×
25.08.2017
217.015.b628

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ОКСИДОВ УРАНА И ТЕТРАФТОРИДА КРЕМНИЯ ИЗ ТЕТРАФТОРИДА УРАНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области технологии ядерных материалов и может быть использовано для конверсии тетрафторида урана, в том числе обедненного, в наноструктурированные оксиды урана и с получением другого ценного неорганического вещества - тетрафторида кремния. Способ заключается в смешивании в стехиометрическом соотношении тетрафторида урана и кремнезема, предварительно подвергнутого механоактивации в присутствии 0,5-1,5 мас.% неорганического соединения щелочного элемента, грануляции гомогенизированной шихты, сушки гранул при температуре от 100 до 250°С и последующей термообработки гранул при температуре не выше 600°С в течение времени от 0,5 до 1 ч. В качестве неорганического соединения щелочного элемента используют фторид лития, или калия, или рубидия, или цезия, или хлорид, или нитрат, или карбонат, или сульфат, или гидроксид, или фосфат лития, натрия, калия, рубидия или цезия. Для получения UO термообработку проводят в среде сухого воздуха, для получения UO - в среде осушенных инертных газов. Техническим результатом является снижение энергозатрат и высокий выход продуктов, в том числе высокочистого тетрафторида кремния. 4 ил., 1 табл., 15 пр.

Изобретение относится к области технологии ядерных материалов и может быть использовано для конверсии тетрафторида урана, в том числе обедненного, в наноструктурированные оксиды урана - U3O8 и UO2 - с получением другого ценного неорганического вещества - высокочистого прекурсора поликристаллического кремния - тетрафторида кремния:

Наиболее близким к предлагаемому способу получения (прототипом) является способ получения октаоксида триурана и тетрафторида кремния из тетрафторида урана и кремнезема (диоксида кремния), включающий механоактивацию диоксида кремния в присутствии 0,5-3% масс. NaF, гомогенизацию смеси в стехиометрическом соотношении, грануляцию гомогенизированной шихты, сушку при температуре 250-300°C и термообработку гранул в среде сухого воздуха при температуре не выше 600°C в течение 1-2 ч (патент РФ 2549415 А, МПК C01G 43/01, C01B 33/107).

Недостатками прототипа являются:

- повышенные энергозатраты, связанные с относительно высокой температурой сушки гомогенизированной шихты (до 300°C) и длительностью изотермической выдержки гранул при температуре не выше 600°C до 2 ч;

- относительно высокое содержание (до 3% масс.) NaF загрязняет твердый продукт (U3O8)

- невозможность получения диоксида урана (UO2).

Техническим результатом предлагаемого изобретения является снижение энергозатрат, получение наноструктурированных оксидов урана, высокий выход продуктов, в том числе высокочистого, не загрязненного летучими соединениями урана, тетрафторида кремния, расширение спектра и одновременное уменьшение содержания неорганических соединений щелочных элементов, добавляемых к кремнезему при механоактивации.

Технический результат достигается способом получения оксидов урана и тетрафторида кремния из тетрафторида урана путем смешения его со стехиометрическим количеством кремнезема, предварительно подвергнутого механоактивации в присутствии неорганического соединения щелочного элемента, гомогенизации смеси, грануляции гомогенизированной шихты, сушки и последующей термообработки гранул при температуре не выше 600°С в среде осушенного воздуха или осушенных инертных газов, например гелия, или азота, или аргона, при этом сушку гранул проводят при температуре от 100 до 250°С, термообработку гранул проводят в течение промежутка времени от 0,5 до 1 ч, а в качестве неорганического соединения щелочного элемента, добавляемого к кремнезему в количестве 0,5-1,5 мас. % при механоактивации, используют фторид лития, или калия, или рубидия, или цезия, или хлорид, или нитрат, или карбонат, или сульфат, или гидроксид, или фосфат лития или натрия, или калия, или рубидия, или цезия.

Изобретение реализуется следующим образом (Фиг. 1, 2).

