×
25.08.2017
217.015.a213

Теплозащитное нанокомпозитное покрытие и способ его формирования

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Теплозащитное нанокомпозитное покрытие, содержащее оксид циркония, нанесенное на поверхность изделия из никелевого сплава с использованием магнетронной системы, содержит первичный сплошной слой, градиентный переходный слой и пленку из оксида циркония. Первичный сплошной слой состоит из никелевого сплава, соответствующего составу упомянутого изделия, с цирконием и с добавками стабилизирующего элемента. Градиентный переходный слой содержит две фазы в виде диэлектрической фазы из оксида циркония и металлической фазы из никелевого сплава, соответствующего составу упомянутой поверхности изделия, и циркония с добавкой стабилизирующего элемента, при этом доля оксидной фазы в переходном слое возрастает по мере увеличения его толщины. Способ формирования упомянутого теплозащитного нанокомпозитного покрытия на поверхности изделия из никелевого сплава характеризуется тем, что осуществляют формирование на поверхности изделия первичного сплошного слоя из никелевого сплава, соответствующего составу упомянутого изделия, с цирконием и с добавкой стабилизирующего элемента, градиентного переходного слоя и напыление пленки из оксида циркония до достижения ею требуемой толщины покрытия. Формирование упомянутого первичного слоя и градиентного переходного слоя осуществляют с использованием магнетронной системы с двумя магнетронами. С помощью первого магнетрона распыляют мишень из упомянутого никелевого сплава, а с помощью второго магнетрона распыляют вторую мишень из циркония с добавкой стабилизирующего элемента. Упомянутый первичный слой формируют путем совместного распыления указанных мишеней в атмосфере аргона с интенсивностью атомного потока, сформированного от упомянутой первой мишени, превышающей интенсивность атомного потока от упомянутой второй мишени. Затем осуществляют формирование упомянутого градиентного переходного слоя путем распыления упомянутых мишеней в присутствии кислорода с образованием в переходном слое оксида циркония и неокисленного никелевого сплава. Парциальное давление кислорода при распылении плавно увеличивают до давления 1,5*10 Па, а мощность первого магнетрона, распыляющего первую мишень из упомянутого никелевого сплава, уменьшают вплоть до его полного отключения. В частном случае осуществления изобретения в качестве стабилизирующего элемента используют иттрий. Обеспечивается механическая прочность покрытия, повышение его жаропрочности и жаростойкости, а также высокое значение адгезии и когезии. 2 н. и 1 з.п. ф-лы.
Реферат Свернуть Развернуть

Изобретение относится к области материаловедения, в частности к способам напыления теплозащитных покрытий, и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок, которые требуют формирования на рабочих поверхностях покрытий, имеющих достаточно высокое значение адгезии и когезии.

В настоящее время при создании покрытия с заданными свойствами методом послойного напыления образуются межфазные макроскопические границы в плоскостях, параллельных обрабатываемой поверхности, и при циклических термонагрузках разница в значениях коэффициентов термического расширения может привести к расслоению покрытия и его разрушению.

Известен способ напыления теплозащитного покрытия с использованием оксида циркония, стабилизированного Y2O3, включающий послойное нанесение покрытия на изделие и покрытие, полученное этим способом (Патент US 6180184, С23С 4/10, 30.01.2001 - прототип).

Термобарьерное покрытие согласно этому способу получают из жаропрочных сплавов, стабилизированных иттрием, оксида циркония, которое послойно наносят с помощью вакуумного электронно-лучевого напыления. При этом получают покрытие, имеющее столбчатую структуру, проявляющуюся в одном или нескольких слоях.

Недостатком получаемого покрытия является возможность получения сквозной пористости, приводящей к коррозии подложки и к разрушению покрытия. Кроме этого, в процессе послойного напыления образуются межфазные границы в плоскостях, параллельных поверхности, и при циклических термонагрузках разница в значениях коэффициентов термического расширения может привести к расслоению покрытия и его разрушению.

Задачей предложенного технического решения является устранение указанных недостатков и создание наноструктурного покрытия из оксида циркония и способа его нанесения на металлическую поверхность, применение которых позволит сформировать плавный переход от металлического материала к оксидному покрытию без межфазной границы макроскопического размера.

