×
25.08.2017
217.015.b2ab

Результат интеллектуальной деятельности: Способ получения покрытий из нанолистов нитрида бора

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения покрытий, содержащих двумерные керамические структуры, а именно нанолисты гексагонального нитрида бора, имеющие толщину 1-10 нм и характерный линейный размер от 100 нм до 5 мкм, которые могут применяться в качестве носителя катализаторов, а также для придания поверхности гидрофобных свойств. Сущность изобретения состоит в том, что приготавливают реакционную смесь, состоящую из борной кислоты и катализатора, в качестве которого используют нитрат натрия, или калия, или магния, или стронция, взятых в количествах, обеспечивающих соотношение катионов B/Me в диапазоне 0,5-5, где Me=Na, или K, или Mg, или Sr, нанесение реакционной смеси на поверхность в виде слоя толщиной от 0,1 до 0,5 мм и термообработку в атмосфере аммиака при температуре в интервале от 900°C до 1100°C. Технический результат изобретения заключается в получении равномерных покрытий из нанолистов гексагонального нитрида бора на внутренних поверхностях, а также на поверхностях изделий сложной формы. 3 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к области получения покрытий, содержащих двумерные керамические структуры, а именно нанолисты гексагонального нитрида бора, имеющие толщину в интервале от 1 до 10 нм и характерный линейный размер в интервале от 100 нм до 5 мкм. Эти покрытия могут применяться в качестве носителя для катализаторов, а также для придания поверхности гидрофобных свойств.

Известен способ получения аэрогеля нанолистов нитрида бора из аэрогеля графенов, основанный на карботермическом восстановлении оксида бора графенами и одновременном азотировании по реакции: B2O3+3C+N2→2BN+3CO [М. Rousseas, et. al. ACS Nano 7-10 (2013) 8540-8546]. В качестве стартового материала для синтеза используются аэрогели графенов (представляющие собой углеродные нанолисты) плотностью 60-150 мг/см3 с площадью удельной поверхности около 1200 м2/г. Для достижения высокой степени химической чистоты (>95% BN) и кристаллической упорядоченности конечного продукта в качестве оптимальных условий обработки аэрогеля графенов рекомендован интервал температур 1600-1800°C. Снижение температуры обработки способствует существенному снижению площади удельной поверхности аэрогеля нанолистов нитрида бора.

Недостатком способа является использование дорогого аэрогеля графенов и проведение процесса при высоких температурах, что требует специального высокотемпературного оборудования с контролируемой газовой атмосферой.

Известен способ получения покрытия из нанолистов гексагонального нитрида бора, выбранный в качестве прототипа, представляющий собой процесс осаждения из паровой фазы и состоящий в реакции паров летучих оксидов бора и аммиака на подложке при высокой температуре [A. Pakdel, et. al. ACS Nano 5-8 (2011) 6507-6515]. Процесс проводят в горизонтальной трубчатой печи. В качестве реакционной смеси, выделяющей летучий оксид бора, используются порошки бора (B), оксида магния (MgO), оксида железа II (FeO). Синтез проводится в протоке реакционного газа аммиака (NH3) при температуре в интервале 900-1200°C. В этом способе нанолисты нитрида бора образуются на обрабатываемой поверхности в результате газотранспортного процесса, при котором пары летучего оксида бора переносятся к обрабатываемой поверхности.

Недостатком этого способа является невозможность получения равномерного покрытия на внутренних поверхностях изделий, например в каналах керамических носителей катализаторов. Это связано с тем, что увеличивается турбулентность газовых потоков в каналах, что приводит к преимущественному осаждению материала в начале канала, в результате чего внутрь канала поступает обедненная реакционная паровая смесь.

Задачей настоящего изобретения является создание технологичного способа получения функциональных покрытий на основе наноструктурированных листов гексагонального нитрида бора, позволяющего наносить равномерные покрытия на внутренних поверхностях.

