×
25.08.2017
217.015.adc8

Результат интеллектуальной деятельности: Способ получения низкомодульных сплавов на основе системы титан-ниобий селективным лазерным сплавлением

Вид РИД

Изобретение

Аннотация: 1. Способ относится к получению низкомодульного сплава на основе системы титан-ниобий селективным лазерным сплавлением и может найти применение в области аддитивных технологий в медицине в качестве материалов для имплантатов. Предварительно производят механическую активацию порошков титана и ниобия, взятых в массовом соотношении 6:4. Затем механоактивированную смесь титан-ниобиевого порошка помещают в вакуумной камере в зоне лазерной обработки слоем 0.05-0.1 мм. В вакуумной камере создают предварительный вакуум не хуже 10 Па и вводят аргон. Осуществляют нагрев интенсивным лазерным излучением до температуры 2800-3000°С с последующей выдержкой при этой температуре в течение 1-3 мсек. Обеспечивается получение низкомодульного титан-ниобиевого сплава заданного состава с определенными свойствами, с однородным распределением структурных составляющих по всему объему сплава, являющегося экологически чистым за счет отсутствия в продуктах синтеза посторонних веществ, сокращение длительности процесса и снижение стоимости готовой продукции вследствие отсутствия предварительной выплавки сплава TiNb (40 мас.%) и последующего изготовления из этого сплава порошка для селективного лазерного сплавления. 2 з.п. ф-лы, 3 пр.

Изобретение относится к области порошковой металлургии и может быть использовано при производстве низкомодульных сплавов и изделий из них на основе порошков титана и ниобия методом послойного лазерного сплавления, которые могут найти применение в качестве индивидуальных хирургических, травматологических, дентальных и других имплантатов.

Известен способ получения композиционных материалов, содержащих алюминий и титан (RU 2038192, B22F 3/14, С22С 1/04, 1995) [1], включающий горячее прессование плакированного алюминием порошка титана следующего состава, мас. %: титан 37-50, алюминий 50-63 при 630-650°С и выдержке при этой температуре 0,5-1,5 ч.

Недостатками известного способа является то, что на выходе материал является не гомогенным и может содержать непрореагировавший титан в зависимости от состава исходного композиционного порошка, что приводит к снижению прочности и твердости, а также повышенные затраты времени на осуществление способа при длительной выдержке после нагрева.

Наиболее близким аналогом к предложенному техническому решению является способ получения монофазного интерметаллидного сплава на основе системы алюминий-титан (RU 2561952, B22F 3/23, С22С 14/00, 2015) [2], включающий предварительную механическую активацию порошка алюминия в количестве 25 мас. % и порошка титана в количестве 75 мас. %. Полученную смесь уплотняют, помещают в вакуум и осуществляют ее нагрев высокочастотным электромагнитным полем до температуры 1200-1400°С и последующую выдержку. Обеспечивается получение монофазного интерметаллидного сплава заданного состава с однородным распределением структурных составляющих.

Недостатком известного способа является длительность процесса синтеза монофазного материала.

В основу настоящего изобретения положена задача создания способа получения низкомодульного сплава на основе системы титан-ниобий с заранее заданным составом и необходимыми свойствами на основе селективного лазерного сплавления.

Техническим результатом является обеспечение получения низкомодульного сплава с однородным распределением структурных составляющих по всему объему сплава, а также уменьшение длительности процесса синтеза сплава на основе системы титан-ниобий.

Указанный технический результат достигается тем, что способ получения низкомодульного сплава на основе системы титан-ниобий селективным лазерным сплавлением включает предварительную механическую активацию исходных порошков, нагрев до температуры образования сплава с последующей выдержкой, для этого механоактивированную смесь титан-ниобиевого порошка, взятого в массовом соотношении 6:4, помещают в вакуумной камере в зоне лазерной обработки слоем 0.05-0.1 мм, затем в вакуумной камере создают предварительный вакуум и затем вводят аргон, далее осуществляют нагрев интенсивным лазерным излучением до температуры 2800-3000°С с последующей выдержкой при этой температуре в течение 1-3 мс.

В вакуумной камере создают предварительный вакуум не хуже 10-2 Па и затем вводят аргон в вакуумную камеру до давления 0.1-0.15 МПа.

