×
25.08.2017
217.015.bf3b

Результат интеллектуальной деятельности: Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором

Вид РИД

Изобретение

Аннотация: Изобретение относится к методам определения расстояния с использованием пеленгатора, размещенного на носителе, выполняющего движение в направлении источника радиоизлучения, в интересах снижения погрешности определения координат. Достигаемый технический результат – снижение погрешности определения расстояния до неподвижного источника радиоизлучения с подвижного объекта, оснащенного пеленгатором. Указанный результат достигается за счет того, что способ определения расстояния до неподвижного источника излучения движущимся пеленгатором основан на последовательном выполнении угловых маневров носителем пеленгатора с отворотом от источника излучения и определении расстояния до него, дополнительно угловой маневр совершают при постоянном угле пеленгации α через промежутки времени T, где , N - число измерений, измеряют изменения курсового угла ϕ носителя пеленгатора, движущегося со скоростью V, и определяют расстояние до источника излучения по формуле . 2 ил.

Предлагаемое изобретение относится к методам определения расстояния с использованием пеленгатора, размещенного на носителе, выполняющего движение в направлении источника радиоизлучения.

Известен способ определения расстояния до источника радиоизлучения при пеленгации его из двух разнесенных пунктов [Ю.П. Мельников, С.В. Попов. Радиотехническая разведка. Методы оценки эффективности местоопределения источников излучения. М.: Радиотехника, 2008. 432 с.: ил., стр. 11-14]. Определение расстояния до неподвижного источника излучения осуществляется путем пеленгации его с подвижного летательного аппарата из двух точек, расположенных на известном удалении друг от друга, за счет решения задачи определения сторон треугольника по двум углам и основанию. Недостатком способа является необходимость выполнения прямолинейного полета не на объект, а мимо него на довольно большом удалении с большими углами пеленгации (α>50°), и низкая точность определения координат источника излучения (σD≈(1,1÷1,8)⋅D⋅σα, где D - расстояние до объекта по линии траверза, σα - среднеквадратическая погрешность пеленгации).

Известен способ определения расстояния до источника радиоизлучения путем многократной его пеленгации и обработки результатов измерений с использованием методов наименьших квадратов поправок углов и весовых коэффициентов [Ю.П. Мельников, С.В. Попов. Радиотехническая разведка. Методы оценки эффективности местоопределения источников излучения. М.: Радиотехника, 2008. 432 с.: ил., стр. 14-25]. За время прямолинейного пролета района разведки пеленгатор многократно определяет направление на источник излучения через известные интервалы времени. Результаты измерений обрабатываются с использованием методов наименьших квадратов поправок углов или весовых коэффициентов для снижения погрешности определения координат. Недостатком способа является необходимость выполнения прямолинейного полета не на объект излучения, а мимо него на довольно большом удалении продолжительное время с углами пеленгации 30°>α>120°. При этом потенциальная точность определения координат источника излучения составляет σD≈(0,7÷1,5)⋅D⋅σα по причине принятых допущений: в методе наименьших квадратов - положение опорной точки совпадает с положением неподвижного объекта; в весовом методе - весовые коэффициенты известны.

Наиболее близким по сущности и достигаемому эффекту (прототипом) является кинематический способ определения расстояния до неподвижного источника радиоизлучения с подвижного летательного аппарата [Ю.П. Мельников, С.В. Попов. Радиотехническая разведка. Методы оценки эффективности местоопределения источников излучения. М.: Радиотехника, 2008. 432 с.: ил., стр. 158-163. Защита радиолокационных систем от помех. Под ред. Канащенкова А.И. и Меркулова В.И. М.: Радиотехника, 2003. 416 c.; ил. стр. 320-322, 343-345]. Способ заключается в последовательном выполнении угловых маневров летательным аппаратом и нахождении расстояния до неподвижного объекта радиоизлучения как отношение скорости пеленгатора к угловой скорости линии визирования. При этом для нахождения величины угловой скорости используются результаты измерений пеленгов. Недостатком способа является необходимость организации движения летательного аппарата, на котором установлен пеленгатор, таким образом, чтобы он все время двигался с ускорением и с отворотом от объекта. При этом на некоторых этапах слежения (пеленгации) объект пеленгации не вполне наблюдаем (малая угловая скорость). Поэтому требуется выполнять несколько этапов выполнения маневра для достижения приемлемых точностей определения расстояния до неподвижного объекта. Величина ошибки определения расстояния даже с использованием дополнительного дифференциально-доплеровского метода составляет σD≈(0,04÷0,20)⋅D для углов пеленга α=60°÷30°, соответственно, и среднеквадратической погрешности пеленгации σα=2°, где D - расстояние до объекта.

