×
25.08.2017
217.015.a88f

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПРОЧНОГО ПРОКАТА АУСТЕНИТНОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ С НАНОСТРУКТУРОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, преимущественно к обработке металлов давлением, а именно к технологии получения высокопрочного проката аустенитной нержавеющей стали с нанокристаллической структурой, который может быть использован в качестве конструкционного материала. Способ изготовления проката включает горячую ковку при температуре 1373 К до истинной степени деформации ε=0,5 с последующим охлаждением в воде, полученные заготовки подвергают теплой прокатке в лист до истинной степени деформации ε=3 при температуре 473-673 К, которая исключает протекание мартенситного превращения. Технический результат заключается в получении проката аустенитной нержавеющей стали с нанокристаллической структурой и повышенными прочностными свойствами, предел текучести составляет более 1000 МПа. 2 ил., 1 табл.

Изобретение относится к области металлургии, преимущественно к обработке металлов давлением, а именно к технологии получения высокопрочного проката сталей аустенитного класса с нанокристаллической структурой для использования его в качестве конструкционного материала.

Большинство аустенитных нержавеющих сталей после стандартной обработки на твердый раствор имеют крупнокристаллическую структуру и низкий предел текучести порядка 200 - 250 МПа (W.Martienssen and H.Warlimont, Springer Handbook of Condenced Matter and Materials Data, 2005), что сдерживает их применение в качестве конструкционного материала.

С целью повышения предела текучести за счет дисперсионного упрочнения аустенитные нержавеющие стали легируют карбидообразующими элементами, такими как ванадий, ниобий, титан, цирконий, гафний, тантал (K.H.Lo, C.H. Shek, J.K.L. Lai, Materials Science and Engineering R 65 (2009) 39–104).

Известен способ получения аустенитной высокопрочной стали за счет легирования ванадием, ниобием, углеродом и азотом. Данные элементы образуют в стали дисперсные частицы нитридов и карбонитридов ванадия и ниобия, сдерживающие рост зерна в стали при нагреве под закалку, т.е. способствующие формированию мелкозернистой структуры стали, необходимой для получения высокой прочности (RU №2318068; публ. 27.02.2008). Однако введение в сталь дорогостоящих легирующих элементов приводит к повышению ее себестоимости.

Повышение предела текучести в аустенитных нержавеющих сталях может быть обеспечено за счет структурного упрочнения, которое достигается в результате применения холодной деформационной обработки (K.H.Lo, C.H.Shek, J.K.L. Lai, Materials Science and Engineering R 65 (2009) 39–104). Известные способы получения сталей с пределом текучести свыше 1100 МПа основаны на деформационной обработке с высокими степенями пластической деформации (RU №2252977; публ. 27.05.2005). Недостатком таких способов обработки является то, что структура полученной стали не является аустенитной. Удельная доля мартенсита деформации составляет более 50%. Поэтому, такие стали не могут рассматриваться как аустенитные, так как изменяются их функциональные свойства. Обратное фазовое превращение при последующей термообработке способно восстановить аустенитную микроструктуру стали, но это неизбежно ведет к росту зерна до микронных значений и падению предела текучести.

Измельчение зерен с помощью горячей деформационной обработки позволяет поднять прочность аустенитных сталей за счет зернограничного упрочнения по закону Холла-Петча (V.G.Gavriljuk and H.Berns: High NitrogenSteels, Springer-Verlag, Berlin, 1999, pp. 135-198;V.G. Gavriljuk, H. Berns, C. Escher, N.I. Glavatskaya, A. Sozinov, Yu.N. Petrov Materials Scienceand Engineering A271 (1999) 14–21). Однако чувствительность напряжений течений к размеру зерна в аустените в 2 раза меньше, чем в феррите, поэтому эффективность этого метода не велика. Кроме того, размер зерна при использовании стандартных операций горячей деформации в интервале температур 1223-1373 К получается уменьшить только до 5 мкм. Для получения аустенитных сталей с наноструктурой часто применяют теплую деформационную обработку после горячей.

Известен способ, в котором предварительно закаленную заготовку подвергают многократной изотермической ковке с последовательным изменением оси ориентации на 90° и понижением температуры на 80-150 К. При этом первую осадку проводят при температуре, лежащей в интервале 1223-1323 К. Истинная степень деформации за одну осадку должна быть не менее 0,4 при скорости деформации от 10-2 до 10-1 с-1. Две последние осадки проводят при температуре, лежащей в интервале 873-923 К. Затем проводят отжиг заготовки при температуре, которая выше температуры двух последних осадок на ≥50 К (RU№2468093; публ. 27.11.2012).