Однородное распределение структурных составляющих по всему объему получаемого сплава обусловлено тем, что исходную порошковую смесь предварительно подвергают механической активации для повышения реакционной способности порошковой системы, затем при достаточно высоком темпе нагрева системы происходит переплав компонентов и при охлаждении системы формируется сплав с равномерным распределением компонентов, именно это позволяет управлять реализацией селективного лазерного сплавления и получать сплав с гомогенной структурной морфологией.

Уменьшение длительности процесса получения низкомодульного сплава на основе системы титан-ниобий обусловлено тем, что после механической активации осуществляется, с одной стороны, возможность быстрого нагрева порошков титана и ниобия интенсивным лазерным излучением до температуры 2800-3000°С и быстрым охлаждением при прекращении нагрева лазерным излучением с другой стороны, чего нельзя достигнуть при получении низкомодульного сплава системы титан-ниобий. При этом в результате реакции при высоких температурах непосредственно в зоне плавления время выдержки является кратковременным, зависящим от необходимой структуры конечного продукта.

Количество порошка титана, составляющее 60 мас. %, и порошка ниобия в количестве 40 мас. %, является оптимальным, так как предложенный способ направлен на получение низкомодульного сплава TiNb, а при содержании порошка титана, составляющем менее 60 мас. %, и порошка ниобия в количестве, составляющем более 40 мас. %, синтезируемый продукт не будет являться низкомодульным сплавом состава TiNb(40 мас. %), и при содержании порошка титана в количестве, составляющем более 60 мас. %, и порошка ниобия в количестве, составляющем менее 40 мас. %, синтезируемый продукт не будет являться низкомодульным сплавом состава TiNb (40 мас.%).

Температура нагрева порошков титана и ниобия интенсивным лазерным излучением, составляющая 2800-3000°С является оптимальной, так как при температуре нагрева порошков титана и ниобия интенсивным лазерным излучением, составляющей менее 2800°С синтезируемый продукт будет характеризоваться высокой концентрацией неравновесных дефектов структуры, а при температуре нагрева порошков титана и ниобия интенсивным лазерным излучением, составляющей более 3000°С будет происходить кипение и испарение сплава.

Время выдержки, составляющее 1-3 мс, является оптимальным, так как при выдержке менее 1 мс. синтезируемый продукт будет характеризоваться высокой концентрацией неравновесных дефектов структуры, а при выдержке более 3 мс. произойдет перитектический распад фазы TiNb.

Способ получения низкомодульного сплава на основе системы титан - ниобий осуществляется следующим образом.

Предварительно производят высокоэнергетическую механическую активацию исходной порошковой смеси, содержащей 60 мас. % титана и 40 мас. % ниобия, в планетарной шаровой мельнице для механического легирования и получения титан-ниобиевого композитного порошка. Далее механоактивированную смесь титан-ниобиевого порошка вводят тонким слоем в вакуумную камеру в зону лазерной обработки. Толщина слоя 0.05-0.1 мм обусловлена глубиной проплавления порошка. Затем порошок нагревают интенсивным лазерным излучением до температуры 2800-3000°С, а выдержку при этой температуре производят в течение времени, соответствующего образованию сплава заданного состава, составляющего 1-3 мс.

Пример 1.

Готовят смесь порошков титана марки ПТМ в количестве 60 мас. % со средним размером частиц 10-15 мкм и ниобия марки НбП-а со средним размером частиц 5-10 мкм в количестве 40 мас. %. Смесь порошков подвергают механической активации в планетарной шаровой мельнице АГО-2С ударно-фрикционного типа.

Механоактивированная порошковая смесь состава Ti+Nb представляет собой механокомпозит с размерами частиц 10-50 мкм.

Далее полученную механоактивированную порошковую смесь состава Ti+Nb извлекают из цилиндров планетарной шаровой мельницы и засыпают в устройство нанесения слоя порошка на установке селективного лазерного сплавления. С помощью этого устройства механоактивированную порошковую смесь состава Ti+Nb наносят слоем 0.05 мм в зону лазерной обработки - вакуумную камеру. После этого в вакуумной камере создают предварительный вакуум не хуже 10-2 Па. Потом в вакуумную камеру вводят аргон до давления 0.1-0.15 МПа. Затем механоактивированную порошковую смесь состава Ti+Nb нагревают интенсивным лазерным излучением до температуры 2800-3000°С, инициируя процесс переплава порошковой смеси. Время воздействия лазерного излучения составляет 3 мс.

