×
25.08.2017
217.015.bf45

Результат интеллектуальной деятельности: Способ выращивания легированных нитевидных нанокристаллов кремния

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения полупроводниковых наноматериалов путем выращивания легированных нитевидных нанокристаллов кремния на кремниевых подложках по схеме пар→жидкая капля→кристалл (ПЖК). Способ включает подготовку полупроводниковой пластины путем нанесения на ее поверхность частиц катализатора с последующим помещением в ростовую печь, нагревом, осаждением кристаллизуемого вещества из газовой фазы, содержащей прекурсор SiCl и легирующее соединение РСl, поступающие из жидкостного источника, и выращиванием кристаллов на начальной, основной и конечной стадиях роста, при этом выращивание кристаллов ведут последовательно из двух жидкостных источников, причем количественное значение молярного отношения [PCl]/[SiCl], равное m в первом источнике, используемом на начальной и конечной стадиях роста, выбирают из интервала m, большего или равного 0,01, количественное значение молярного отношения [PCl]/[SiCl] во втором источнике, используемом на основной стадии роста, устанавливают как m, равное 0. Изобретение обеспечивает возможность получения легированных нитевидных нанокристаллов Si, имеющих повышенный уровень легирования на начальном и конечном участках кристалла (структуры n-n-n) и позволяющих создавать мезоскопические электрические соединения проводников с линейными вольт-амперными характеристиками. 5 пр.

Изобретение относится к области получения полупроводниковых материалов, предназначено для выращивания на кремниевых подложках по схеме пар→жидкая капля→кристалл (ПЖК) легированных нитевидных нанокристаллов (ННК) кремния, имеющих повышенный уровень легирования на начальном и конечном участках кристалла (структуры n--n-n-) и позволяющих создавать мезоскопические электрические соединения проводников с линейными вольт-амперными характеристиками.

В настоящее время известен способ выращивания ННК Si, легированных в процессе ПЖК-роста атомами металла-катализатора, находящегося в виде жидкофазной капли на вершине кристалла [Wagner R S, Ellis WC Vapour-Liquid-Solid Mechanism of Single Crystal Growth // Appl. Phys. Lett., 1964. V. 4. N. 5. P. 89-90]. Поскольку катализаторами роста ННК Si являются металлы (Au, Cu, Ni, Pt, Pd и др.), создающие глубокие донорные уровни в энергетическом спектре запрещенной зоны Si, то выращенные данным способом кристаллы обладают низкой электрической проводимостью n-типа, а изготавливаемые к ним выводные электрические контакты металл-кремний обладают высоким переходным сопротивлением и нелинейными вольт-амперными характеристиками, что не позволяет использовать такие ННК для практических применений. Другим недостатком способа является невозможность создания областей ННК с разным уровнем легирования, так как примеси с глубокими энергетическими уровнями обладают высокими коэффициентами диффузии в Si и созданные области легирования легко размываются в течение небольшого времени.

Известен способ выращивания легированных ННК Si с использованием газообразного примесного соединения РН3 (гидрида фосфора) [Wang Y., Lew K. - K., Но Т. - Т. et al. Use of Phosphine as an n-Type Dopant Sourse for Vapor-Liquid-Solid Growth of Silicon Nanowires // Nano Lett, 2005. V. 5. No. 11. PP. 2139-2143], в основе которого лежит процесс введения в ННК легирующей мелкой донорной примеси из газовой фазы во время ПЖК-роста за счет применения отдельного потока с газообразным примесным соединением, который перед зоной роста кристалла смешивается с основным потоком реагирующих газов (SiH4 и H2) и создает постоянное отношение компонентов PH3/SiH4 в газовой фазе. Недостатками данного способа являются необходимость снижения концентрации легирующего компонента в парогазовой смеси до очень малых количеств и применения в этой связи систем дополнительного двух-трехступенчатого разбавления РН3 водородом, необходимость точного измерения сверхмалых количеств газообразных веществ, невозможность обеспечить различные уровни легирования ННК на различных стадиях роста, а также высокая токсичность РН3, разложение его при хранении и повышенные требования к герметичности газовых магистралей и реакционной камеры, что затрудняет управление процессом легирования кристаллов.

Наиболее близким техническим решением является способ получения легированных ННК Si химическим осаждением из паров SiCl4 во время ПЖК-роста с применением жидкостного источника легирующей примеси [Гиваргизов Е.И. Рост нитевидных и пластинчатых кристаллов из пара. М.: Наука, 1977, 304 с.]. В основе способа лежит легирование кристаллов фосфором путем введения в определенной пропорции в чистый жидкий SiCl4 галогенида фосфора РСl3, который в рабочем состоянии также является жидкостью. Недостатком данного способа является невозможность обеспечить различный уровень легирования ННК на разных стадиях роста (начальной (стадии образования пьедестала), основной (стадии цилиндрического роста) и конечной (стадии образования зоны рекристаллизации)), поскольку в нем фиксируется заданное отношение концентрации примеси и основы как в жидкой, так и в газовой фазах независимо от расхода газа-носителя через испаритель, что не дает возможности формирования высокоомных и электрически вырожденных областей ННК на основном, начальном и конечном участках кристалла.