Техническим результатом изобретения является повышение эффективности синтеза получения функциональных покрытий наноструктурированных листов нитрида бора на внутренних поверхностях.

Технический результат достигается следующим образом.

Способ получения покрытия из нанолистов нитрида бора включает приготовление реакционной смеси, состоящей из борной кислоты и катализатора, в качестве которого используют нитрат натрия, или калия, или магния, или стронция, взятых в количествах, обеспечивающих соотношение катионов B/Me в диапазоне 0,5-5, где Me=Na, или K, или Mg, или Sr, нанесение реакционной смеси в виде слоя толщиной от 0,1 до 0,5 мм и термообработку в атмосфере аммиака.

Реакционную смесь готовят в виде раствора в дистиллированной воде.

Реакционную смесь наносят на поверхность из водного раствора.

Термообработку слоя реакционной смеси проводят при температуре в интервале от 900°C до 1100°C.

Сущность изобретения

Сущность изобретения состоит в том, что нанолисты нитрида бора растут из реакционной смеси из борной кислоты и катализатора (нитраты Na, или K, или Mg, или Sr) при ее термообработке в аммиаке при температуре от 900°C до 1100°C. Таким образом, нанолисты образуются на обрабатываемой поверхности в том месте, где нанесена реакционная смесь. Реакционная смесь наносится на обрабатываемую поверхность из водного раствора, что позволяет получить равномерный слой из реакционной смеси на внутренних поверхностях путем их смачивания, пропитывания или распыления раствора.

Борную кислоту и катализатор (нитрат Na, или K, или Mg, или Sr), взятые в мольном соотношении B/Me в интервале от 0,5 до 5, где Me=Na или K или Mg или Sr, растворяют в дистиллированной воде.

При использовании реакционных смесей с соотношением катионов B/Me<0,5 снижается количество нанолистов на обрабатываемой поверхности и возрастает количество примесных фаз (тугоплавкие бораты и оксиды соответствующих Me), что приводит к снижению качества получаемого покрытия.

При использовании реакционных смесей с соотношением катионов B/Me>5 также снижается общее количество синтезируемых нанолистов нитрида бора на единицу площади поверхности покрытия за счет уменьшения количества катализатора.

Реакционную смесь наносят на обрабатываемую поверхность из водного раствора в виде слоя толщиной от 0,1 до 0,5 мм. Для этого обрабатываемую поверхность окунают в раствор, или смачивают, или наносят на нее раствор путем распыления. После высыхания раствора на обрабатываемой поверхности образуется равномерный слой реакционной смеси. Толщина этого слоя подбирается в каждом случае эмпирически в зависимости от требуемой толщины покрытия из нанолистов нитрида бора, а также от материала поверхности изделия.

Наиболее оптимальная толщина реакционной смеси составляет 0,1-0,5 мм. Нанесение слоя реакционной смеси тоньше 0,1 мм может привести к нарушению его сплошности и в результате к образованию неравномерного покрытия из нанолистов нитрида бора.

При использовании слоя реакционной смеси толщиной 0,5 мм аммиак не успевает диффундировать вглубь реакционного слоя, что может привести к росту количества примесей в покрытии за счет непрореагировавшей реакционной смеси. Формирование покрытия проводят на поверхностях изделий, изготовленных из материалов, которые инертны к реакционным смесям и устойчивы к воздействию реакционного газа (NH3) при температурах термообработки.

Изделие с нанесенным слоем реакционной смеси помещают в реактор и нагревают до температуры синтеза в интервале 900-1100°. Нагрев изделия до температуры синтеза осуществляют в атмосфере инертного газа (Ar) со скоростью 5°C в минуту. При температуре синтеза в реактор напускают аммиак до давления в 1 атм и изделие выдерживают в течение времени, необходимого для максимально полного протекания реакции между реакционной смесью и аммиаком, но не менее 30 минут. При температуре синтеза менее 900°C возможно неполное реагирование реакционной смеси с аммиаком, что приводит к росту количества примесных фаз и, как следствие, к снижению качества покрытия. При температуре синтеза выше 1100°C эффективность получения покрытия не возрастает, поэтому применение термообработки при температурах выше 1100°C нецелесообразно из соображений энергосбережения. Кроме того, сокращается перечень материалов, на которые возможно нанесение покрытий в среде аммиака. Длительность термообработки выбирают экспериментально в зависимости от материала изделия, типа и морфологии поверхности, на которую наносится покрытие и температуры термообработки.