Пример 2

Полученную по первому примеру, механоактивированную порошковую смесь состава Ti+Nb извлекают из цилиндров планетарной шаровой мельницы и засыпают в устройство нанесения слоя порошка на установке селективного лазерного сплавления. С помощью этого устройства механоактивированную порошковую смесь состава Ti+Nb наносят слоем 0.1 мм в зону лазерной обработки - вакуумную камеру. После этого в вакуумной камере создают предварительный вакуум не хуже 10-2 Па. Потом в вакуумную камеру вводят аргон до давления 0.1-0.15 МПа. Затем механоактивированную порошковую смесь состава Ti+Nb нагревают интенсивным лазерным излучением до температуры 2800-3000°С, инициируя процесс переплава порошковой смеси. Время воздействия лазерного излучения составляет 1 мс.

Пример 3.

Полученную по первому примеру, механоактивированную порошковую смесь состава Ti+Nb извлекают из цилиндров планетарной шаровой мельницы и засыпают в устройство нанесения слоя порошка на установке селективного лазерного сплавления. С помощью этого устройства механоактивированную порошковую смесь состава Ti+Nb наносят тонким слоем 0.08 мм в зону лазерной обработки - вакуумную камеру. После этого в вакуумной камере создают предварительный вакуум не хуже 10-2 Па. Потом в вакуумную камеру вводят аргон до давления 0.1-0.15 МПа. Затем механоактивированную порошковую смесь состава Ti+Nb нагревают интенсивным лазерным излучением до температуры 2800-3000°С, инициируя процесс переплава порошковой смеси. Время воздействия лазерного излучения составляет 2 мс.

Конечным продуктом, реализующим предложенный способ по примерам 1-3, является низкомодульный сплав TiNb (40 мас.%), который может найти применение в медицине в качестве материала для имплантатов.

Таким образом, использование предлагаемого способа обеспечивает получение низкомодульного титан-ниобиевого сплава заданного состава с определенными свойствами, с однородным распределением структурных составляющих по всему объему сплава, являющегося экологически чистым за счет отсутствия в продуктах синтеза посторонних веществ, сокращение длительности процесса и снижение стоимости готовой продукции вследствие отсутствия предварительной выплавки сплава TiNb (40 мас.%) и последующего изготовления из этого сплава порошка для селективного лазерного сплавления.

Источник поступления информации: Роспатент

Показаны записи 51-60 из 60.
17.04.2020
№220.018.156a

Способ получения гранулированной металлопорошковой композиции (фидстока) и композиция, полученная данным способом

Изобретение относится к области обработки металлических порошков, а именно к получению гранулированных материалов (фидстоков), используемых для получения металлических изделий методом инжекционного формования/литья под давлением и аддитивного производства. Проводят деагломерацию и...
Тип: Изобретение
Номер охранного документа: 0002718946
Дата охранного документа: 15.04.2020
01.05.2020
№220.018.1a8f

Применение пористых наноструктур fe2o3 для преодоления устойчивости бактерий к антибиотикам

Группа изобретений относится к медицине, а именно к потенцированию действия антибиотиков, и может быть использована для лечения ран кожного покрова и мягких тканей, инфицированных множественно-устойчивыми бактериями. Для этого применяют пористые наноструктуры FeO (гематит), обладающие свойством...
Тип: Изобретение
Номер охранного документа: 0002720238
Дата охранного документа: 28.04.2020
20.05.2020
№220.018.1dff

Способ аддитивного производства изделий из высокопрочных алюминиевых сплавов с функционально-градиентной структурой

Изобретение относится к способу аддитивного производства изделий из высокопрочных алюминиевых сплавов с функционально-градиентной структурой. По меньшей мере часть изделия изготавливают путем подачи по меньшей мере двух проволок в ванну расплава, их плавления высокоэнергетическим воздействием...
Тип: Изобретение
Номер охранного документа: 0002721109
Дата охранного документа: 15.05.2020
23.05.2020
№220.018.2018

Способ лазерной сварки алюминиево-магниевых сплавов

Изобретение относится к лазерно-дуговой сварке алюминиево-магниевых сплавов с содержанием Mg от 2 до 7%. Способ включает размещение источников лазерного излучения и сварочной дуговой горелки на одной каретке для их синхронного перемещения. Фокальную плоскость лазерного луча с диаметром пятна,...
Тип: Изобретение
Номер охранного документа: 0002721613
Дата охранного документа: 21.05.2020
12.04.2023
№223.018.460b