Изобретение направлено на управляемое получение легированных ННК кремния, имеющих повышенный уровень легирования донорной примесью на начальном и конечном участках кристалла (структуры n--n-n-).

Это достигается тем, что при осаждении кристаллизуемого вещества из газовой фазы, содержащей прекурсор SiCl4 и легирующее соединение РСl3, поступающие из жидкостного источника, выращивание кристаллов на начальной, основной и конечной стадиях роста ведут последовательно из двух жидкостных источников, причем количественное значение молярного отношения [PCl3]/[SiCl4]=m в первом источнике, используемом на начальной и конечной стадиях роста, выбирают из интервала m≥0,01, количественное значение молярного отношения [PCl3]/[SiCl4] во втором источнике, используемом на основной стадии роста, устанавливают как m=0. В результате центральная часть ННК легируется до n-типа проводимости, а периферийные участки ННК (начальный и конечный) приобретают состояние вырождения и n--тип проводимости. Получается структура с тремя областями проводимости n--n-n-, причем n-область ННК может использоваться как резисторный функциональный элемент, а n--области как площадки для создания омических контактов к данному элементу.

Способ выращивания легированных ННК кремния, имеющих повышенный уровень легирования на начальной и конечной участках кристалла, осуществляется следующим образом. На поверхность ростовой подложки наносят частицы катализатора с последующим помещением ее в ростовую печь, нагревом, осаждением кристаллизуемого вещества из газовой фазы, содержащей прекурсор SiCl4 и газофазное легирующее соединение РСl3, поступающие из жидкостного источника. Затем осуществляют выращивание кристаллов на начальной (стадии образования пьедестала), основной (стадии цилиндрического роста) и конечной (стадии образования зоны рекристаллизации) стадиях. Выращивание ведут последовательно из двух жидкостных источников. Количественное значение молярного отношения [PCl3]/[SiCl4]=m в первом источнике, используемом на начальной и конечной стадиях роста, выбирают из интервала m≥0,01, количественное значение молярного отношения [PCl3]/[SiCl4] во втором источнике, используемом на основной стадии роста, устанавливают как m=0.

Легирование ННК в процессе роста из жидкостного источника определяется тем, что позволяет в широких пределах изменять их удельную проводимость. Количественное значение величины m≥0,01 определяется тем, что при данном уровне легирования на начальной и конечной стадиях роста ННК достигается состояние вырождения (n--проводимость) с концентрацией примеси более 1019 см-3. Количественное значение молярного отношения m=0 на основной стадии роста определяется тем, что при подаче чистого SiCl4, ([РCl3]=0) легирование ННК осуществляется за счет растворения металла катализатора роста кристаллов и обеспечивается наиболее высокое электрическое сопротивление основной области материала ННК (10-3 Ом⋅см и более), являющейся рабочей в различных функциональных устройствах на основе ННК. Использование легирующего соединения PCl3 определяется тем, что фосфор, входящий в состав PCl3, имеет малую подвижность в кремнии (коэффициент диффузии не превышает 10-7 см2/с), что позволяет создавать участки ННК с различным уровнем легирования (n--n-n-), и является мелкой донорной примесью в кремнии, обеспечивающей электронный тип (n--тип) проводимости, поскольку тип проводимости ННК, формирующихся в отсутствие легирующего соединения РСl3 на основной стадии роста, также электронный.

Использование предлагаемого способа позволяет снизить переходные электрические сопротивления при создании электрических контактов к ННК до 0,01 величины от сопротивления основной части кристалла и тем самым существенно облегчить решение проблемы создания омических (с линейными вольт-амперными характеристиками) контактов к ННК и создания наноэлектронных устройств на их базе (чувствительных элементов многофункциональных датчиков, термоэлектрических наноустройств, многоканальных полевых транзисторов с оболочковым затвором, оперативных запоминающих устройств компьютеров высокой плотности информации и др.). При этом в процессе выращивания легированием фиксируются размеры основной рабочей области кристалла, что важно для повторяемости характеристик наноустройств при их серийном изготовлении, а контактные выводы ННК по механической прочности приближаются к прочности используемого для вывода металлического проводника.

