×
25.08.2017
217.015.a4c1

Результат интеллектуальной деятельности: СОПЛО ГАЗОСТРУЙНОЙ СИСТЕМЫ УПРАВЛЕНИЯ ВЕРТОЛЕТА

Вид РИД

Изобретение

№ охранного документа
0002607687
Дата охранного документа
10.01.2017
Аннотация: Изобретение относится к области авиации и может быть использовано для вертолетов со струйной системой управления. Механизм управления створками трехстворчатого сопла с управляемым вектором тяги состоит из зубчатого сектора управления положением средней створки, рычагов управления боковыми створками, центральной качалки, связанной тягами с рычагами боковых створок. Центральная качалка связана зубчатой передачей с зубчатым сектором средней створки, причем передаточное отношение от средней створки к центральной качалке составляет 0.70-0.78. Плечи центральной качалки имеют длину 0.3-0.4 ширины входного сечения сопла и угол раскрытия плеч 140°-150°. Рычаги боковых створок имеют плечи длиной 0.3-0.35 и 0.4-0.45 ширины входного сечения сопла и углы заклинения 50°-55° и 55°-60° соответственно, а тяги рычагов боковых створок имеют длину 0.5-0.55 и 0.4-0.45 ширины входного сечения сопла. Достигается уменьшение потерь давления в сопле и соответственно повышение его эффективности, обеспечение необходимого для каждого режима полета соотношения боковой и пропульсивной сил. 1 з.п. ф-лы, 7 ил.

Изобретение относится к области авиации, в частности к газоструйной системе путевого управления и компенсации реактивного момента несущего винта одновинтового вертолета.

Подавляющее большинство современных вертолетов выполнено по одновинтовой схеме. Характерной особенностью этой схемы является необходимость компенсации реактивного момента несущего винта. Наиболее широкое распространение получила в настоящее время схема одновинтового вертолета с рулевым винтом. Однако рулевой винт, при всех своих достоинствах, обладает рядом существенных недостатков. Наличие этих недостатков приводит к постоянным (с самого начального периода развития вертолетов по нынешнее время) попыткам найти эффективную замену рулевому винту. Одним из возможных вариантов такой замены может служить применение на вертолете газоструйной системы управления. Такая система может обеспечить, помимо основной функции - компенсации реактивного момента и путевого управления - ряд дополнительных свойств. В частности, возможно существенное снижение уровня шума, повышение характеристик маневренности, радикальное снижение уровня тепловой заметности, повышение максимальной скорости полета и т.д.

Одним из основных элементов газоструйной системы управления вертолета является реактивное сопло с управляемым вектором тяги. Такое сопло создает существенную часть боковой силы, компенсирующей реактивный момент несущего винта, а также управляющую боковую силу и дополнительную пропульсивную силу на режимах горизонтального полета. К такому соплу предъявляются требования, существенно отличающиеся от требований к самолетным соплам с поворотным вектором тяги. Прежде всего, это существенно увеличенный диапазон углов поворота струи от 90° на режиме висения до ~ -40° на режиме авторотации. При этом необходимо обеспечить минимально возможные потери тяги, по крайней мере, на двух основных режимах - висение (угол поворота струи около 90°) и полет с максимальной скоростью (угол около 10°÷20°).

Известно большое количество применяемых на самолетах конструкций сопел с поворотом вектора тяги, например сопло с отклоняемым вектором тяги (патент № RU 2168047 от 27.05.2001, МПК F02K 1/12, F02K 9/84), содержащее сходящиеся створки, расходящиеся створки, тяги расходящихся створок и управляющее кольцо с подвеской в виде многозвенных петель, складывающихся в радиальных плоскостях, кинематически связанное с тягами расходящихся створок через параллелограммные механизмы. Каждый параллелограммный механизм между ведомым рычагом и тягами створок содержит второе звено в виде второго ведомого рычага, установленного опорой вращения на рычаге-качалке, шарнирно закрепленном на сводящейся створке, и тяг второго звена, причем последние закреплены на рычаге сферическими шарнирами. Основными недостатками такого варианта сопла являются относительно небольшой диапазон углов поворота вектора тяги, недостаточный для газоструйной системы вертолета, а также сложная конструкция механизмов управления элементами сопла.