Высокопрочный антифрикционный композит на основе полиэфирэфиркетона для медицины и способ его изготовления

Изобретение относится к антифрикционным композитным материалам на основе термопластичных полимеров и может использоваться в медицинских или ветеринарных целях для изготовления деталей суставных имплантатов, а также к способу их изготовления. Предложен высокопрочный антифрикционный композит на...
Тип: Изобретение
Номер охранного документа: 0002729653
Дата охранного документа: 11.08.2020
12.04.2023
№223.018.471f

Способ получения прутков круглого сечения из титанового сплава (варианты)

Изобретение относится к металлургии, а именно к получению прутков круглого сечения из титанового сплава. Заявлены варианты способа получения прутков круглого сечения из титанового сплава. Способ включает нагрев заготовок до температуры ниже температуры полиморфного превращения титанового...
Тип: Изобретение
Номер охранного документа: 0002756077
Дата охранного документа: 27.09.2021
20.05.2023
№223.018.6800

Способ получения антимикробной композитной наноструктуры бемит-серебро или байерит-серебро и способ получения антимикробной композитной наноструктуры γ-оксид алюминия-серебро

Группа изобретений относится к химической технологии и может быть использована в производстве композитных наноструктур оксидов/гидроксидов алюминия, предназначенных для использования в качестве компонентов сорбционно-антимикробных материалов для очистки воды и обеззараживания, лечения раневых...
Тип: Изобретение
Номер охранного документа: 0002794900
Дата охранного документа: 25.04.2023
17.06.2023
№223.018.7f7f

Способ нанесения электропроводящего твердосмазочного износостойкого покрытия на кинематические контактные пары из медных сплавов

Изобретение относится к способу нанесения композиционного электропроводящего твердосмазочного износостойкого покрытия на кинематические контактные пары из медных сплавов и может быть использовано в авиапромышленности, машиностроении и других областях. Осуществляют импульсное магнетронное...
Тип: Изобретение
Номер охранного документа: 0002767922
Дата охранного документа: 22.03.2022
17.06.2023
№223.018.7f9d

Способ моделирования восстановления оптических и прочностных характеристик изделия из кварцевого стекла, используемого в космических аппаратах

Изобретение относится к вакуумной технологии очистки поверхности и нанесения упрочняющих покрытий на изделия из кварцевого стекла, преимущественно марки КВ, указанная технология может быть использована в космических аппаратах в условиях космического пространства. Предложен способ восстановления...
Тип: Изобретение
Номер охранного документа: 0002768816
Дата охранного документа: 24.03.2022
17.06.2023
№223.018.810f

Способ получения модифицированного биопокрытия с микрочастицами трикальцийфосфата и/или волластонита на имплантате из магниевого сплава

Изобретение относится к области гальванотехники и может быть использовано для обработки поверхности биорезорбируемых магниевых имплантатов при их изготовлении для травматологии, ортопедии и различных видов пластической хирургии. Способ включает микродуговое оксидирование (МДО) имплантата в...
Тип: Изобретение
Номер охранного документа: 0002763091
Дата охранного документа: 27.12.2021
Показаны записи 41-42 из 42.
16.05.2023
№223.018.5f18

Способ получения антибактериального кальцийфосфатного покрытия на ортопедическом имплантате, имеющем форму тела вращения и оснастка для его осуществления (варианты)

Группа изобретений относится к области медицины, а именно к ортопедии и травматологии, и раскрывает способы нанесения антибактериальных кальцийфосфатных покрытий на ортопедические имплантаты, в частности интрамедуллярные фиксаторы и пины. Способ включает распыление мишени, в плазме...
Тип: Изобретение
Номер охранного документа: 0002745726
Дата охранного документа: 31.03.2021
17.06.2023
№223.018.810f

Способ получения модифицированного биопокрытия с микрочастицами трикальцийфосфата и/или волластонита на имплантате из магниевого сплава

Изобретение относится к области гальванотехники и может быть использовано для обработки поверхности биорезорбируемых магниевых имплантатов при их изготовлении для травматологии, ортопедии и различных видов пластической хирургии. Способ включает микродуговое оксидирование (МДО) имплантата в...
Тип: Изобретение
Номер охранного документа: 0002763091
Дата охранного документа: 27.12.2021
+ добавить свой РИД