Техническим результатом изобретения является снижение погрешности определения расстояния до неподвижного источника радиоизлучения с подвижного объекта, оснащенного пеленгатором, путем выполнения сближения его с источником под постоянным углом пеленгации, измерения величины изменения курсового угла подвижного объекта и по результатам измеренных значений изменения курсового угла определение и затем уточнение расстояния до неподвижного объекта.

Указанный результат достигается тем, что в способе определения расстояния до неподвижного источника излучения движущимся пеленгатором, основанном на последовательном выполнении угловых маневров носителем пеленгатора с отворотом от источника излучения и определении расстояния до него, согласно изобретению угловой маневр совершают при постоянном угле пеленгации α через промежутки времени Ti, где , N - число измерений, измеряют изменения курсового угла ϕi носителя пеленгатора, движущегося со скоростью V, и определяют расстояние до источника излучения по формуле .

Сущность изобретения представлена на фиг. 1, на которой показана схема расположения неподвижного источника излучения и траектория сближения носителя пеленгатора, движущегося с постоянным углом пеленгации к источнику излучения. При этом путь представляет собой логарифмическую спираль. На фиг. 1 обозначены: α - угол пеленгации источника излучения; ϕi - изменение курсового угла носителя пеленгатора между точками i-1 и i; Di - расстояние от носителя пеленгатора до источника излучения в i-й точке траектории; VP, Vi - векторы скорости носителя пеленгатора в точке Р (это может быть точка начала движения с постоянным углом пеленгации α после обнаружения (пеленгации) источника излучения) и в i-й точке соответственно.

Известно [И.Н. Бронштейн, К.А. Семендяев. Справочник по математике. Для инженеров и учащихся ВТУзов. М.: Наука, 1980. 976 с., стр. 184-185], что удаление тела, движущегося по логарифмической спирали к ее центру, изменяется по закону Di=Di-1⋅exp(-ctg(α)⋅ϕi), где ϕi - угол, образованный прямыми, соединяющими центр спирали с точками спирали Di-1 и Di. При этом пройденный путь составляет . Выразим Di-1 из второй формулы и подставим в первую формулу. После незначительных преобразований получим выражение . Из геометрии, представленной на фиг. 1, следует, что угол ϕi также соответствует углу между касательными прямыми к спирали в точках i-1 и i (углу между векторами скорости в i-1 и i точках), то есть полученная формула позволяет определять расстояние до источника излучения по изменению курсового угла носителя пеленгатора.

Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором осуществляется по следующему алгоритму:

1. Носитель пеленгатора осуществляет движение в направлении источника излучения до его обнаружения (пеленгации). Обнаружение и измерение пеленга источника излучения в зависимости от типа излучения и его диапазона могут быть осуществлены соответствующими пеленгаторами. Например, радиоизлучение может быть обнаружено, и определен пеленг на его источник с использованием станции непосредственной радиотехнической разведки [http://www.ckba.net/main.php].

2. Носитель пеленгатора разворачивается таким образом, чтобы между вектором скорости носителя и направлением на источник излучения был заданный угол (угол пеленгации α), и продолжает дальнейшее движение с выдерживанием заданного угла пеленгации.

3. Через промежутки времени Тi на борту носителя измеряют изменения курсового угла носителя ϕi и осуществляют определение расстояния до источника излучения. Изменение курсового угла может быть измерено с использованием существующих навигационных систем, например системой спутниковой навигации GPS или ГЛОНАС [old.glonass-portal.ru/catalog/glonass/navigation/plane].

Было осуществлено имитационное моделирование сближения носителя пеленгатора с источником излучения и получена статистическая зависимость среднеквадратической ошибки измеренного расстояния δD/D до источника излучения от расстояния до него. Зависимость получена при следующих допущениях:

скорость носителя пеленгатора V=150 м/с;

начальная дальность обнаружения источника излучения 50 км;

угол пеленгации α=60° измеряется пеленгатором со среднеквадратической погрешностью σα=2°;

значения курсового угла и скорости носителя измеряются без ошибки.