Решение указанной задачи достигается тем, что в предложенном теплозащитном нанокомпозитном покрытии, включающем оксид циркония, нанесенном на поверхность изделия из никелевого сплава с использованием магнетронной системы, содержащем первичный сплошной слой, градиентный переходный слой и пленку из оксида циркония, при этом первичный сплошной слой состоит из никелевого сплава, соответствующего составу упомянутого изделия, с цирконием и с добавками стабилизирующего элемента, градиентный переходный слой содержит две фазы: диэлектрическую фазу из оксида циркония и металлическую фазу из никелевого сплава, соответствующего составу упомянутой поверхности изделия, и циркония с добавкой стабилизирующего элемента, при этом доля оксидной фазы в переходном слое возрастает по мере увеличения его толщины.

Для получения покрытия предложен способ его формирования на поверхности изделия из никелевого сплава, при применении которого согласно изобретению осуществляют формирование на поверхности изделия первичного сплошного слоя из никелевого сплава, соответствующего составу упомянутого изделия, с цирконием и с добавкой стабилизирующего элемента, градиентного переходного слоя и напыление пленки из оксида циркония до достижения ею требуемой толщины покрытия, при этом формирование упомянутого первичного слоя и градиентного переходного слоя осуществляют с использованием магнетронной системы с двумя магнетронами, причем с помощью первого магнетрона распыляют мишень из упомянутого никелевого сплава, а с помощью второго магнетрона распыляют вторую мишень из циркония с добавкой стабилизирующего элемента, причем упомянутый первичный сдой формируют путем совместного распыления указанных мишеней в атмосфере аргона с интенсивностью атомного потока, сформированного от упомянутой первой мишени, превышающей интенсивность атомного потока от упомянутой второй мишени, затем осуществляют формирование упомянутого градиентного переходного слоя путем распыления упомянутых мишеней в присутствии кислорода с образованием в переходном слое оксида циркония и нсокисленного никелевого сплава, при этом парциальное давление кислорода при распылении плавно увеличивают до давления 1,5*10-3 Па, а мощность первого магнетрона, распыляющего первую мишень из упомянутого никелевого сплава, уменьшают вплоть до его полного отключения.

В варианте применения в качестве стабилизирующего элемента используют иттрий.

Предложенное наноструктурное композитное покрытие может быть получено следующим образом.

Для получения указанного покрытия используется магнетронная система с двумя магнетронами. При помощи первого магнетрона распыляют первую мишень из никелевого сплава, а при помощи второго магнетрона распыляют мишень из циркония с добавками стабилизирующих элементов, например иттрия. Первоначальное распыление мишеней осуществляется в атмосфере аргона, причем интенсивность атомного потока, сформированного от никелевой мишени, превышает интенсивность атомного потока от циркониевой мишени. После формирования первичного сплошного металлического слоя в рабочую камеру добавляется кислород, после чего процесс напыления приобретает характер реактивного - в напыляемой пленке начинает образовываться оксид. В силу различных значений энергий связи в оксиде никеля и оксиде циркония в формирующемся покрытии происходит образование оксида циркония, в то время как никель остается неокисленным.

Таким образом, в результате одновременного распыления никелевого сплава и циркония в смешанной кислородно-аргонной атмосфере происходит напыление композитного материала металл-оксид. В процессе напыления парциальное давление кислорода плавно увеличивается до давления 1,5*10-3 Па, а мощность магнетрона, распыляющего металлический сплав, уменьшают вплоть до его полного отключения. После этого продолжают напыление оксида циркония до достижения им требуемой толщины.

В этом случае в покрытии образуется переходной слой из градиентного нанокомпозитного материала, содержащего две фазы: металлическую фазу с составом, соответствующим составу защищаемой поверхности, и диэлектрическую фазу - собственно оксид циркония различной стехиометрии, при этом соотношение фаз в переходном слое обеспечивается не постоянным, а переменным, с возрастанием доли оксидной фазы по мере увеличения толщины пленки. В результате создания такого градиентного слоя формируется плавный переход от металлического материала к оксиду без межфазной границы макроскопического размера, при этом сформированный градиентный слой является не только композитным, но и наноструктурированным, поскольку характерные размеры включений каждой фазы составляют от единиц до нескольких десятков нанометров в зависимости от объемной доли фазы.

Полученная наноструктурированность не только повышает механическую прочность покрытия, но и приводит к изотропному распределению внутренних напряжений при циклических термонагрузках, что повышает жаропрочность и жаростойкость покрытия.