Известно применение для компенсации реактивного момента несущего винта и для путевого управления реактивного сопла, расположенного на хвостовой балке вертолета (Hanvey S.A. NOTAR - no tail rotor (circulation control tail boom) SETP Techn. Rev., 1982, p. 308-332). Такая система, в сочетании с суперциркуляционным обтеканием хвостовой балки, используется, в частности, на вертолете MD-900 и ряде других вертолетов фирмы McDonnell Douglas. Система NOTAR обеспечивает ряд преимуществ по сравнению с рулевым винтом в части безопасности полета и наземной эксплуатации, снижение шума, улучшение управляемости и пр. К недостаткам такой системы можно отнести увеличение мощности, потребляемой рулевым устройством и значительное повышение вредного сопротивления корпуса вертолета при больших скоростях полета.

Частично эти недостатки устраняются в схеме сопла с управляемым вектором тяги (патент № EP 2619087 (A1) - 2013-07-31 Propulsive Anti-Torque Nozzle System With External Rotating Sleeve For A Rotorcraft, МПК B64C 27/82 (2006.01)), которое содержит входной канал, 2 комплекта пластин, формирующих боковые сопла, размещенные на поворотных участках хвостовой балки, а также две поворотные створки, образующие, при их открытии, хвостовое сопло, создающее пропульсивную силу с возможностью ее поворота на небольшой угол, и механизм управления створками. В этом сопле воздух, отбираемый из внешнего потока и нагнетаемый вентилятором, смешивается с выхлопными газами двигателя и, в зависимости от режима полета, распределяется между поворотными боковыми соплами и створками хвостового сопла. Таким образом, создается боковая сила, необходимая для управления по курсу и для компенсации реактивного момента несущего винта, и (или) пропульсивная сила, обеспечивающая снижение сопротивления корпуса вертолета. К недостаткам такой схемы можно отнести сложную конструкцию рулевого устройства с большим количеством подвижных элементов и системы управления этими элементами. При необходимости создания как боковой, так и пропульсивной компоненты силы тяги сопла, разделение нагнетаемого потока на две части, выдуваемые вбок и назад, энергетически хуже, чем поворот единого потока на соответствующий угол. Кроме того, рассматриваемая схема не позволяет повернуть поток на большие углы (близкие к 90° на режиме висения) при приемлемом уровне гидравлических потерь. К тому же, большое количество створок приводит к повышенным потерям давления в тракте и, соответственно, к повышению потребляемой мощности.

Известно сопло с управляемым вектором тяги (патент № RU 147353 U1 от 22.11.2013, МПК B64C 27/82, B64C 19/02), которое содержит входной канал прямоугольного сечения, поворотные створки и механизм управления створками, к сторонам канала прикреплены две плоские пластины, как продолжение этих сторон, на которых закреплены три створки, выполненные в виде обтекаемого аэродинамического профиля и образующие между собой при всех рабочих положениях щелевые каналы шириной не менее 3% от хорды центральной створки, причем центральная створка имеет максимальную толщину 30%÷50% хорды и максимальную кривизну 5%÷15% хорды, а профили боковых створок имеют максимальную толщину 5%÷20% хорды и максимальную кривизну 3%÷5% хорды. Данное техническое решение принято за прототип.

Недостатком указанного сопла является необходимость реализации согласованного поворота створок, обеспечивающего минимальные потери тяги в широком диапазоне режимов полета.

Задачей данного изобретения является создание такого сопла, которое при относительной простоте конструкции эффективно (с малыми потерями давления) обеспечивает поворот струи нагнетаемого воздуха вбок на режиме висения и, по мере увеличения скорости полета, плавный поворот струи назад, обеспечивая оптимальное соотношение боковой и пропульсивной сил для каждого режима полета.

