×
25.08.2017
217.015.b6e3

Результат интеллектуальной деятельности: Катализатор и способ осуществления реакции Фишера-Тропша с его использованием

Вид РИД

Изобретение

Аннотация: Изобретение относится к катализаторам и к способу синтеза Фишера-Тропша. Катализатор на основе комплексных солей кобальта для синтеза Фишера-Тропша содержит частицы кобальта, при этом в качестве комплексной соли кобальта выбирают фталоцианиновый комплекс кобальта (CHNCo), а в качестве диспергатора частиц кобальта выбирают ионные жидкости 1-бутил-3-метилимидазол тетрафторборат или 1-бутил-3-метилимидазолий бис(трифторборатсульфонил)имид. Способ осуществления реакции Фишера-Тропша проводят в автоклаве при температуре 280°С, давлении синтез-газа с мольным соотношением Н/СО = 2, равном 60 атм при перемешивании реакционной массы, представляющей собой смесь катализатора и ионной жидкости. Реакцию проводят с добавлением к реакционной массе перфтордекалина при массовом соотношении - катализатор : ионная жидкость : перфтордекалин = 0,04:1:1. Технический результат – увеличение каталитической активности и повышение производительности процесса синтеза Фишера-Тропша. 2 н.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к катализаторам и каталитическим системам для синтеза Фишера-Тропша. Описаны нанокатализаторы на основе комплексных солей кобальта для синтеза Фишера-Тропша, диспергированные в ионных жидкостях. Для улучшения газопереноса в каталитической системе используются добавки перфторуглеродов. Описан процесс синтеза Фишера-Тропша для конверсии окиси углерода и водорода в углеводороды, который проводят в статическом реакторе с применением описанной выше каталитической системы.

Процесс Фишера-Тропша (ФТ) нацелен на восстановление CO до углеводородов, согласно реакции:

и приводит к широкому спектру продуктов: алканы, олефины и ароматические соединения, метанол, гликоли и др.

В настоящее время в процессе синтеза ФТ традиционно применяются плавленые железо-калиевые, кобальтовые и рутениевые катализаторы. В публикациях, рассматривающих в качестве возможных катализаторов соединения Co, Fe, Rh и Ru, показано, что активность катализатора зависит от размера и структуры каталитических центров [Ojeda М., Rojas S., Boutonnet М. // Appl. Catal. A: Gen., 2004, v. 274, p. 33]. Катализаторы синтеза ФТ наряду с основным активным металлом содержат ряд дополнительных компонентов - носителей и промоторов. Роль компонентов может быть: 1) структурная, когда они обуславливают различную степень дисперсности частиц металла, а также вносят пространственные, в т.ч. внутридиффузионные ограничения; 2) сорбционная, когда компонент адсорбирует реагенты без их превращения, а далее, вследствие поверхностной миграции, реагенты перемещаются к металлическим активным центрам, а также 3) сокаталитическая, когда компонент проявляет самостоятельную активность.

Для синтеза используется несколько разновидностей каталитических реакторов и способов осуществления процесса. В последнее время все большее внимание уделяют способу осуществления процесса в реакторе с трехфазным суспензированным слоем, так называемому процессу в сларри-реакторе, особенно с тех пор, как преимущества такого способа стали очевидными при его промышленной реализации на заводе САСОЛ-2 [Jager В., R. Espinosa. // Advances in low temperature Fischer-Tropsch synthesis // Catalysis Today, 1995, v. 23, p. 17-28].

Из международной публикации WO 2006/136863 (28.12.2006) известен катализатор для синтеза углеводородов из CO и H2, представляющий собой порошок оксида алюминия, модифицированный литием. В качестве активного компонента используют кобальт в количестве 5-75 мас. %. Литий вводят пропиткой носителя раствором соответствующей соли с последующим прокаливанием при температуре 500-1500°C с целью формирования оксидов лития. Промотированный литием оксид алюминия отмывают водой, или кислотой, или раствором аммиака в течение длительного времени. Активный металл наносят пропиткой, высушивают при температуре 110-120°C и прокаливают в токе воздуха. К недостаткам такого катализатора необходимо отнести недостаточную теплопроводность катализатора, высокую сложность промышленного производства и ограниченность его использования сларри-реактором.