Примеры осуществления способа

Пример 1

На поверхность исходной пластины кремния КЭФ (111) на электронно-лучевой установке ВАК-501 напылялась тонкая пленка Ni толщиной 2 нм. Подготовленные подложки разрезались и помещались в ростовую печь. В течение 2-10 минут при температуре 900-1100°С в потоке водорода осуществлялось сплавление Ni с Si и формировались нанокапли расплава Ni-Si. Затем в газовую фазу подавали тетрахлорид кремния SiCl4 и треххлористый фосфор PCl3 из первого источника при молярном соотношении [РСl3]/[SiCl4]=0,01 и выращивали легированные фосфором ННК Si. Время выращивания ННК на начальной стадии составляло 2 минуты. Затем прекращали подачу питающего материала из первого источника и осуществляли подачу SiCl4 из второго источника при m=0 и молярном соотношении [SiCl4]/[H2]=0,008 и выращивали ННК Si на основной стадии в течение 10 минут. Затем прекращали подачу питающего материала из второго источника и возобновляли подачу парогазовой смеси из первого источника при молярном соотношении [PCl3]/[SiCl4]=0,01. Время выращивания ННК на конечной стадии составляло 2 минуты. В результате были получены кристаллы с тремя областями легирования (структура n--n-n-), причем n-область соответствует основной стадии роста кристалла и имеет электрическое сопротивление ρ=5,5⋅10-2 Ом⋅м, а n--области - начальной и конечной стадиям роста и частям кристалла, которые имеют сопротивление ρ=6,8⋅10-4 Ом⋅м, что соответствует концентрации фосфора в кремнии ~1017 см-3 и ~1019 см-3 соответственно.

Пример 2

Выращивание ННК проводилось аналогично примеру 1, но в качестве металла-катализатора ПЖК-роста использовалась электролитическая медь. Толщина тонкой пленки меди составляла 2 нм. Выращенные НК имели три области легирования (структура n--n-n-), причем n-область соответствует основной стадии роста кристалла и имеет электрическое сопротивление ρ=1,8⋅10-2 Ом⋅м, а n--области - начальной и конечной стадиям роста и частям кристалла, которые имеют сопротивление ρ=3,2⋅10-4 Ом⋅м.

Пример 3

Выращивание ННК проводилось аналогично примеру 1, но толщина тонкой пленки никеля составляла 20 нм. Выращенные НК имели три области легирования (структура n--n-n-), причем n-область соответствует основной стадии роста кристалла и имеет электрическое сопротивление ρ=3,28⋅10-2 Ом⋅м, а n--области - начальной и конечной стадиям роста и частям кристалла, которые имеют сопротивление ρ=2,81⋅10-4 Ом⋅м.

Пример 4

Выполнение изобретения осуществляли аналогично примеру 1, но в газовую фазу подавали SiCl4 и PCl3 из первого источника при молярном соотношении [PCl3]/[SiCl4]=0,02. Удельное электрическое сопротивление n-области ННК составило ρ=8,3⋅10-3 Ом⋅м, а n--области - ρ=9,1⋅10-5 Ом⋅м.

Пример 5

Выращивание ННК проводилось аналогично примеру 1, но время выращивания на основной стадии роста составляло 20 минут. Полученные результаты соответствовали результатам примера 1.

Способ выращивания легированных нитевидных нанокристаллов кремния, включающий подготовку полупроводниковой пластины путем нанесения на ее поверхность частиц катализатора с последующим помещением в ростовую печь, нагревом, осаждением кристаллизуемого вещества из газовой фазы, содержащей прекурсор SiCl и легирующее соединение РСl, поступающих из жидкостного источника, и выращиванием кристаллов на начальной, основной и конечной стадиях роста, отличающийся тем, что выращивание кристаллов ведут последовательно из двух жидкостных источников, при этом в первом источнике на начальной стадии роста количественное значение молярного отношения [PCl]/[SiCl]=m выбирают из интервала m≥0,01, а во втором источнике на основной стадии роста количественное значение молярного отношения [PCl]/[SiCl]=m устанавливают как m=0.
Источник поступления информации: Роспатент

Показаны записи 241-245 из 245.
18.05.2018
№218.016.50ca

Исполнительный орган робота

Изобретение относится к робототехнике. Промышленный манипулятор содержит систему управления, исполнительный орган, основание, на котором установлен привод исполнительного органа. Привод содержит барабан с приводом, гибкий элемент и каретку и снабжен дополнительным барабаном с приводом,...
Тип: Изобретение
Номер охранного документа: 0002653397
Дата охранного документа: 08.05.2018
29.05.2018
№218.016.5453

Промышленный робот

Изобретение относится к области промышленной робототехники и может быть использовано при проектировании роботов с внешними магнитными системами, а также может использоваться для механизации и технологических операций. Промышленный робот содержит основание, руку манипулятора, установленную на...
Тип: Изобретение
Номер охранного документа: 0002654096
Дата охранного документа: 16.05.2018
09.06.2018
№218.016.5ef2