На фиг. 2 представлены зависимости среднеквадратической ошибки измеренного расстояния до источника излучения от расстояния до него способа прототипа (штриховая линия) и предлагаемого способа, полученные с использованием имитационной модели (сплошная линия). Из фиг. 2 видно, что среднеквадратическая ошибка определения расстояния до источника излучения с использованием предлагаемого способа снижается в 1,3-1,9 раза.

Изложенные сведения свидетельствуют о возможности снижения погрешности определения расстояния до неподвижного излучающего объекта с носителя, оснащенного пеленгатором, путем сближения с постоянным углом пеленгации.

Кроме того, достоинством предложенного способа от способа-прототипа является простота его реализации.

Таким образом, заявленный способ определения расстояния до неподвижного источника излучения движущимся носителем пеленгатора обеспечивает снижение погрешности определения расстояния до источника с носителя, выполняющего сближение с источником под постоянным углом пеленгации.

Предлагаемое решение соответствует критерию «промышленная применимость», так как совокупность характеризующих его признаков обеспечивает возможность его существования.

Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором, основанный на последовательном выполнении угловых маневров носителем пеленгатора с отворотом от источника излучения и определении расстояния до него, отличающийся тем, что угловой маневр совершают при постоянном угле пеленгации α через промежутки времени T, где , N - число измерений, измеряют изменения курсового угла ϕ носителя пеленгатора, движущегося со скоростью V, и определяют расстояние до источника излучения по формуле .
Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором
Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором
Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором
Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором
Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором
Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором
Источник поступления информации: Роспатент

Показаны записи 191-200 из 265.
12.12.2019
№219.017.ec78

Система управления форсажной камерой сгорания

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), а именно к системам управления режимами работы форсажной камеры сгорания с адаптивной системой подачи топлива. Техническим результатом изобретения является повышение эффективности управления рабочим...
Тип: Изобретение
Номер охранного документа: 0002708474
Дата охранного документа: 09.12.2019
13.12.2019
№219.017.ecfd

Способ автоматического управления продольным движением летательного аппарата на посадке

Изобретение относится к способу автоматического управления продольным движением летательного аппарата (ЛА). Способ состоим в том, что используют управляющие сигналы, поступающие с датчиков системы измерения параметров полета в вычислительную систему автоматического управления полетом, в которой...
Тип: Изобретение
Номер охранного документа: 0002708785
Дата охранного документа: 11.12.2019
18.12.2019
№219.017.ee8e

Способ повышения добротности оптического контура кольцевого моноблочного лазерного гироскопа

Изобретение относится к области лазерной техники и может быть использовано при создании навигационных систем, в частности в бесплатформенных инерциальных навигационных системах. Способ базируется на использовании технологических отверстий моноблока гироскопа как дополнительных резонаторов...
Тип: Изобретение
Номер охранного документа: 0002709014
Дата охранного документа: 13.12.2019
21.12.2019
№219.017.efe1

Способ поляриметрической селекции ложных воздушных целей

Изобретение относится к радиолокации и может быть использовано для селекции ложных воздушных целей по поляризационным характеристикам отраженных сигналов. Достигаемый технический результат - повышение вероятности правильной селекции современных ложных воздушных целей типа MALD за счет...
Тип: Изобретение
Номер охранного документа: 0002709630
Дата охранного документа: 19.12.2019
21.12.2019
№219.017.efed

Способ генерации высокочастотных сигналов и устройство его реализации

Изобретения относятся к областям радиосвязи и радиоэлектронной борьбы и могут быть использованы для создания устройств генерации высокочастотных сигналов на заданном количестве частот. Сущность: способ основан на преобразовании энергии источника постоянного напряжения в энергию высокочастотного...
Тип: Изобретение
Номер охранного документа: 0002709602
Дата охранного документа: 18.12.2019
21.12.2019
№219.017.f014

Взлетно-посадочная площадка и способ ее возведения

Изобретение относится к области аэродромного и дорожного строительства, в частности к взлетно-посадочным площадкам для вертикального взлета и посадки летательных аппаратов, и может найти применение в строительстве полевых аэродромов в качестве рулежных дорожек, автомобильных дорог, площадок под...
Тип: Изобретение
Номер охранного документа: 0002709582
Дата охранного документа: 18.12.2019
21.12.2019
№219.017.f068