В ряде работ [Xin-Dong Mu, David G. Evans and Yuan Kou // A general method for preparation of PVP-stabilized noble metal nanoparticles in room temperature ionic liquids // Catal. Lett., 2004, v. 97(3-4), p. 151-154; Xin-Dong Mu, Jian-Qiang Meng, Zi-Chen Li and Yuan Kou // Rhodium Nanoparticles Stabilized by Ionic Copolymers in Ionic Liquids: Long Lifetime Nanocluster Catalysts for Benzene Hydrogenation II J. Am. Chem. Soc, 2005, v. 127, p. 9694-9695] появляются сведения о проведении реакции с участием CO и стабилизации высокодисперсных металлов, в т.ч. в растворах и ионных жидкостях [Лапидус А.Л., Елисеев О.Л // Каталитическое карбонилирование в среде ионных жидкостей // Химия твердого топлива, 2010, №3 с. 60].

В настоящее время известно также свойство различных перфторуглеродов - (перфтордекалин (ПФД), перфтордиметилциклогексан - условное наименование карбогал (КБГ) и др.) к высокой растворимости различных газов и в связи с этим их широко применяют в медицине и биологии в качестве газопереносящих сред. Так, например [А.П. Осипов, Ю.В. Горшков, А.Н. Любимов // Биомедицинский журнал, 2004, Т. 5, С. 62], растворимость O2 и CO2 в смеси цис- и транс-перфтордекалинов соответствует 40 и 180% по объему.

Наиболее близким к настоящему изобретению является патент РФ №2430780 (10.10.2011), где предложен способ приготовления нанокатализатора для синтеза ФТ на основе рутения, который включает этап диспергирования соли рутения (RuCl3⋅nH2O) в растворе полимерного стабилизатора - поли N-винил-2-пирролидона (ПВП) в метаноле, и этап растворения суспензии в ионной жидкости 1-бутил-3-метилимидазол тетрафторборат (сокращенно [BMIM][BF4) с последующим удалением метанола и восстановлением соли металла водородом при температуре 100-200°C. Также имеется пример использования в качестве катализатора комплекса кобальта CoCl2⋅6H2O, диспергированного в ПВП. Недостатком предлагаемой каталитической системы с использованием комплекса кобальта в ПВП является его низкая каталитическая активность. Так, в примере №9 при температуре 170°C и давлении 30 атм активность, выражаемая в частоте оборотов (мольCo/мольRu⋅ч), составляет всего 0,02.

Техническим результатом изобретения является разработка эффективных нанокатализаторов и каталитической системы, позволяющей существенно увеличить каталитическую активность металлического кобальта и повысить производительность процесса синтеза Фишера-Тропша.

Для достижения технического результата предложены нанокатализаторы на основе комплексных солей кобальта для синтеза Фишера-Тропша, содержащие наночастицы кобальта, диспергированные в ионных жидкостях, отличающиеся тем, что в качестве комплексных солей кобальта выбираются карбоксилатный Co2(CO)8 (пиволатный) и фталоцианиновый (C32H16N8Co) комплексы кобальта или их комбинации, а в качестве диспергатора наночастиц кобальта выбираются ионные жидкости, типа 1-бутил-3-метилимидазол тетрафторборат (сокращенно [BMIM][BF4]), производства Merck с чистотой >98%, и 1-бутил-3-метилимидазолий бис(трифторборатсульфонил)имид (сокращенно [BMIM]N(SO2BF3)2), производства Across Organic с чистотой >97,0%.

Способ осуществления реакции Фишера-Тропша с использованием нанокатализаторов проводят в автоклаве при температуре 280°C, давлении синтез-газа с мольным соотношением H2/CO=2, равном 60 атм при перемешивании реакционной массы, представляющей собой смесь нанокатализатора и ионной жидкости. Для улучшения газопереноса в трехфазной каталитической системе используются добавки перфторуглеродов, в виде перфтордекалина (ПФД) и перфтордиметилциклогексана (условное наименование в РФ карбогал, обозначаемый в дальнейшем как КБГ). Массовое соотношение нанокатализатор: ионная жидкость: перфторуглеводород составляет 0,04:1:1.

Изобретение иллюстрируется следующими примерами:

Примеры 1-3. В PARR-300 автоклав (объем 300 мл) загружали 0,4 г катализатора, 10 мл ионной жидкости (в сравнительных примерах) и дополнительно 10 мл перфторуглеводородов (в примерах по изобретению).

В качестве катализаторов использовали:

- Co2(CO)8,

- фталоцианиновый комплекс кобальта - C32H16N8Co.

Фталоцианиновый комплекс кобальта был получен сплавлением o-фталевой кислоты, взятой в количестве 53 г, с 12,4 г безводного хлорида кобальта (II) и 120 г мочевины в присутствии 9 г хлорида аммония и 1 г молибдата аммония в качестве катализатора. Сплавление проводили при температуре 200-210°C в течение шести часов. После охлаждения сплав был измельчен до состояния порошка.