Технический результат заключается в уменьшении потерь давления в сопле и соответствующем повышении его эффективности, в обеспечении необходимого для каждого режима полета соотношения боковой и пропульсивной сил.

Технический результат достигается тем, что сопло газоструйной системы управления вертолета, содержащее входной канал, три поворотные створки, механизм управления створками, который состоит из зубчатого сектора управления положением средней створки, рычагов управления боковыми створками, центральной качалки, связанной тягами с рычагами боковых створок, причем центральная качалка связана зубчатой передачей с зубчатым сектором средней створки, кроме того, передаточное отношение от средней створки к центральной качалке составляет 0.70…0.78, плечи центральной качалки имеют длину 0.3…0.4 ширины входного сечения сопла и угол раскрытия плеч 140°…150°, рычаги боковых створок имеют плечи длиной 0.3…0.35 и 0.4…0.45 ширины входного сечения сопла и углы заклинения 50°…55° и 55°…60° соответственно, а тяги рычагов боковых створок имеют длину 0.5…0.55 и 0.4…0.45 ширины входного сечения сопла.

Технический результат достигается также тем, что в сопле газоструйной системы управления вертолета центральная качалка связана со средней створкой с помощью тросовой передачи с передаточным отношением 0.7…0.78.

Изобретение поясняется иллюстрациями:

фиг. 1 - общий вид сопла;

фиг. 2 - экспериментальная зависимость угла поворота вектора тяги сопла от угла поворота его средней створки;

фиг. 3 - экспериментальная зависимость оптимального угла поворота левой боковой створки от угла поворота его средней створки;

фиг. 4 - экспериментальная зависимость оптимального угла поворота правой боковой створки от угла поворота его средней створки;

фиг. 5 - общий вид механизма управления положением створок сопла;

фиг. 6 - геометрические параметры элементов механизма управления положением створок сопла;

фиг. 7 - положение створок сопла и элементов механизма управления на различных режимах полета.

К реактивному соплу в составе струйной системы управления вертолета предъявляют требования, существенно отличающиеся от требований к самолетным соплам с поворотным вектором тяги. Прежде всего, это существенно увеличенный диапазон углов поворота струи от 90° на режиме висения до ~ -40° на режиме авторотации. При этом необходимо обеспечить минимально возможные потери тяги, по крайней мере, на двух основных режимах - висение (угол поворота струи около 90°) и полет с максимальной скоростью (угол около 10°÷20°). Кроме того, поскольку оптимальный перепад давления в вертолетном сопле существенно ниже, чем в самолетном, то чувствительность системы к уровню потерь давления гораздо выше.

Исходя из этих условий и было разработано предлагаемое сопло. Общий вид сопла показан на фиг. 1. Входной канал 1 обеспечивает сопряжение выходного сечения хвостовой балки (обычно круглого) с прямоугольным сечением входа непосредственно в сопло. Далее канал ограничивается сверху и снизу плоскими пластинами 2, между которыми размещены поворотные створки 3, 4 и 5. Основным элементом сопла является центральная створка 4, которая, в основном, и определяет угол поворота струи. Экспериментальная зависимость угла поворота струи χ от угла поворота центральной створки ϕ4 показана на фиг. 2. Характер течения в сопле и, соответственно, потери давления в нем в значительной степени определяются взаимным расположением створок на различных режимах работы. Взаимосвязь углов поворота створок, обеспечивающая минимальные потери тяги сопла на всех режимах работы, была определена по результатам экспериментальных исследований. На фиг. 3 показана зависимость угла ϕ3 поворота боковой створки 3, а на фиг. 4 - соответственно угла ϕ5 поворота боковой створки 5 от угла ϕ4 поворота центральной створки 4. Пунктиром на графиках показан экспериментально определенный «коридор» оптимальных значений, соответствующий минимуму потерь давления в сопле. Эта взаимосвязь является существенно нелинейной, что требует применения специального механизма для ее реализации. Сплошной линией на графиках показаны зависимости, обеспечиваемые механизмом предлагаемого сопла.