Как и в прототипе, механическую активацию кремнезема в присутствии неорганических соединений щелочных элементов проводят в аппарате-измельчителе (аттриторе, планетарной, вибрационной, шаровой мельнице или других аппаратах). Длительность и условия механической активации кристаллических форм кремнезема определяются типом аппарата-измельчителя и их природой (кварц, кристобалит, тридимит). Далее осуществляется операция гомогенизации смеси реагентов в любом подходящем устройстве (смеситель типа «турбула», вибромельница и т.д.), а затем - гранулирование (размер гранул ~1 мм) гомогенизированной смеси (шихты) любым известным способом (для улучшения сыпучести и уменьшения пылеуноса). После гранулирования гранулы поступают в аппарат для сушки, которую проводят в токе сухого воздуха, инертного газа или в вакууме при температуре от 100 до 250°С, либо любым другим известным способом. Сушка гранул позволяет минимизировать содержание воды в системе и тем самым снизить вероятность протекания побочных реакций, в частности пирогидролиза тетрафторида урана. После сушки гранулы направляют на стадию термообработки, которую можно проводить как в аппарате с отсутствием перемешивания материала (например, тигель, лодочка), так и с перемешиванием (например, вращающаяся трубчатая печь). Термообработка материала проводится при температуре не выше 600°С в течение времени от 0,5 до 1 ч.

Твердые продукты - наноструктурированные диоксид урана или октаоксид триурана, собирают в любые подходящие емкости. Способ обеспечивает снижение содержания неорганических щелочных элементов в оксидах урана вдвое (с 8⋅10-2 мас. % до 4⋅10-2 мас. %).

Выделяющийся чистый газообразный тетрафторид кремния выводится из реактора и улавливается любым известным способом (например, криоконденсацией, сорбцией на фториде натрия).

Проведение процесса при температуре не выше 600°С исключает образование летучих соединений урана и, тем самым, гарантирует незагрязнение SiF4 ураном.

Изобретение иллюстрируется следующими примерами.

Пример 1 (по прототипу). Кремнезем в виде кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в центробежно-планетарной мельнице в присутствии 3 мас. % NaF (0,9 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гранулируют, затем гранулы сушат при 250°С в вакууме в течение 2 ч и помещают в аппарат (трубчатая печь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 15°С/мин до 600°С, выдерживают смесь при этой температуре 2 ч. Выход по SiF4 составляет 100%.

Пример 2. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 1% Na2CO3 (0,3 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 250°С в вакууме в течение 1 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 10-20°С/мин до 600°С, выдерживают смесь при этой температуре 0,5 ч. Выход по SiF4 составляет 100%.

Пример 3. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 1% K2CO3 (0,3 г) в течение 30 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 100°С в вакууме в течение 1 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный гелий. Аппарат нагревают со скоростью 10-20°С/мин до 600°С, выдерживают смесь при этой температуре 0,5 ч. Выход по SiF4 составляет 100%.

Пример 4. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 0,5% LiF (0,15 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 200°С в вакууме в течение 1 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 10-20°С/мин до 600°С, выдерживают смесь при этой температуре 1 ч. Выход по SiF4 составляет 100%.

Пример 5. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механической активации в планетарной мельнице в присутствии 1,5% KCl (0,45 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют и сушат при 150°С в вакууме в течение 1 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный аргон. Аппарат нагревают со скоростью 10-20°С/мин до 600°С, выдерживают смесь при этой температуре 1 ч. Выход по SiF4 составляет 100%.

Пример 6. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 1% Na2SO4 (0,3 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 200°С в вакууме в течение 0,5 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 10-20°С/мин до 600°С, выдерживают смесь при этой температуре 1 ч. Выход по SiF4 составляет 100%.

Пример 7. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 1,5% NaOH (0,45 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 100°С в вакууме в течение 0,5 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный азот. Аппарат нагревают со скоростью 10-20°С/мин до 600°С и выдерживают смесь при этой температуре 0,5 ч. Выход по SiF4 составляет 100%.

Пример 8. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 1% KCl (0,3 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 150°С в течение 0,5 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 10-20°С/мин до 600°С, выдерживают смесь при этой температуре 0,15 ч. Выход по SiF4 составляет 85%.

Пример 9. Кремнезем в форме кристобалита (99,3% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 0,5% NaNO3 (0,15 г) в течение 30 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 100°С в вакууме в течение 0,5 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный азот. Аппарат нагревают со скоростью 10-20°С/мин до 575°С, выдерживают смесь при этой температуре 0,5 ч. Выход по SiF4 составляет 100%.

Пример 10. Кремнезем в форме тридимита (99,4% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 1% Li2CO3 (0,3 г) в течение 60 мин, после чего смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 200°С в вакууме в течение 0,5 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный гелий. Аппарат нагревают со скоростью 10-20°С/мин до 575°С, выдерживают смесь при этой температуре 1 ч. Выход по SiF4 составляет 100%.

Пример 11. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 0,3% NaCl (0,09 г) в течение 60 мин, после чего смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 250°С в течение 1 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 10-20°С/мин до 600°С, выдерживают смесь при этой температуре 1 ч. Выход по SiF4 составляет 80%.