Промышленный робот

Изобретение относится к области промышленной робототехники и может быть использовано при проектировании роботов с внешними магнитными системами и для механизации технологических операций. Робот содержит основание и платформу, связанные посредством электропривода. Электропривод выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002656623
Дата охранного документа: 06.06.2018
12.07.2018
№218.016.70b7

Индукторный генератор

Изобретение относится к индукторным генераторам торцевого типа, содержащим радиальные спицеобразные роторные элементы. Технический результат состоит в увеличении генерируемой мощности. Индукторный генератор торцевого типа содержит ротор, магнитопроводы балластного и рабочего зазоров, источник...
Тип: Изобретение
Номер охранного документа: 0002660924
Дата охранного документа: 11.07.2018
05.12.2018
№218.016.a385

Привод линейного перемещения

Изобретение относится к электротехнике, к электродинамическим элементам, предназначенным для преобразования электрической энергии в механическую, и может быть использовано в робототехнике, преимущественно в исполнительных системах манипулятора. Технический результат состоит в повышении усилия и...
Тип: Изобретение
Номер охранного документа: 0002673880
Дата охранного документа: 03.12.2018
Показаны записи 251-260 из 289.
12.01.2017
№217.015.62ba

Способ обработки рабочих поверхностей газотурбинных установок

Изобретение относится к области материаловедения, в частности к способам напыления теплозащитных покрытий, и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ нанесения теплозащитного покрытия на рабочие...
Тип: Изобретение
Номер охранного документа: 0002588956
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.62e4

Наноструктурное композитное покрытие из оксида циркония

Изобретение может быть использовано в производстве деталей турбинных двигателей и установок, которые требуют формирования на рабочих поверхностях покрытий, имеющих высокое значение адгезии и когезии. Наноструктурное композитное покрытие из оксида циркония, стабилизированного иттрием, наносят на...
Тип: Изобретение
Номер охранного документа: 0002588619
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.62f8

Способ обработки рабочих поверхностей деталей лопастных машин

Изобретение относится к области материаловедения, в частности к способам напыления теплозащитных покрытий, и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ нанесения теплозащитного покрытия на рабочие...
Тип: Изобретение
Номер охранного документа: 0002588973
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.63ac

Алиасный аналого-цифровой преобразователь

Изобретение относится к области измерительной и вычислительной техники и может быть использовано для преобразования аналоговых электрических сигналов в цифровой код. Техническим результатом является повышение точности преобразования. Устройство содержит блок слежения-хранения, генераторы,...
Тип: Изобретение
Номер охранного документа: 0002589388
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.66c6

Привод линейного перемещения

Изобретение относится к электротехнике, к электродинамическим элементам, предназначенным для преобразования электрической энергии в механическую, и может быть использовано в робототехнике, преимущественно в исполнительных системах манипулятора. Технический результат состоит в повышении усилия и...
Тип: Изобретение
Номер охранного документа: 0002592070
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6926

Гидравлическая система скрепера

Изобретение относится к землеройно-транспортному машиностроению, а именно к гидроприводам рабочих органов скреперов. Гидравлическая система скрепера включает насос, бак, фильтр, трехсекционный гидрораспределитель, каждая секция которого соединена с одним из исполнительных гидроцилиндров привода...
Тип: Изобретение
Номер охранного документа: 0002591706
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.8b97

Сканер ближнего электрического поля для двухсторонних и многослойных печатных плат

Изобретение относится к измерительной технике, представляет собой устройство для сканирования ближнего электрического или магнитного поля источников электромагнитного излучения и может быть использовано при автоматическом измерении напряженности полей для решения задач обеспечения...
Тип: Изобретение
Номер охранного документа: 0002604113
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9f88

Смесительная головка камеры жидкостного ракетного двигателя

Изобретение относится к области ракетной техники, а именно камерам жидкостных ракетных двигателей (ЖРД), и может быть использовано при создании высокоэкономичных смесительных головок и камер ЖРД для перспективных средств выведения. Смесительная головка камеры жидкостного ракетного двигателя...
Тип: Изобретение
Номер охранного документа: 0002606202
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a1a6

Способ безабразивной доводки сопрягаемых поверхностей

Изобретение относится к области машиностроения и может быть использовано при изготовлении запорных устройств для управления подачи жидких и газовых сред. В способе безабразивной доводки металлических сопрягаемых поверхностей в начале обработки между сопрягаемыми поверхностями, служащими...
Тип: Изобретение
Номер охранного документа: 0002606828
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a213

Теплозащитное нанокомпозитное покрытие и способ его формирования

Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Теплозащитное нанокомпозитное покрытие, содержащее оксид циркония, нанесенное на поверхность изделия из...
Тип: Изобретение
Номер охранного документа: 0002606814
Дата охранного документа: 10.01.2017
+ добавить свой РИД