Использование предложенного технического решения позволит создать наноструктурное композитное покрытие из оксида циркония, применение которого позволит сформировать плавный переход от металлического материала к оксиду без межфазной границы макроскопического размера, что, в конечном итоге, позволит повысить механическую прочность покрытия и приведет к изотропному распределению внутренних напряжений при циклических термонагрузках, что позволит повысить жаропрочность и жаростойкость покрытия.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 738.
10.01.2013
№216.012.1990

Пульповый погружной насос

Изобретение относится к насосостроению, а именно к конструкциям центробежных погружных насосов, предназначенных для перекачивания жидкостей плотностью до 1300 кг/м с твердыми включениями, в том числе абразивных. Центробежный насос содержит корпус, в котором размещены насосный узел с проточной...
Тип: Изобретение
Номер охранного документа: 0002472036
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1991

Пульповый погружной насос (варианты)

Изобретение относится к насосостроению, а именно к конструкциям центробежных погружных насосов, предназначенных для перекачивания жидкостей плотностью до 1300 кг/м с твердыми включениями, в том числе абразивных. Центробежный насос содержит корпус, в котором размещены насосный узел с проточной...
Тип: Изобретение
Номер охранного документа: 0002472037
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1993

Конструктивный ряд вертикальных нефтяных электронасосных агрегатов

Изобретение относится к насосостроению и может быть использовано в нефтяной и др. отраслях промышленности. Конструктивный ряд вертикальных нефтяных электронасосных агрегатов (ЭНА) содержит однотипные вертикальные нефтяные ЭНА с одинаковой производительностью и с дифференцированным от насоса (Н)...
Тип: Изобретение
Номер охранного документа: 0002472039
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1998

Комплексный гидравлический канал вертикального нефтяного электронасосного агрегата

Изобретение относится к насосостроению и может быть использовано в нефтяной и других отраслях промышленности. Канал включает последовательно соединенные корпусами и проточными полостями центробежный насос, трансмиссию, бустер и заборную трубу. На участке заборной трубы канал образован ее...
Тип: Изобретение
Номер охранного документа: 0002472044
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1d2c

Жидкостный ракетный двигатель и способ охлаждения теплонапряженных участков его камеры

Изобретение относится к жидкостным ракетным двигателям (ЖРД), преимущественно кислородно-керосиновым. Жидкостный ракетный двигатель содержит как минимум одну регенеративно охлаждаемую камеру, устройство для подачи рабочего тела на турбину турбонасосного агрегата, турбонасосный агрегат, агрегаты...
Тип: Изобретение
Номер охранного документа: 0002472962
Дата охранного документа: 20.01.2013
27.02.2013
№216.012.29e9

Способ очистки воздуха

Изобретение относится к процессам пылеулавливания и может быть использовано в любой отрасли народного хозяйства, где требуется улавливание высокодисперсных аэрозолей из воздушного протока, в частности в пищевой промышленности. Способ очистки воздуха заключается в пропускании воздуха через...
Тип: Изобретение
Номер охранного документа: 0002476256
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2bd3

Клапан

Изобретение относится к трубопроводной арматуре и предназначено для установки на технологических линиях газоконденсатных промыслов для автоматического перекрытия трубопровода при аварийном повышении или понижении давления в нем. Клапан содержит корпус с проходным каналом и присоединительными...
Тип: Изобретение
Номер охранного документа: 0002476746
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2bea

Способ сжигания газов

Изобретение относится к газогорелочным устройствам и может быть применено в газовой промышленности для создания способов сжигания попутных и продувочных газов, особенно содержащих конденсат и сероводородные соединения. Способ сжигания газов при помощи факельной горелки, содержащей корпус в виде...
Тип: Изобретение
Номер охранного документа: 0002476769
Дата охранного документа: 27.02.2013
10.03.2013
№216.012.2e74

Факельная горелка

Изобретение относится к газогорелочным устройствам и может быть применено в газовой промышленности для сжигания попутных и продувочных газов, особенно содержащих конденсат и сероводородные соединения. Факельная горелка содержит корпус в виде трубы, снабженной в выходной части рассекателем,...
Тип: Изобретение
Номер охранного документа: 0002477423
Дата охранного документа: 10.03.2013
20.03.2013
№216.012.300a

Способ определения скорости сближения боеприпаса с целью

Способ относится к области вооружений и может быть использован во взрывателях боеприпасов для определения скорости сближения боеприпаса с целью. Способ заключается в определении по измеренной величине временного промежутка между идентификациями цели на двух различных заданных дистанциях и...
Тип: Изобретение
Номер охранного документа: 0002477833
Дата охранного документа: 20.03.2013
Показаны записи 1-10 из 818.
10.01.2013
№216.012.1990