Пример 12. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 2% Na3PO4 (0,6 г) в течение 60 мин, после чего смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 250°С в течение 1 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный азот. Аппарат нагревают со скоростью 10-20°С/мин до 600°С, выдерживают смесь при этой температуре 1 ч. Выход по SiF4 составляет 100%.

Пример 13. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии добавки 1% K2CO3 (0,3 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 80°С в вакууме в течение 2 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 10-20°С/мин до 600°С, выдерживают смесь при этой температуре 1 ч. Выход по SiF4 составляет 90%.

Пример 14. Кремнезем в форме кристобалита (99,3% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 1% CsF (0,3 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 100°С в вакууме в течение 0,5 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 20-30°С/мин до 600°С, выдерживают смесь при этой температуре 1 ч. Выход по SiF4 составляет 100%.

Пример 15. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 1% Rb2CO3 (0,3 г) в течение 30 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 150°С в вакууме в течение 0,5 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный азот. Аппарат нагревают со скоростью 10-20°С/мин до 575°С, выдерживают смесь при этой температуре 1 ч. Выход по SiF4 составляет 100%.

Условия проведения процесса и выход SiF4 сведены в таблицу 1.

Из приведенных примеров видно, что:

- снижение длительности и температуры процесса подготовки смеси, а также длительности изотермической выдержки при термообработке высушенных гранул позволяет значительно понизить энергозатраты по сравнению с прототипом (пример 1) при сохранении высокого выхода SiF4;

- снижение содержания неорганического соединения до величины менее 0,5% уменьшает выход SiF4 на 20% (пример 11), а увеличение содержания неорганического соединения свыше 1,5% не повышает выход SiF4, но увеличивает содержание примесей в оксидах урана ≥4⋅10-2 % масс. (пример 12);

- снижение температуры сушки гранул ниже 100°С уменьшает выход SiF4 на 10% (пример 13), а повышение температуры сушки не сказывается на выходе SiF4 (примеры 4-6);

- снижение времени термообработки гранул менее 0,5 ч приводит к уменьшению выхода SiF4 на 15% (пример 8);

- повышение температуры термообработки гранул выше 600°С не приносит положительного эффекта, т.к. выход SiF4, равный 100%, достигается при этой температуре (примеры 2-7, 9, 10, 12, 14, 15);

- как видно из фиг. 3 и фиг. 4, во всех примерах способ обеспечивает получение наноструктурированных оксидов урана.

Таким образом, заявленный способ получения оксидов урана UO2 и U3O8 и тетрафторида кремния из тетрафторида урана обеспечивает высокий (до 100%) выход высокочистых продуктов при температуре не выше 600°С в аппарате без перемешивания и использовании кристаллических форм кремнезема.

Способ получения оксидов урана и тетрафторида кремния из тетрафторида урана, характеризующийся тем, что тетрафторид урана смешивают со стехиометрическим количеством кремнезема, предварительно подвергнутого механоактивации в присутствии 0,5-1,5 мас.% неорганического соединения щелочного элемента, гомогенизируют смесь, гранулируют гомогенизированную шихту, сушат при температуре от 100 до 250°С и термообрабатывают гранулы при температуре не выше 600°С в среде осушенного воздуха или осушенных инертных газов, при этом термообработку проводят в течение времени от 0,5 до 1 ч, при этом в качестве неорганического соединения щелочного элемента используют фторид лития, или калия, или рубидия, или цезия, или хлорид, или нитрат, или карбонат, или сульфат, или гидроксид, или фосфат лития, натрия, калия, рубидия или цезия.
СПОСОБ ПОЛУЧЕНИЯ ОКСИДОВ УРАНА И ТЕТРАФТОРИДА КРЕМНИЯ ИЗ ТЕТРАФТОРИДА УРАНА
СПОСОБ ПОЛУЧЕНИЯ ОКСИДОВ УРАНА И ТЕТРАФТОРИДА КРЕМНИЯ ИЗ ТЕТРАФТОРИДА УРАНА
Источник поступления информации: Роспатент

Показаны записи 21-30 из 74.
13.02.2018
№218.016.1f87

Способ приготовления термостойкого гидрофобного платинового катализатора для реакции окисления водорода

Изобретение относится к способу приготовления термостойкого гидрофобного платинового катализатора для реакции низкотемпературного окисления водорода, включающему нанесение платины при комнатной температуре из пропитывающего раствора гексахлорплатиновой кислоты НPtCl⋅6HO в смешанном растворителе...
Тип: Изобретение
Номер охранного документа: 0002641113
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.1f89