Автоклав продували азотом, заполняли его синтез-газом (H2/CO=2/1) при давлении 60 атм, нагревали автоклав до 280°C в течение 40 минут при перемешивании реакционной массы (500 об/мин) и выдерживали в течение 1 часа. Затем автоклав охлаждали и в ходе стравливания давления анализировали газообразные продукты. Жидкие у/в продукты анализировали после экстракции реакционной смеси толуолом.

Анализ газообразных и жидких углеводородных продуктов реакции проводили на хроматографе модели "3700" с использованием ПИД и капиллярной колонки SE-54 (25 м) в программируемом режиме 60°C (8 мин) далее подъем температуры со скоростью 8°/мин до 180°C. Анализ на водород и оксид углерода проводили на том же хроматографе с использование набивной колонки с молекулярными ситами 5 Å (3 м) с использованием детектора катарометр. Конверсию оксида углерода оценивали методом абсолютной калибровки с использованием хроматографической петли фиксированного объема.

В таблице 1 приведены примеры осуществления предлагаемого способа, а также сравнительные примеры №4 и 5.

Сравнение результатов по предлагаемому в настоящем изобретении способу (примеры №1-2) осуществления процесса Фишера-Тропша, с одной стороны, и сравнительных примеров №4-5 без добавок перфторуглеводородов показывает, что использование в предлагаемом способе добавок перфторуглеводородов приводит к существенному (в 4-20 раз) росту каталитической активности. В примере №1 наблюдается максимальный выход жидких у/в - 0,7 г при конверсии CO, равной 59%. Производительность процесса в примере №1, измеряемая в частоте оборотов (TOF), составила 210 мольCO/мольCo⋅ч. При проведении реакции в более мягких условиях (пример в таблице 1 не представлен) при температуре 170°C и давлении 30 атм, т.е в условиях, аналогичных примеру №9 изобретения-прототипа, частота оборотов для использованной в настоящем изобретении каталитической системы C32H16N8Co -[BMIM][BF4] - ПФД (по примеру №1) составила 4, что существенно выше, чем показатели по изобретению-прототипу. Так, в изобретении-прототипе для катализатора CoCl2⋅6H2O, диспергированного в поли N-винил-2-пирролидоне, TOF составила всего 0,02 мольCO/мольCo⋅ч, при этом даже в лучшем примере для рутениевого катализатора (RuCl3⋅nH2O) и ионной жидкости [BMIM][BF4], используемой на стадии приготовления каталитической системы, TOF составляла 0,52 мольCO/мольRu⋅ч.

В жидких продуктах реакции по примеру №1 преобладают смесь н-парафинов до C12, как и в традиционном синтезе Фишера-Тропша.

В примере №3 по предлагаемому изобретению даже при использовании добавки ПФД наблюдается достаточно низкая конверсия CO (около 3%), при этом жидкие продукты наблюдаются лишь в следовых количествах. Однако в составе газа, стравливаемого из автоклава в ходе сброса давления до атмосферного, мы наблюдали образование у/в до C1-C8 с преобладающим содержанием C8, что свидетельствует о низком вкладе реакции метанизации в ходе процесса Ф-Т.

Следует отметить, что добавкой перфтордекалина мы пытались увеличить растворимость синтез-газа в каталитической системе и газоперенос (например, вывод образующегося в ходе реакции побочного продукта CO2) и тем самым повысить каталитическую активность кобальтового катализатора. Однако оказалось, что использованная в примере №3 ионная жидкость [BMIM]N(SO2BF3)2, в отличие от [BMIM][BF4], не смешивается с ПФД.

Т.о., техническим результатом предлагаемого изобретения является существенное увеличение активности кобальтовых катализаторов и, соответственно, повышение производительности синтеза Фишера-Тропша за счет сокращения времени проведения реакции (до 1 часа, вместо используемых в прототипе 8-14 часов).

Следует отметить, что в предлагаемом процессе катализатор можно легко отелить от углеводородных продуктов и использовать повторно. Все вышеупомянутые достоинства предполагают широкие перспективы применения добавок предлагаемых перфторуглеродов в каталитические системы для процесса Фишера-Тропша, а возможно и в других подобных трехфазных каталитических процессах.