Пульповый погружной насос

Изобретение относится к насосостроению, а именно к конструкциям центробежных погружных насосов, предназначенных для перекачивания жидкостей плотностью до 1300 кг/м с твердыми включениями, в том числе абразивных. Центробежный насос содержит корпус, в котором размещены насосный узел с проточной...
Тип: Изобретение
Номер охранного документа: 0002472036
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1991

Пульповый погружной насос (варианты)

Изобретение относится к насосостроению, а именно к конструкциям центробежных погружных насосов, предназначенных для перекачивания жидкостей плотностью до 1300 кг/м с твердыми включениями, в том числе абразивных. Центробежный насос содержит корпус, в котором размещены насосный узел с проточной...
Тип: Изобретение
Номер охранного документа: 0002472037
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1993

Конструктивный ряд вертикальных нефтяных электронасосных агрегатов

Изобретение относится к насосостроению и может быть использовано в нефтяной и др. отраслях промышленности. Конструктивный ряд вертикальных нефтяных электронасосных агрегатов (ЭНА) содержит однотипные вертикальные нефтяные ЭНА с одинаковой производительностью и с дифференцированным от насоса (Н)...
Тип: Изобретение
Номер охранного документа: 0002472039
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1998

Комплексный гидравлический канал вертикального нефтяного электронасосного агрегата

Изобретение относится к насосостроению и может быть использовано в нефтяной и других отраслях промышленности. Канал включает последовательно соединенные корпусами и проточными полостями центробежный насос, трансмиссию, бустер и заборную трубу. На участке заборной трубы канал образован ее...
Тип: Изобретение
Номер охранного документа: 0002472044
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1d2c

Жидкостный ракетный двигатель и способ охлаждения теплонапряженных участков его камеры

Изобретение относится к жидкостным ракетным двигателям (ЖРД), преимущественно кислородно-керосиновым. Жидкостный ракетный двигатель содержит как минимум одну регенеративно охлаждаемую камеру, устройство для подачи рабочего тела на турбину турбонасосного агрегата, турбонасосный агрегат, агрегаты...
Тип: Изобретение
Номер охранного документа: 0002472962
Дата охранного документа: 20.01.2013
27.02.2013
№216.012.2bd3

Клапан

Изобретение относится к трубопроводной арматуре и предназначено для установки на технологических линиях газоконденсатных промыслов для автоматического перекрытия трубопровода при аварийном повышении или понижении давления в нем. Клапан содержит корпус с проходным каналом и присоединительными...
Тип: Изобретение
Номер охранного документа: 0002476746
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2bea

Способ сжигания газов

Изобретение относится к газогорелочным устройствам и может быть применено в газовой промышленности для создания способов сжигания попутных и продувочных газов, особенно содержащих конденсат и сероводородные соединения. Способ сжигания газов при помощи факельной горелки, содержащей корпус в виде...
Тип: Изобретение
Номер охранного документа: 0002476769
Дата охранного документа: 27.02.2013
20.04.2013
№216.012.35e7

Мясорубка

Мясорубка содержит корпус со струбциной и съемную ручку для вращения шнека. В корпусе расположен полый шнек с подвижным ножом. Внутри шнека находится вал, на одном конце которого установлена выходная решетка, выполненная с возможностью вращения. Между шнеком и валом установлена кинематическая...
Тип: Изобретение
Номер охранного документа: 0002479352
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.376a

Жидкостный ракетный двигатель

Изобретение относится к области энергетических установок, а именно к устройствам для перемешивания и распыливания компонентов топлива, и может быть использовано при разработке жидкостных ракетных двигателей (ЖРД). Жидкостный ракетный двигатель содержит газогенератор, турбонасосный агрегат,...
Тип: Изобретение
Номер охранного документа: 0002479739
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.376b

Камера жидкостного ракетного двигателя

Изобретение относится к области энергетических установок, в частности к камерам жидкостных ракетных двигателей (ЖРД). Ступенчатое изменение проходного сечения трубчатого корпуса форсунок выполнено с уменьшением проходного сечения корпуса от пилонов к выходной части, преимущественно, в виде...
Тип: Изобретение
Номер охранного документа: 0002479740
Дата охранного документа: 20.04.2013
+ добавить свой РИД