После термообработки реактор с изделием охлаждают до комнатной температуры, продувают воздухом и извлекают изделие. Толщина конечного покрытия зависит от состава и толщины слоя реакционной смеси, температуры термообработки и длительности проведения синтеза. Увеличению толщины покрытия способствует увеличение линейных размеров отдельных нанолистов, что достигается путем увеличения температуры и длительности термообработки.

Компоненты реакционной смеси - борная кислота B(OH)3 и катализаторы, представленные нитратами Na, или K, или Mg, или Sr, - являются распространенными и дешевыми реагентами по сравнению с порошками бора и оксида железа (II).

Таким образом, изобретение способствует повышению эффективности получения функциональных покрытий из нанолистов гексагонального нитрида бора за счет использования более дешевых реагентов, а также позволяет получать равномерные покрытия на поверхностях изделий сложной формы, включая внутренние поверхности и полости.

Примеры осуществления способа

Пример 1

Борную кислоту и нитрат натрия, взятые в количествах, соответствующих соотношению B/Na=2, растворили в дистиллированной воде, раствор упарили на воздухе для получения более густой консистенции, позволяющей нанести слой раствора толщиной 0,5 мм на поверхность подложки кремния. Подложку с нанесенным слоем реакционной смеси поместили в изотермическую зону трубчатой печи, печь вакуумировали до 10-2 мбар и напустили аргон. Затем печь нагрели до 1000°C, напустили аммиак до 1 атм, выдержали 60 минут и охладили. В результате термообработки на поверхности подложки образовалось покрытие белого цвета. Рентгенофазовый анализ показал, что покрытие состоит из гексагонального нитрида бора с примесью оксида бора в количестве до 15 вес. %. Исследования на сканирующем электронном микроскопе показали, что покрытие состоит из листов графеноподобного материала с толщиной отдельных листов 2-5 нм и линейными размерами 0,5-2 мкм. Результаты приведены в таблице.

Пример 2

Борную кислоту и нитрат магния (Mg(NO3)2×6H2O), взятые в количествах, соответствующих соотношению катионов B/Mg=1, растворили в дистиллированной воде. Полученным раствором смочили внешнюю и внутреннюю поверхности тигля из прессованной керамики BN высотой 20 мм, наружным диаметром 15 мм и внутренним диаметром 7 мм. После просушивания раствора на поверхности тигля был слой реакционной смеси толщиной 0,1 мм. Тигель поместили в изотермическую зону трубчатой печи. Термообработку проводили аналогично примеру 1, но при температуре 1100°C в течение 30 минут. В результате термообработки на внутренней и внешней поверхностях тигля образовалось покрытие белого цвета. Рентгенофазовый анализ показал, что покрытие состоит из гексагонального нитрида бора с примесью оксида бора в количестве до 5 вес. %. Исследования на сканирующем электронном микроскопе показали, что покрытие состоит из листов графеноподобного материала с толщиной отдельных листов 1-4 нм и линейными размерами 0,2-0,8 мкм. Результаты приведены в таблице.