Источник поступления информации: Роспатент

Показаны записи 291-300 из 372.
14.05.2019
№219.017.5183

Способ получения проницаемого пеноматериала из сверхупругих сплавов системы титан-цирконий-ниобий

Изобретение относится к порошковой металлургии, в частности к получению проницаемого пеноматериала из сверхупругого сплава системы титан-цирконий-ниобий. Может использоваться в медицине, в качестве костных имплантатов, и в других отраслях техники, в качестве фильтровальных элементов. Сферичные...
Тип: Изобретение
Номер охранного документа: 0002687352
Дата охранного документа: 13.05.2019
14.05.2019
№219.017.518b

Способ получения твердых сплавов с округлыми зернами карбида вольфрама для породоразрушающего инструмента

Изобретение относится к области порошковой металлургии, в частности, к крупнозернистым твердым сплавам системы WC-Co/Ni/Fe. Может применяться для производства породоразрушающего твердосплавного инструмента. Крупнозернистые узкофракционные порошки WC с зернистостью 5-20 мкм смешивают без размола...
Тип: Изобретение
Номер охранного документа: 0002687355
Дата охранного документа: 13.05.2019
14.05.2019
№219.017.51ca

Литейный магниевый сплав

Изобретение относится к области металлургии, а именно к литейным сплавам на основе магния, и может быть использовано при получении деталей для авиакосмической промышленности, работающих под действием высоких нагрузок при температурах до 250°С и кратковременно при температурах до 300°С....
Тип: Изобретение
Номер охранного документа: 0002687359
Дата охранного документа: 13.05.2019
16.05.2019
№219.017.5225

Устройство для адаптивного временного профилирования ультракоротких лазерных импульсов

Изобретение относится к области лазерной техники и касается устройства для адаптивного временного профилирования ультракоротких лазерных импульсов. Устройство включает в себя лазерный задающий осциллятор, стретчер, обеспечивающий чирпирование лазерного импульса, акустооптическую дисперсионную...
Тип: Изобретение
Номер охранного документа: 0002687513
Дата охранного документа: 14.05.2019
18.05.2019
№219.017.5376

Сверло для получения отверстий с задней подрезкой

Изобретение относится к сверлу для изготовления отверстия с задней подрезкой, в частности в облицовочных панелях из керамики, камня, бетона и других хрупких материалов, которые крепятся на фасадах здания с помощью расширяемого анкера. В сверле, содержащем закрепленную на хвостовике со смещением...
Тип: Изобретение
Номер охранного документа: 0002687589
Дата охранного документа: 15.05.2019
24.05.2019
№219.017.5e02

Бесконтактный датчик микрорельефа

Изобретение может использоваться для выявления и измерения микрорельефа поверхности из металлов и диэлектриков, а также с целями дефектоскопии поверхности и обнаружения неоднородности приповерхностных слоев. Бесконтактный датчик микрорельефа состоит из одного или нескольких микроволновых...
Тип: Изобретение
Номер охранного документа: 0002688902
Дата охранного документа: 22.05.2019
30.05.2019
№219.017.6b6d

Способ получения модифицированных кристаллов магнетита

Изобретение относится к способу получения модифицированных кристаллов магнетита (FeO), содержащих на поверхности смесь липидов, и может быть использовано в фармацевтической промышленности. Предложенный способ получения модифицированных кристаллов магнетита включает смешение 138 мас.ч....
Тип: Изобретение
Номер охранного документа: 0002689392
Дата охранного документа: 28.05.2019
15.06.2019
№219.017.8340

Литейный алюминиевый сплав с добавкой церия

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150-200°С, в частности деталей летательных аппаратов, автомобилей и других транспортных средств. Литейный...
Тип: Изобретение
Номер охранного документа: 0002691475
Дата охранного документа: 14.06.2019
15.06.2019
№219.017.8374

Высокопрочный литейный алюминиевый сплав с добавкой кальция

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150-200°С, в частности деталей летательных аппаратов, автомобилей и других транспортных средств. Литейный...
Тип: Изобретение
Номер охранного документа: 0002691476
Дата охранного документа: 14.06.2019
20.06.2019
№219.017.8d34

Способ получения прутков из сверхупругих сплавов системы титан-цирконий-ниобий

Изобретение относится к термомеханической обработке титановых сплавов для медицины, а именно к созданию способа получения прутков из сверхупругих сплавов системы титан-цирконий-ниобий, и может быть использовано для изготовления костных имплантатов. Способ получения прутков из сверхупругих...
Тип: Изобретение
Номер охранного документа: 0002692003
Дата охранного документа: 19.06.2019
Показаны записи 231-240 из 240.
03.10.2018
№218.016.8cc9

Способ получения катализатора окислительного дегидрирования этана

Изобретение относится к технологии приготовления наночастиц катализатора окислительного дегидрирования углеводородов в условиях СВЧ активации (нагрева) реакционной массы, и в частности Mo-V-Te-Nb-O катализатора окислительного дегидрирования этана (ОДЭ). Описан способ получения катализатора для...
Тип: Изобретение
Номер охранного документа: 0002668215
Дата охранного документа: 27.09.2018
03.10.2018
№218.016.8cd9