Теплая пластическая обработка с большими степенями деформации является эффективным способом повышения прочностных свойств аустенитных коррозионно-стойких сталей. Себестоимость стали в этом случае зависит от способа деформационной обработки. На данный момент разработано большое количество специфических способов деформационной обработки, такие как дробление, кручение под высоким давлением, равноканальное угловое прессование (Y.Estrin and A.Vinogradov, Extreme grainre finement by severe plastic deformation: A wealth of challenging science, Acta Materialia, 61(2013) 782-817). Однако технологические трудности в реализации данных методов обработки затрудняют их промышленное применение. С другой стороны, традиционный метод обработки металлов давлением, такой как многократная прокатка, также может обеспечить большие пластические деформации.

Наиболее близким к предлагаемому изобретению является способ получения высокопрочной аустенитной нержавеющей стали, который включает предварительную пластическую деформацию за один или несколько проходов со степенью деформации не менее 40% при температуре, не превышающей температуру начала рекристаллизации, закалку на твердый раствор осуществляют при температуре не ниже 1020°С (1293 К), а окончательную пластическую деформацию проводят со степенью 30-70% при температуре ниже температуры начала рекристаллизации не менее чем на 150°С (423 К) (RU №2254394; публ. 20.06.2005).

Недостатком данного способа обработки является то, что максимальная степень окончательной пластической деформации составляет ε=1,2 (70%), в результате чего предел текучести составил не более 1000 МПа, кроме того, в выбранный температурный интервал окончательной пластической деформации входит комнатная температура, деформация при которой приведет к мартенситному превращению.

Задачей предлагаемого изобретения является разработка способа получения высокопрочного проката аустенитной нержавеющей стали с однородной наноструктурой, обеспечивающего повышение предела текучести выше 1000 МПа без протекания мартенситного превращения.

Техническим результатом изобретения является:

- режим предварительной деформационно-термической обработки аустенитной нержавеющей стали, обеспечивающей формирование в стальной заготовке однородной мелкозернистой микроструктуры со средним размером зерна 10-20 мкм;

- режим теплой деформации, обеспечивающий получение высокопрочного проката аустенитной нержавеющей стали с нанокристаллической структурой;

- повышение предела текучести аустенитной нержавеющей стали.

Для решения поставленной задачи предложен способ термомеханической обработки аустенитной нержавеющей стали.

Данный способ включает:

1) предварительную горячую ковку при температуре 1373 К до истинной степени деформации ε=0,5 с последующим охлаждением в воде, что приводит к формированию однородной микроструктуры со средним размером зерен 10-20 мкм.

2) пластическую деформацию методом теплой прокатки в лист при температуре 473-673 К до истинной степени деформации ε=3, которая приводит к получению высокопрочного проката из аустенитной стали со средним размером зерен/субзерен порядка 160/80 нм, без протекания мартенситного превращения.

Технический результат заключается в получении проката аустенитной нержавеющей стали с нанокристаллической структурой и повышенными прочностными свойствами (предел текучести более 1000 МПа).

Достигаемый технический результат подтверждается данными, приведенными в таблице 1.

Таблица 1. Механические свойства аустенитной нержавеющей стали до ТМО и после ТМО

Температура испытания, K 293
Предел текучести, MПa Образец после ТМО 1070
Образец до ТМО 235
Предел прочности, MПa Образец после ТМО 1175
Образец до ТМО 585
Удлинение, % Образец после ТМО 9,3
Образец до ТМО 86

Механические испытания на растяжения проводились по ГОСТ 1497-84 при комнатной температуре.

Предполагаемое изобретение поясняют графические материалы:

На фиг. 1 представлена схема термомеханической обработки аустенитной нержавеющей стали, где ε – истинная степень деформации.

На фиг. 2 изображена структура аустенитной нержавеющей стали после ТМО, полученная на просвечивающем электронном микроскопе.

Пример осуществления.

В примере осуществления использовали аустенитную нержавеющую сталь 03Х17Н12М2(AISI 316L), которую подвергали горячей ковке при температуре 1373 К до истинной степени деформации ε=0,5 с последующим охлаждением в воде. В результате чего были получены заготовки аустенитных сталей квадратного сечения со средним размером зерна порядка 20 мкм. Данные заготовки подвергали теплой прокатке в лист при температуре 573 К до истинной степени деформации ε=3, в результате которой был получен высокопрочный прокат аустенитной нержавеющей стали с наноструктурой (размер зерен/субзерен около 160/80 нм). Предел текучести проката составил около 1070 МПа.

Таким образом, предложенный способ обеспечивает формирование нанокристаллической структуры без образования мартенсита в ходе деформации.

Реализация предлагаемого способа в промышленном производстве позволит получать прокат из аустенитных нержавеющих сталей с повышенными прочностными свойствами, которые могут быть использованы в качестве конструкционного материала.


СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПРОЧНОГО ПРОКАТА АУСТЕНИТНОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ С НАНОСТРУКТУРОЙ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 94.
26.08.2017
№217.015.e5c4

Устройство оптического нагрева образца в установках магнетронного напыления

Изобретение относится к установке магнетронного напыления тонких пленок из карбидов или нитридов кремния на подложку, выполненную из полупроводникового материала, керамики или стекла. Установка содержит вакуумную камеру, размещенные в ней магнетрон, штатив и закрепленное на нем устройство для...
Тип: Изобретение
Номер охранного документа: 0002626704
Дата охранного документа: 31.07.2017
26.08.2017
№217.015.e8ad

Способ изготовления биомеханического сенсора для измерения сил адгезии в системе "клетка-клетка"

Изобретение касается способа изготовления биомеханического сенсора для измерения сил адгезии в системе «клетка-клетка». Сущность способа заключается в том, что используют влажную камеру, стандартный tipless кантилевер, суспензию лимфоцитов. Суспензию лимфоцитов готовят путем центрифугирования...
Тип: Изобретение
Номер охранного документа: 0002627455
Дата охранного документа: 08.08.2017
29.12.2017
№217.015.f419

Способ получения листов из сплава системы алюминий-магний-марганец

Изобретение относится к области металлургии, а именно к способам получения листов из алюминиевых сплавов на основе системы алюминий-магний-марганец, применяемых для изготовления ряда ответственных конструкций в судостроении, авиационной и ракетной промышленности, в вагоностроении для скоростных...
Тип: Изобретение
Номер охранного документа: 0002637444
Дата охранного документа: 04.12.2017
29.12.2017
№217.015.f713

Способ получения и состав для получения сухих форм антоцианов синего цвета

Изобретение относится к натуральным синим антоциановым красителям, которые могут быть использованы в пищевой, фармацевтической и косметологической промышленности. Описываются 2 варианта способа получения сухих инкапсулированных в полисахаридную матрицу форм антоцианов синего цвета методом...
Тип: Изобретение
Номер охранного документа: 0002639291
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.f770

Способ получения ряженки с наноструктурированным креатин гидратом

Способ получения ряженки с наноструктурированным креатин гидратом относится к молочной промышленности. Способ включает введение в топленое молоко 4% жирности закваски при температуре 40-41°С, введение наноструктурированной добавки - 150-200 мг креатин гидрата в оболочке из альгината натрия и...
Тип: Изобретение
Номер охранного документа: 0002639290
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.fcf5

Способ прогнозирования риска развития преэклампсии тяжелого течения

Изобретение относится к области медицинской диагностики и касается способа прогнозирования риска развития преэклампсии тяжелого течения у женщин русской национальности, являющихся уроженками Центрально-Черноземного региона России. Способ включает выделение ДНК из периферической венозной крови,...
Тип: Изобретение
Номер охранного документа: 0002638785
Дата охранного документа: 15.12.2017
19.01.2018
№218.016.061e

Способ получения листов из высокомарганцевой стали

Изобретение относится к области металлургии, а именно к получению листов из высокомарганцевой стали, используемых в областях, требующих хорошей способности к холодной формовке, в частности в автомобилестроении. Для повышения пластичности на уровне 30% и прочности стали осуществляют...
Тип: Изобретение
Номер охранного документа: 0002631069
Дата охранного документа: 18.09.2017
19.01.2018
№218.016.0623

Жаропрочный высокоэнтропийный сплав

Изобретение относится к жаропрочным высокоэнтропийным сплавам и может быть использовано для производства элементов и деталей конструкций, работающих в условиях высоких температур в авиационных и ракетных двигателях. Сплав AlNbTiVZr, где х принимает значения от 0,1 до 0,25, имеет следующее...
Тип: Изобретение
Номер охранного документа: 0002631066
Дата охранного документа: 18.09.2017
19.01.2018
№218.016.063b

Способ получения листов из хладостойкой высокопрочной аустенитной стали

Изобретение относится к области металлургии и может быть применено для изготовления элементов конструкций различного назначения, включая объекты инфраструктуры, транспорт и судостроение, рассчитанные для применения в условиях Крайнего Севера. Для повышения показателя ударной вязкости при...
Тип: Изобретение
Номер охранного документа: 0002631067
Дата охранного документа: 18.09.2017
19.01.2018
№218.016.064d

Способ деформационно-термической обработки низколегированной стали

Изобретение относится к области металлургии, а именно к деформационно-термической обработке заготовок из низколегированных сталей, предназначенных для эксплуатации в арктических условиях. Для повышения прочностных свойств и ударной вязкости при отрицательных температурах способ включает...
Тип: Изобретение
Номер охранного документа: 0002631068
Дата охранного документа: 18.09.2017
Показаны записи 61-70 из 98.
26.08.2017
№217.015.e8ad

