0002617072
Дата охранного документа: 19.04.2017
+ добавить свой РИД