Катализатор и способ алкилирования бифенила олефинами c-c

Изобретение относится к области органического синтеза и, в частности, к катализаторам и реакциям алкилирования бифенила олефинами С-С. Предложены катализаторы алкилирования бифенила олефинами С-С, в которых в качестве носителя используют фторированный AlO или SiO, а в качестве модификатора...
Тип: Изобретение
Номер охранного документа: 0002668218
Дата охранного документа: 27.09.2018
05.10.2018
№218.016.8f45

Способ получения синтез-газа из co

Изобретение относится к способу получения синтез-газа из парникового газа - диоксида углерода (CO) путем каталитической конверсии его в синтез-газ и горючий газ. Способ осуществляется посредством гидрогенизационной конверсии CO путем контактирования реакционной смеси, содержащей водород (H) и...
Тип: Изобретение
Номер охранного документа: 0002668863
Дата охранного документа: 03.10.2018
13.10.2018
№218.016.9133

Катализатор селективного гидрирования диеновых и ацетиленовых углеводородов и способ его получения

Изобретение относится к биметаллическому палладийсодержащему катализатору селективного гидрирования диеновых и ацетиленовых углеводородов, при этом катализатор содержит, % мас.: палладия - 0,001-2,0, и железа, марганца или олова от 0,001 до 10%, причем все металлы находятся в нульвалентном и...
Тип: Изобретение
Номер охранного документа: 0002669397
Дата охранного документа: 11.10.2018
07.12.2018
№218.016.a499

Установка для получения жидких углеводородов из биомассы

Изобретение относится к установке конверсии биомассы в жидкие углеводороды, используемые как компонент авиабензина. Установка для получения жидких углеводородов из биомассы включает в себя последовательно соединенные блоки: блок получения синтез-газа, блок очистки и осушки СГ(синтез-газа) и...
Тип: Изобретение
Номер охранного документа: 0002674158
Дата охранного документа: 05.12.2018
29.05.2019
№219.017.6a0e

Реагент для очистки воды и почвы от хлорорганических соединений и способ его получения

Группа изобретений относится к области химической обработки воды, а также почвы от органических соединений, содержащих галогены. Получают реагент для очистки воды и почвы от хлорорганических соединений. Силикагель пропитывают раствором, содержащим триоксалатоферрат аммония и соединение...
Тип: Изобретение
Номер охранного документа: 0002466939
Дата охранного документа: 20.11.2012
13.06.2019
№219.017.8130

Катализатор для гидрогенизационной конверсии глицерина в простые спирты, способ его приготовления и способ гидрогенизационной конверсии глицерина в простые спирты с использованием этого катализатора

Изобретение относится к технологии переработки и касается катализатора для гидрогенизационной конверсии глицерина в простые спирты, способа его приготовления и способа гидрогенизационной конверсии глицерина в простые спирты с использованием этого катализатора. Предложенный катализатор содержит...
Тип: Изобретение
Номер охранного документа: 0002691068
Дата охранного документа: 10.06.2019
08.08.2020
№220.018.3dfd

Катализатор для удаления оксидов серы из дымовых газов электростанций

Изобретение относится к катализатору для удаления оксидов серы из дымовых газов электростанций, содержащему цеолит типа фожазит и катионы переходных металлов, при этом в качестве цеолита он содержит низкокремнистый фожазит (LSX), а в качестве катионов переходных металлов - бинарные...
Тип: Изобретение
Номер охранного документа: 0002729422
Дата охранного документа: 06.08.2020
24.04.2023
№223.018.5294

Способ получения монооксида углерода из лигнина гидролизного под действием co

Изобретение относится к способу получения монооксида углерода из гидролизного лигнина, включающему контактирование при температуре 500-800°С лигнина с диоксидом углерода, при объемной скорости подачи СО в реактор 900 ч, в присутствии железного или кобальтового катализатора, представляющего...
Тип: Изобретение
Номер охранного документа: 0002741006
Дата охранного документа: 22.01.2021
19.06.2023
№223.018.8211

Способ очистки воздуха от диэтиламина

Изобретение относится к области химической технологии, а именно к способу очистки воздуха от летучих органических соединений (ЛОС), в частности аминов, конкретно к способу очистки воздуха от диэтиламина. Способ очистки воздуха от диэтиламина путем его адсорбции и полного окисления включает...
Тип: Изобретение
Номер охранного документа: 0002797201
Дата охранного документа: 31.05.2023
+ добавить свой РИД