Способ изготовления биомеханического сенсора для измерения сил адгезии в системе "клетка-клетка"

Изобретение касается способа изготовления биомеханического сенсора для измерения сил адгезии в системе «клетка-клетка». Сущность способа заключается в том, что используют влажную камеру, стандартный tipless кантилевер, суспензию лимфоцитов. Суспензию лимфоцитов готовят путем центрифугирования...
Тип: Изобретение
Номер охранного документа: 0002627455
Дата охранного документа: 08.08.2017
29.12.2017
№217.015.f419

Способ получения листов из сплава системы алюминий-магний-марганец

Изобретение относится к области металлургии, а именно к способам получения листов из алюминиевых сплавов на основе системы алюминий-магний-марганец, применяемых для изготовления ряда ответственных конструкций в судостроении, авиационной и ракетной промышленности, в вагоностроении для скоростных...
Тип: Изобретение
Номер охранного документа: 0002637444
Дата охранного документа: 04.12.2017
29.12.2017
№217.015.f713

Способ получения и состав для получения сухих форм антоцианов синего цвета

Изобретение относится к натуральным синим антоциановым красителям, которые могут быть использованы в пищевой, фармацевтической и косметологической промышленности. Описываются 2 варианта способа получения сухих инкапсулированных в полисахаридную матрицу форм антоцианов синего цвета методом...
Тип: Изобретение
Номер охранного документа: 0002639291
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.f770

Способ получения ряженки с наноструктурированным креатин гидратом

Способ получения ряженки с наноструктурированным креатин гидратом относится к молочной промышленности. Способ включает введение в топленое молоко 4% жирности закваски при температуре 40-41°С, введение наноструктурированной добавки - 150-200 мг креатин гидрата в оболочке из альгината натрия и...
Тип: Изобретение
Номер охранного документа: 0002639290
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.fcf5

Способ прогнозирования риска развития преэклампсии тяжелого течения

Изобретение относится к области медицинской диагностики и касается способа прогнозирования риска развития преэклампсии тяжелого течения у женщин русской национальности, являющихся уроженками Центрально-Черноземного региона России. Способ включает выделение ДНК из периферической венозной крови,...
Тип: Изобретение
Номер охранного документа: 0002638785
Дата охранного документа: 15.12.2017
19.01.2018
№218.016.061e

Способ получения листов из высокомарганцевой стали

Изобретение относится к области металлургии, а именно к получению листов из высокомарганцевой стали, используемых в областях, требующих хорошей способности к холодной формовке, в частности в автомобилестроении. Для повышения пластичности на уровне 30% и прочности стали осуществляют...
Тип: Изобретение
Номер охранного документа: 0002631069
Дата охранного документа: 18.09.2017
19.01.2018
№218.016.0623

Жаропрочный высокоэнтропийный сплав

Изобретение относится к жаропрочным высокоэнтропийным сплавам и может быть использовано для производства элементов и деталей конструкций, работающих в условиях высоких температур в авиационных и ракетных двигателях. Сплав AlNbTiVZr, где х принимает значения от 0,1 до 0,25, имеет следующее...
Тип: Изобретение
Номер охранного документа: 0002631066
Дата охранного документа: 18.09.2017
19.01.2018
№218.016.063b

Способ получения листов из хладостойкой высокопрочной аустенитной стали

Изобретение относится к области металлургии и может быть применено для изготовления элементов конструкций различного назначения, включая объекты инфраструктуры, транспорт и судостроение, рассчитанные для применения в условиях Крайнего Севера. Для повышения показателя ударной вязкости при...
Тип: Изобретение
Номер охранного документа: 0002631067
Дата охранного документа: 18.09.2017
19.01.2018
№218.016.064d

Способ деформационно-термической обработки низколегированной стали

Изобретение относится к области металлургии, а именно к деформационно-термической обработке заготовок из низколегированных сталей, предназначенных для эксплуатации в арктических условиях. Для повышения прочностных свойств и ударной вязкости при отрицательных температурах способ включает...
Тип: Изобретение
Номер охранного документа: 0002631068
Дата охранного документа: 18.09.2017
19.01.2018
№218.016.0690

Способ изготовления съемных протезов

Изобретение относится к медицине, а именно к стоматологии, и предназначено для использования при изготовлении съемного протеза из светоотверждаемого материала. Изготовление включает гипсование восковой композиции протеза в кювету обратным способом, выплавление воска, нанесение изоляционного...
Тип: Изобретение
Номер охранного документа: 0002631106
Дата охранного документа: 18.09.2017
+ добавить свой РИД