Схема данного механизма показана на фиг. 5, а обозначения геометрических параметров элементов механизма - на фиг. 6. Размеры всех элементов механизма приведены в виде отношения физического размера к характерному размеру - ширине входного сечения сопла Lвх. Механизм содержит центральную двуплечую качалку 6, жестко связанную с зубчатым сектором 7, который через зубчатый сектор 8 передает вращение на зубчатый сектор 9, жестко связанный с центральной створкой 4. Плечи качалки 6 через тяги 10 и 12 связаны с рычагами 11 и 13, жестко связанными со створками 3 и 5 соответственно.

Механизм работает следующим образом. Управляющий сигнал в виде угла поворота подается на центральную качалку. Через зубчатые секторы 7, 8, 9 поворот с соответствующим передаточным отношением i передается на среднюю створку, положение которой, в основном, определяет поворот вектора тяги. Через тяги 10 и 12 поворот качалки 6 передается на боковые створки 3 и 5 соответственно. Характер перемещений боковых створок в зависимости от поворота качалки 6 и, соответственно, центральной створки 4 определяется соотношением геометрических параметров элементов механизма - длинами плеч качалки 6 - L03 и L05, углом раствора плеч ψ0, а также длинами плеч рычагов L3 и L5 и соответствующих тяг L30 и L50. Последовательность изменения положения створок показана на фиг. 7. На фиг. 7а показано положение створок и элементов механизма на режиме висения при ϕ4≈100°. При этом концы тяги 12 расположены вблизи оси соответствующего плеча качалки 6 и на малом расстоянии от оси поворота качалки. Вследствие этого, как видно на фиг. 7б, поворот качалки на небольшой угол практически не приводит к повороту рычага 13 и створки 5. Вместе с тем, рычаг 11, тяга 10 и соответствующее плечо качалки 6 образуют при этом параллелограммный механизм и угол поворота створки 3 практически пропорционален углу поворота качалки 6 и створки 4. На фиг. 7в показано положение створок, примерно соответствующее крейсерскому режиму полета. При этом постепенно «активируется» перемещение створки 5 и сохраняется движение створки 3. При дальнейшем повороте створки 4, соответствующем режиму авторотации, напротив, перемещение створки 3 практически блокируется, а створка 5 «освобождается». В результате реализуются зависимости углов поворота, показанные на фиг. 3 и 4.

Анализ параметров механизма показал, что желаемый результат достигается в следующем диапазоне значений основных параметров:

- i=0.70…0.78

- ψ0=140°…150°

- L05/Lвх=0.3…0.4

- L03/Lвх=0.3…0.4

- L3/Lвх=0.3…0.35

- L30/Lвх=0.5…0.55

- L5/Lвх=0.4…0.45

- L50/Lвх=0.4…0.45

Приведенные результаты получены при следующих значениях геометрических параметров: i=0.74, ψ0=143°, L05/Lвх=0.367, L03/Lвх=0.333, L3/Lвх=0.333, L30/Lвх=0.52, L5/Lвх=0.407, L50/Lвх=0.433.

Связь центральной качалки со средней створкой сопла может также осуществляться с помощью тросовой или ременной передачи с соответствующим передаточным отношением.

Таким образом, с помощью относительно простого механизма обеспечивается реализация сложного экспериментально определенного закона оптимального взаимного перемещения створок сопла, что обеспечивает минимальные потери давления и максимальную эффективность сопла на всех режимах полета, в чем и заключается технический результат изобретения.


СОПЛО ГАЗОСТРУЙНОЙ СИСТЕМЫ УПРАВЛЕНИЯ ВЕРТОЛЕТА
СОПЛО ГАЗОСТРУЙНОЙ СИСТЕМЫ УПРАВЛЕНИЯ ВЕРТОЛЕТА
СОПЛО ГАЗОСТРУЙНОЙ СИСТЕМЫ УПРАВЛЕНИЯ ВЕРТОЛЕТА
СОПЛО ГАЗОСТРУЙНОЙ СИСТЕМЫ УПРАВЛЕНИЯ ВЕРТОЛЕТА
СОПЛО ГАЗОСТРУЙНОЙ СИСТЕМЫ УПРАВЛЕНИЯ ВЕРТОЛЕТА
Источник поступления информации: Роспатент