Компактный бетавольтаический источник тока длительного пользования с бета-эмиттером на базе радиоизотопа ni и способ его получения

Изобретение относится к технике безотходной ядерной технологии. Компактный бетавольтаический источник тока длительного пользования с бета-эмиттером, представляющий собой сборку «сэндвичевой» структуры в виде стопки чередующихся между собой единичных или комплектных микроисточников тока, где...
Тип: Изобретение
Номер охранного документа: 0002641100
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.22f1

Насыпная насадка для массообменных колонн

Изобретение относится к области процессов и аппаратов химической технологии, а именно к насыпным насадкам для массообменных колонн, и может быть использовано в качестве контактного устройства в химико-технологических процессах ректификации, абсорбции, химического обмена, осуществляемых в...
Тип: Изобретение
Номер охранного документа: 0002641920
Дата охранного документа: 23.01.2018
13.02.2018
№218.016.243d

Насыпная насадка для массообменных колонн

Изобретение относится к области процессов и аппаратов химической технологии, а именно к насыпным насадкам для массообменных колонн, и может быть использовано в качестве контактного устройства в химико-технологических процессах ректификации, абсорбции, химического обмена, осуществляемых в...
Тип: Изобретение
Номер охранного документа: 0002642572
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2e29

Полимерный материал для оптической записи информации на основе прекурсоров флуоресцирующих соединений и способ получения этих соединений

Изобретение относится к области светочувствительных материалов, применяющихся для записи информации на многослойных оптических дисках с флуоресцентным считыванием. Описывается полимерный материал для оптической записи информации на основе новых прекурсоров флуоресцирующих соединений ряда...
Тип: Изобретение
Номер охранного документа: 0002643951
Дата охранного документа: 06.02.2018
04.04.2018
№218.016.34b4

Способ кислотной переработки фосфатного сырья

Изобретение относится к сельскому хозяйству. Способ кислотной переработки фосфатного сырья включает разложение фосфатного сырья избытком ортофосфорной кислоты по отношению к стехиометрической норме по СаО, отделение образовавшегося монокальцийфосфата от маточного раствора фильтрацией и...
Тип: Изобретение
Номер охранного документа: 0002646060
Дата охранного документа: 01.03.2018
04.04.2018
№218.016.34ec

Насыпная насадка для массообменных колонн

Изобретение относится к области процессов и аппаратов химической технологии, а именно к насыпным насадкам для массообменных колонн, и может быть использовано в качестве контактного устройства в химико-технологических процессах ректификации, абсорбции, химического обмена и пр., осуществляемых в...
Тип: Изобретение
Номер охранного документа: 0002646076
Дата охранного документа: 01.03.2018
10.05.2018
№218.016.3dcc

Замещенные 4-(азол-1-илметил)-1-фенил-5,5-диалкилспиро-[2.5]октан-4-олы, способ их получения (варианты), фунгицидная и рострегуляторная композиции на их основе

Изобретение относится к замещенным 4-(азол-1-илметил)-1-фенил-5,5-диалкилспиро-[2.5]октан-4-олам общей формулы I и их солям с агрохимически или фармацевтически подходящими кислотами. В общей формуле I R1 и R2 совместно означают полиметиленовую цепь с числом атомов углерода от 2 до 5, R3...
Тип: Изобретение
Номер охранного документа: 0002648240
Дата охранного документа: 23.03.2018
10.05.2018
№218.016.3dd2

Способ определения эффективной концентрации антискаланта для подавления кристаллизации труднорастворимых солей в воде

Изобретение относится к физико-химическим исследованиям и может быть использовано в ряде отраслей промышленности для определения эффективной концентрации ингибиторов кристаллизации солей или антискалантов. Способ заключается в том, что готовят серию растворов конкретной технической воды с...
Тип: Изобретение
Номер охранного документа: 0002648351
Дата охранного документа: 23.03.2018
29.05.2018
№218.016.597e

Способ каталитического обезвреживания сточных вод, содержащих органические красители

Изобретение относится к обезвреживанию сточных вод, содержащих органические красители. Для осуществления способа проводят обработку сточных вод при рН 6-8 и температуре 40-60°С пероксидом водорода в присутствии кобальтсодержащего катализатора на основе керамического блочно-ячеистого материала....
Тип: Изобретение
Номер охранного документа: 0002655346
Дата охранного документа: 25.05.2018
Показаны записи 21-30 из 32.
13.02.2018
№218.016.1f87

Способ приготовления термостойкого гидрофобного платинового катализатора для реакции окисления водорода