В таблице приведены примеры использования изобретения с разными составами реакционной смеси, толщиной слоя реакционной смеси, температурой и временем термообработки, а также свойства получаемого при этом покрытия из нанолистов нитрида бора. Символ «+» означает, что покрытие хорошего качества, т.е. сплошное с высокой концентрацией нанолистов, которые имеют характерный линейный размер в интервале от 100 нм до 5 мкм. Символ «-» означает, что покрытие плохого качества, т.е. несплошное. Символ «+-» означает, что покрытие сплошное, но нанолисты имеют характерный линейный размер менее 100 нм. Такие покрытия могут применяться в качестве гидрофобных, но малоприменимы в качестве носителя катализатора, т.к. имеют небольшую удельную площадь поверхности, поэтому такие покрытия можно охарактеризовать как удовлетворительного качества.

Источник поступления информации: Роспатент

Показаны записи 211-220 из 327.
05.07.2018
№218.016.6c03

Способ получения препарата на основе магнитных наночастиц (мнч) оксида железа для мрт-диагностики новообразований

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения препарата для МРТ-диагностики опухолевых заболеваний, включающий приготовление раствора ацетилацетоната железа (III) в бензиловом спирте с концентрацией 75-200 г/л с последующим нагревом в токе...
Тип: Изобретение
Номер охранного документа: 0002659949
Дата охранного документа: 04.07.2018
06.07.2018
№218.016.6ce9

Способ получения наночастиц магнетита, эпитаксиально выращенных на наночастицах золота

Изобретение относится к области неорганической химии и касается способа получения наночастиц магнетита (FeO), эпитаксиально выращенных на наночастицах золота, которые могут быть использованы в магнитно-резонансной томографии в качестве контрастного агента, в магнитной сепарации, магнитной...
Тип: Изобретение
Номер охранного документа: 0002660149
Дата охранного документа: 05.07.2018
06.07.2018
№218.016.6cf9

Способ получения сорбента для извлечения селена, теллура

Изобретение относится к получению сорбентов для извлечения токсичных компонентов из водных сред, а именно к способу получения сорбента для извлечения селена, теллура. Способ включает в себя сорбцию на гранулированном макропористом анионите сульфид-ионов с последующей конденсацией сорбированных...
Тип: Изобретение
Номер охранного документа: 0002660148
Дата охранного документа: 05.07.2018
06.07.2018
№218.016.6d03

Способ получения синтез-газа из co

Изобретение относится к технологии газификации угля и может быть использовано для получения синтез-газа. Способ получения синтез-газа заключается в следующем. На уголь методом пропитки наносят каталитически активный металл – железо. Проводят углекислотную конверсию в проточном реакторе при...
Тип: Изобретение
Номер охранного документа: 0002660139
Дата охранного документа: 05.07.2018
08.07.2018
№218.016.6e1b

Способ получения поликристаллических ферритов-гранатов

Изобретение относится к получению поликристаллических ферритов-гранатов. Способ включает синтез ферритового материала, приготовление пресс-порошка, прессование заготовок, радиационно-термическое спекание заготовок путем их нагрева до температуры спекания 1350-1450°С облучением проникающим...
Тип: Изобретение
Номер охранного документа: 0002660493
Дата охранного документа: 06.07.2018
08.07.2018
№218.016.6ead

Литейный алюминиево-кальциевый сплав

Изобретение относится к области металлургии. Алюминиевый сплав содержит 5.4-6,4% кальция, 0,3-0,6% кремния и 0,8-1,2% железа. В виде отливок, не требующих термической обработки, сплав обладает следующими механическими свойствами на растяжение: временное сопротивление (σ) не менее 180 МПа,...
Тип: Изобретение
Номер охранного документа: 0002660492
Дата охранного документа: 06.07.2018
25.08.2018
№218.016.7eb1

Способ генерации терагерцовых импульсов на основе термоупругого эффекта

Использование: для генерации терагерцовых импульсов на основе термоупругого эффекта. Сущность изобретения заключается в том, что получают акустические колебания путем воздействия лазерным импульсом на пару металлов, один из которых, подвергаемый воздействию лазерного излучения, представляет...
Тип: Изобретение
Номер охранного документа: 0002664967
Дата охранного документа: 24.08.2018
25.08.2018
№218.016.7f6e