Показаны записи 181-190 из 256.
29.03.2019
№219.016.f76c

Способ измерения температуры режущей кромки лезвийного инструмента при высокоскоростном фрезеровании металла

Изобретение относится к измерительной технике, в частности к измерениям температуры в зоне резания лезвийным инструментом с использованием термопары. Техническим результатом является определение температуры детали в фактической точке резания (на режущей кромке инструмента) с максимальной...
Тип: Изобретение
Номер охранного документа: 0002445588
Дата охранного документа: 20.03.2012
04.04.2019
№219.016.fcf9

Термомолекулярный насос (варианты)

Изобретение относится к области физики, в частности к устройствам для прокачки газа. Предлагается термомолекулярный насос, насос без движущихся частей и без рабочих жидкостей. Предлагается двухслойная мембрана, слои которой изготовлены из различных или одинаковых термоэлектрических материалов....
Тип: Изобретение
Номер охранного документа: 0002441174
Дата охранного документа: 27.01.2012
04.04.2019
№219.016.fd13

Способ коррекции результатов измерения тензометрическим мостовым датчиком с инструментальным усилителем

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрического мостового датчика с инструментальным усилителем, запитанных постоянным током. Технический результат: исключение систематических аддитивных и...
Тип: Изобретение
Номер охранного документа: 0002468334
Дата охранного документа: 27.11.2012
10.04.2019
№219.017.0333

Прямоточный воздушно-реактивный двигатель с распределенным по длине тепломассоподводом

Прямоточный воздушно-реактивный двигатель содержит воздухозаборник, газогенератор с топливом, камеру сгорания с блоком горючего и выходное сопло. В камере сгорания установлены подсоединенные к блоку управления топливонесущие секции с соплами для истечения топливных струй из внутренних полостей...
Тип: Изобретение
Номер охранного документа: 0002315193
Дата охранного документа: 20.01.2008
10.04.2019
№219.017.035d

Магнитогазодинамический канал

Изобретение относится к технической физике, к технологии эксплуатации магнитогазодинамических каналов, как МГД-генераторов, так и МГД-ускорителей, и может быть использовано в электротехнической и авиационно-космической промышленности, а также и в других областях техники. В предлагаемом...
Тип: Изобретение
Номер охранного документа: 0002387067
Дата охранного документа: 20.04.2010
10.04.2019
№219.017.0560

Гофрированный газопровод с подавлением шума и вибрации (варианты)

Изобретение относится к гофрированным трубам (в том числе к шлангам), предназначенным для транспортирования газов и газожидкостных смесей. Технический результат, достигаемый при использовании изобретения, - подавление шума и вибрации, возникающих за счет турбулентности внутреннего потока среды...
Тип: Изобретение
Номер охранного документа: 0002369798
Дата охранного документа: 10.10.2009
19.04.2019
№219.017.2d2d

Гидропресс для соединения частей камеры высокого давления

Изобретение относится к области техники высоких давлений и может быть использовано при разработке крупногабаритного оборудования. Гидропресс содержит две поперечины, скрепленные между собой, и гидропривод с поршнем. Он снабжен дополнительным цилиндром с поршнем, диаметр которого равен диаметру...
Тип: Изобретение
Номер охранного документа: 0002250826
Дата охранного документа: 27.04.2005
25.04.2019
№219.017.3b27

Устройство для испытания панелей

Изобретение относится к области испытаний летательных аппаратов на прочность при сложном многокомпонентном нагружении, в частности к испытаниям подкрепленных панелей силового каркаса планера самолета, для определения фактической прочности и устойчивости, а также для выбора их рациональной...
Тип: Изобретение
Номер охранного документа: 0002685792
Дата охранного документа: 23.04.2019
24.05.2019
№219.017.5d97

Способ изготовления маложестких лопаток роторов при одноопорном закреплении на станках с чпу