Изобретение относится к способу приготовления термостойкого гидрофобного платинового катализатора для реакции низкотемпературного окисления водорода, включающему нанесение платины при комнатной температуре из пропитывающего раствора гексахлорплатиновой кислоты НPtCl⋅6HO в смешанном растворителе...
Тип: Изобретение
Номер охранного документа: 0002641113
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.1f89

Компактный бетавольтаический источник тока длительного пользования с бета-эмиттером на базе радиоизотопа ni и способ его получения

Изобретение относится к технике безотходной ядерной технологии. Компактный бетавольтаический источник тока длительного пользования с бета-эмиттером, представляющий собой сборку «сэндвичевой» структуры в виде стопки чередующихся между собой единичных или комплектных микроисточников тока, где...
Тип: Изобретение
Номер охранного документа: 0002641100
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.22f1

Насыпная насадка для массообменных колонн

Изобретение относится к области процессов и аппаратов химической технологии, а именно к насыпным насадкам для массообменных колонн, и может быть использовано в качестве контактного устройства в химико-технологических процессах ректификации, абсорбции, химического обмена, осуществляемых в...
Тип: Изобретение
Номер охранного документа: 0002641920
Дата охранного документа: 23.01.2018
13.02.2018
№218.016.243d

Насыпная насадка для массообменных колонн

Изобретение относится к области процессов и аппаратов химической технологии, а именно к насыпным насадкам для массообменных колонн, и может быть использовано в качестве контактного устройства в химико-технологических процессах ректификации, абсорбции, химического обмена, осуществляемых в...
Тип: Изобретение
Номер охранного документа: 0002642572
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2e29

Полимерный материал для оптической записи информации на основе прекурсоров флуоресцирующих соединений и способ получения этих соединений

Изобретение относится к области светочувствительных материалов, применяющихся для записи информации на многослойных оптических дисках с флуоресцентным считыванием. Описывается полимерный материал для оптической записи информации на основе новых прекурсоров флуоресцирующих соединений ряда...
Тип: Изобретение
Номер охранного документа: 0002643951
Дата охранного документа: 06.02.2018
04.04.2018
№218.016.34b4

Способ кислотной переработки фосфатного сырья

Изобретение относится к сельскому хозяйству. Способ кислотной переработки фосфатного сырья включает разложение фосфатного сырья избытком ортофосфорной кислоты по отношению к стехиометрической норме по СаО, отделение образовавшегося монокальцийфосфата от маточного раствора фильтрацией и...
Тип: Изобретение
Номер охранного документа: 0002646060
Дата охранного документа: 01.03.2018
04.04.2018
№218.016.34ec

Насыпная насадка для массообменных колонн

Изобретение относится к области процессов и аппаратов химической технологии, а именно к насыпным насадкам для массообменных колонн, и может быть использовано в качестве контактного устройства в химико-технологических процессах ректификации, абсорбции, химического обмена и пр., осуществляемых в...
Тип: Изобретение
Номер охранного документа: 0002646076
Дата охранного документа: 01.03.2018
19.06.2019
№219.017.86d8

Способ и реактор для взаимодействия газообразных водорода и кислорода

Изобретение относится к реактору для взаимодействия газообразного водорода и кислорода и к способу осуществления реакции газообразных водорода и кислорода и может быть использовано в процессах для производства дейтерированной воды и при удалении трития из воды. Способ включает смешение водорода...
Тип: Изобретение
Номер охранного документа: 0002384521
Дата охранного документа: 20.03.2010
02.10.2019
№219.017.cebb

Способ получения наноструктурированных порошков твердых растворов на основе иттрий-алюминиевого граната с оксидами редкоземельных элементов

Изобретение относится к области получения наноструктурированных порошков твердых растворов на основе иттрий-алюминиевого граната, легированных редкоземельными элементами для производства керамики, используемой в качестве активной среды твердотельного лазера, термостойкого высокотемпературного...
Тип: Изобретение
Номер охранного документа: 0002700062
Дата охранного документа: 12.09.2019
22.01.2020
№220.017.f812

Способ получения коллоидного раствора наночастиц серебра с экстрактами листьев растений

Настоящее изобретение относится к области биохимических методов получения коллоидных растворов наночастиц серебра (Ag-НЧ) с использованием экстрактов листьев растений. Описан способ получения коллоидного раствора наночастиц серебра с экстрактами листьев растений, включающий замачивание листьев...
Тип: Изобретение
Номер охранного документа: 0002711559
Дата охранного документа: 17.01.2020
+ добавить свой РИД