Композиционный материал с прочной металлической матрицей и упрочняющими частицами карбида титана и способ его изготовления

Группа изобретений относится к получению композиционного материала, содержащего металлическую матрицу из алюминиевого сплава и упрочняющие частицы карбида титана. Ведут механическое легирование смеси, содержащей порошок титана и наноалмазы при соотношении, равном (47,867÷52) : (12,0107), и...
Тип: Изобретение
Номер охранного документа: 0002664747
Дата охранного документа: 22.08.2018
25.08.2018
№218.016.7f8f

Способ обработки магниевого сплава системы mg-al-zn методом ротационной ковки

Изобретение относится к сплавам на основе магния, в частности к способам деформационной обработки магниевых сплавов, и может быть использовано для получения изделий, применяемых в качестве конструкционных материалов в авиации, ракетной технике, транспорте и т.д. Способ обработки магниевого...
Тип: Изобретение
Номер охранного документа: 0002664744
Дата охранного документа: 22.08.2018
25.08.2018
№218.016.7f92

Способ получения ферритовых изделий

Изобретение относится к получению ферритовых изделий. Способ включает приготовление пресс-порошка, содержащего ферритовый материал и легирующую добавку в виде наноразмерного порошка карбонильного железа в количестве 0,01-0,03 мас.% от общей массы пресс-порошка, прессование заготовок и...
Тип: Изобретение
Номер охранного документа: 0002664745
Дата охранного документа: 22.08.2018
Показаны записи 181-185 из 185.
01.03.2019
№219.016.d03c

Способ иммобилизации радионуклидов щелочноземельных и редкоземельных элементов в минеральной матрице

Изобретение относится к области ядерной энергетики, в частности к способам переработки радионуклидов щелочноземельных и редкоземельных элементов из отработанного ядерного топлива. Способ иммобилизации радионуклидов щелочноземельных и редкоземельных элементов в минеральной матрице на основе...
Тип: Изобретение
Номер охранного документа: 0002444800
Дата охранного документа: 10.03.2012
29.03.2019
№219.016.ef3a

Биосовместимые многокомпонентные наноструктурные покрытия для медицины

Изобретение относится к медицинской технике, а именно к биосовместимым износостойким наноструктурным тонкопленочным материалам, используемым в качестве покрытий при изготовлении имплантатов, работающих под нагрузкой: ортопедические и стоматологические протезы, зубные коронки, имплантаты,...
Тип: Изобретение
Номер охранного документа: 0002281122
Дата охранного документа: 10.08.2006
29.06.2019
№219.017.9e42

Мишень для получения функциональных покрытий и способ ее изготовления

Изобретение относится к порошковой металлургии, в частности к мишени для получения функциональных покрытий и способу ее изготовления, и может быть использовано в химической, станкоинструментальной промышленности, машиностроении и металлургии. Формуют по крайней мере три таблетки, образующие...
Тип: Изобретение
Номер охранного документа: 0002305717
Дата охранного документа: 10.09.2007
21.08.2019
№219.017.c1c9

Многокомпонентный двухслойный биоактивный материал с контролируемым антибактериальным эффектом

Изобретение относится к области медицинской техники, а именно к двухслойному многокомпонентному наноструктурному покрытию для металлических, полимерных и костных имплантатов, используемых при замене поврежденных участков костной ткани. Покрытие состоит из нижнего слоя толщиной от 100 нм до...
Тип: Изобретение
Номер охранного документа: 0002697720
Дата охранного документа: 19.08.2019
09.07.2020
№220.018.30b0

Способ вакуумной карбидизации поверхности металлов

Изобретение относится к области электрофизических методов нанесения покрытий на переходные металлы IV-VI групп и сплавов на их основе с формированием покрытия толщиной до 200 мкм, содержащего карбиды, углерод в виде включений в объеме покрытия и углеродный слой на поверхности. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002725941
Дата охранного документа: 07.07.2020
+ добавить свой РИД