Изобретение относится к машиностроению и может быть использовано при обработке профиля пера лопаток роторов концевыми фрезами на фрезерных станках с числовым программным управлением (ЧПУ). Способ включает обработку концевой торовой фрезой, перемещаемой эквидистантно обрабатываемой поверхности...
Тип: Изобретение
Номер охранного документа: 0002688987
Дата охранного документа: 23.05.2019
24.05.2019
№219.017.5dc6

Способ регулирования давления в замкнутом объеме и устройство для его реализации

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам. Предлагается способ и устройство для его реализации, в ходе определения разницы между заданным и измеренным давлением могут рассчитывать фиктивную или реальную площадь сечения щели...
Тип: Изобретение
Номер охранного документа: 0002688950
Дата охранного документа: 23.05.2019
Показаны записи 131-137 из 137.
29.12.2017
№217.015.f657

Аэродинамический руль

Изобретение относится к области авиационной техники. Аэродинамический руль состоит из переднего и заднего звеньев, имеющих общую ось вращения. Заднее звено выполнено с осевой компенсацией. Угол отклонения переднего звена пропорционален углу отклонения заднего звена с коэффициентом...
Тип: Изобретение
Номер охранного документа: 0002637150
Дата охранного документа: 30.11.2017
19.01.2018
№218.016.04ee

Устройство для измерения размеров капель в водовоздушных потоках

Устройство для измерения размеров капель воды водовоздушных потоков содержит корпус, державку с кассетой со стеклами, блок управления, подвижной цилиндрический кожух, закрывающий кассету и приводимый в движение микроэлектродвигателем, установленным в корпусе. В кожухе выполнены два...
Тип: Изобретение
Номер охранного документа: 0002630853
Дата охранного документа: 13.09.2017
20.01.2018
№218.016.1604

Способ сборки болтовых соединений силовых конструкций летательных аппаратов

Изобретение относится к авиастроению, в частности к способам сборки силовых агрегатов и элементов конструкции из алюминиевых сплавов с помощью болтов. Способ заключается в том, что болт в отверстие соединяемых деталей устанавливают по скользящей посадке, головку болта вместе с соединяемыми...
Тип: Изобретение
Номер охранного документа: 0002635304
Дата охранного документа: 09.11.2017
04.04.2018
№218.016.305c

Люминесцентное полимерное покрытие для обнаружения повреждений конструкции

Изобретение относится к люминесцентным покрытиям для обнаружения повреждений конструкций и может быть использовано при неразрушающем контроле и диагностике состояния различных конструкций. Люминесцентное покрытие содержит первый по направлению от конструкции индикаторный слой с люминофором и...
Тип: Изобретение
Номер охранного документа: 0002644917
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.328c

Крыло летательного аппарата

Изобретение относится к авиационной технике. Крыло летательного аппарата состоит из центроплана и консолей, выполненных с удлинением λ=7-11, сужением η=3-4.5 и стреловидностью χ=28-35°. Передняя и задняя кромки крыла при виде сверху прямолинейные. Задняя кромка выполнена с наплывом. Имеется...
Тип: Изобретение
Номер охранного документа: 0002645557
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.32d9

Способ обнаружения ударных повреждений конструкции

Изобретение относится к области неразрушающего контроля и касается способа обнаружения ударных повреждений конструкции. Способ включает в себя нанесение на поверхность конструкции люминесцентного покрытия люминесцирующего в видимой области спектра под воздействием УФ-излучения, просмотр...
Тип: Изобретение
Номер охранного документа: 0002645431
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.376b

Способ синхронизации и обеспечения симметрии тяги воздушных винтов силовой установки летательного аппарата и электрическая синхронизирующая трансмиссия для его реализации

Изобретение относится к силовым установкам летательных аппаратов. Способ синхронизации и обеспечения симметрии тяги воздушных винтов (1) силовой установки летательных аппаратов заключается в том, что в случае отказа одного из двигателей внутреннего сгорания (2) муфта свободного хода (4)...
Тип: Изобретение
Номер охранного документа: 0002646696
Дата охранного документа: 06.03.2018
+ добавить свой РИД