Способ защиты оэс от мощного лазерного излучения

Изобретение относится к области защиты оптико-электронных средств (ОЭС) и касается способа защиты ОЭС от мощного лазерного излучения. Способ заключается в приеме оптического излучения оптико-электронным средством и пропускании оптического излучения через защитный элемент, установленный перед...
Тип: Изобретение
Номер охранного документа: 0002709452
Дата охранного документа: 17.12.2019
24.12.2019
№219.017.f15b

Устройство для повышения проходимости автомобиля

Противобуксовочное устройство выполнено по меньшей мере из трех, с возможностью быстрого соединения-разъединения между собой, грунтозацепов. Каждый грунтозацеп выполнен в виде пластины с зубьями зацепления, выполненными в плоскости грунтозацепа с внешней стороны. На каждом грунтозацепе...
Тип: Изобретение
Номер охранного документа: 0002709959
Дата охранного документа: 23.12.2019
21.01.2020
№220.017.f77b

Способ двухмерного пеленгования

Изобретение относится к радиотехнике и может быть использовано для двухмерного пеленгования наземных и воздушных объектов по их радиоизлучениям. Достигаемый технический результат - повышение точности определения угла места излучателя в 2-6 раз. Способ двухмерного пеленгования включает прием...
Тип: Изобретение
Номер охранного документа: 0002711341
Дата охранного документа: 16.01.2020
22.01.2020
№220.017.f876

Способ местоопределения над земной поверхностью излучателя или пеленгаторных антенн

Изобретение относится к радиотехнике, в частности к радиопеленгации, и может быть использовано для определения местоположения надземных излучающих объектов с борта летательного аппарата или позиционирования летательного аппарата по радиомаяку с известными координатами. Достигаемый технический...
Тип: Изобретение
Номер охранного документа: 0002711400
Дата охранного документа: 17.01.2020
Показаны записи 61-66 из 66.
13.11.2019
№219.017.e094

Способ наведения летательного аппарата на источник излучения

Изобретение относится к области управления летательными аппаратами и может быть использовано для их гарантированного наведения на наземный источник излучения по известному лишь только пеленгу без определения координат источника. Технический результат – повышение эффективности наведения за счет...
Тип: Изобретение
Номер охранного документа: 0002705669
Дата охранного документа: 11.11.2019
21.11.2019
№219.017.e474

Способ локальной навигации подвижного объекта

Изобретение относится к навигации и предназначено для определения координат подвижного объекта на взлетно-посадочной полосе (рулежной дорожке, автодороге и т.д.) с установленными на ней кодовыми метками, а также координат и габаритов повреждений и препятствий на взлетно-посадочной полосе. Может...
Тип: Изобретение
Номер охранного документа: 0002706444
Дата охранного документа: 19.11.2019
21.11.2019
№219.017.e478

Способ определения координат летательного аппарата относительно взлетно-посадочной полосы

Изобретение относится к навигации и может быть использовано для автоматического управления посадкой летательного аппарата, коррекции инерциальных навигационных систем на стартовой позиции в процессе взлета. Способ определения координат летательного аппарата относительно взлетно-посадочной...
Тип: Изобретение
Номер охранного документа: 0002706443
Дата охранного документа: 19.11.2019
29.11.2019
№219.017.e791

Способ наведения летательного аппарата на источник разового излучения

Изобретение относится к способу наведения летательного аппарата на источник разового излучения. Способ заключается в том, что определяют курсовой угол при пеленговании на источник излучения, выстраивают прямую линию заданного пути через точку пеленгования в направлении на источник, выводят...
Тип: Изобретение
Номер охранного документа: 0002707491
Дата охранного документа: 26.11.2019
21.04.2023
№223.018.4f8b

Способ контроля для функциональной реконфигурации вычислительной системы

Изобретение относится к способам контроля и динамической реконфигурации вычислительных систем. Технический результат состоит в повышении отказоустойчивости вычислительной системы. В способе контролируют работоспособность и функциональную эффективность функциональных модулей вычислительных...
Тип: Изобретение
Номер охранного документа: 0002792920
Дата охранного документа: 28.03.2023
27.05.2023
№223.018.71f6

Способ определения дальности до наземного источника излучения с самолета, оснащенного азимутальным фазовым пеленгатором

Изобретение относится к методам определения дальности до источника излучения (ИИ) угломерным способом с использованием фазового пеленгатора, размещенного на борту самолета, выполняющего полет в сторону источника излучения. Техническим результатом является повышение точности определения...
Тип: Изобретение
Номер охранного документа: 0002796121
Дата охранного документа: 17.05.2023
+ добавить свой РИД