×
24.05.2019
219.017.5dc6

Результат интеллектуальной деятельности: Способ регулирования давления в замкнутом объеме и устройство для его реализации

Вид РИД

Изобретение

Аннотация: Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам. Предлагается способ и устройство для его реализации, в ходе определения разницы между заданным и измеренным давлением могут рассчитывать фиктивную или реальную площадь сечения щели утечки/протечки F и определять регулирующий орган - дроссель сброса или наполнения. Технический результат заключается в возможности в условиях неполной информации о причине изменения давления в контуре АДТ получать эту информацию, а также учитывать возмущающий фактор при регулировании давления, и применении в АДТ различного типа с высокой точностью в автоматическом режиме. 2 н.п. ф-лы, 3 ил.

Группа изобретений относится к области аэродинамики, в частности к автоматическим системам управления давлением в замкнутых контурах аэродинамических труб.

Основным условием проведения экспериментов в аэродинамических трубах (АДТ) непрерывного действия замкнутого типа является обеспечение заданного давления в контуре АДТ. Практика показывает, что зачастую эксперименты сопровождаются либо повышением, либо понижением давления воздуха (в общем случае газа) в контуре АДТ по ряду причин, в том числе из-за щелей в конструкции АДТ или неплотно закрытых систем наполнения или (и) сброса.

В условиях неполной информации о причинах изменения давления в контуре АДТ (неопределенности), отсутствует возможность учитывать данный фактор при регулировании давления воздуха.

Известен способ задания давления в контролируемом объеме и установка для его осуществления, заключающиеся в том, что задают «грубо» установленное значение давления в контролируемом объеме трубопроводной магистрали. Периодически измеряют в нем давление и, при отклонении его величины от заданной, вычисляют количество сжатого газа, которое необходимо ввести в контролируемом объеме или удалить из него, задают «грубо» установленное значение давления в контролируемом объеме. Периодически измеряют в нем давление и, при отклонении его величины от заданной, вычисляют количество сжатого газа, которое необходимо ввести в контролируемый объем или удалить из него. Подают или удаляют необходимое количество газа, которое затем «прецизионно» поддерживают для того, чтобы обеспечить его в контролируемом объеме. «Прецизионное» регулирование величины давления в контролируемом объеме осуществляют меняя сопротивление трубопроводной магистрали в схеме регулирования при задании избыточного давления от минимального значения и до максимального значения, прекращая поступление газа, с последующим поддержанием заданного давления в контролируемом объеме путем кратковременного открытия впускного клапана для подачи газа или выпускного клапана для отвода газа из рабочей емкости. При задании разрежения давления - от минимального сопротивления и до максимального значения сопротивления выключением всех клапанов элементов регулирования расхода и затем выпускного клапана, прекращая отвод газа из рабочей емкости. Дальнейшее поддержание заданного разрежения в контролируемом объеме с требуемой дискретностью производят путем кратковременного открытия впускного клапана для подачи газа или выпускного клапана для отвода газа из рабочей емкости. Установка для задания давления в контролируемом объеме содержит источники высокого и низкого давления и входную группу соответственно из впускного и выпускного клапанов со схемой регулирования. Схема регулирования включает в себя входную группу клапанов, трубопроводную магистраль для прохождения газа и последовательно соединенные между собой элементы регулирования расхода, а также рабочую емкость. Входная группа клапанов состоит из параллельно соединенных впускного и выпускного клапанов, подключенных в одной точке к первому из n элементов регулирования расхода. Источники давления связаны с входными вентилями через фильтры защиты системы регулирования от возможных загрязнений (Патент №2495392, МПК G01L 27/00 от 27.12.2011).

Этот способ и устройство могут быть использованы для емкостей относительно малых объемов с малой инерционностью распределения воздуха. Для больших емкостей, в частности для АДТ непрерывного действия с высокой инерционностью изменения давления, этот способ вносит систематическую погрешность в величину измеренного давления. Кроме того, импульсный впуск или сброс воздуха из контура АДТ вносит возмущения в поток, отрицательно влияющие на его качество.

За прототип принято устройство, реализующее способ регулирования давления воздуха в форкамере, содержащее задающее устройство, исполнительный механизм, датчики температуры, давления, положения, а также регулятор давления, выполненный в виде цифровой системы последовательно соединенных блока фильтра нижних частот и блока обращенной модели объекта управления, замкнутых через блок модели объекта управления положительной обратной связью, входы регулятора подключены к задающему устройству и датчикам давления и температуры воздуха в форкамере, температуры и давления воздуха в газгольдере, положения плунжера регулирующего дросселя и критического сечения сопла (Патент на изобретение №2587526, МПК G01M 9/00 от 25.05.2016).

Однако этот способ регулирования давления и регулятор предназначены для АДТ периодического действия, имеющих расход воздуха в атмосферу через априори известную площадь критического сечения сопла Fкр.

В АДТ непрерывного действия замкнутого типа он не применим, т.к. возможен как рост давления в замкнутом объеме за счет изменения угла атаки модели, притока воздуха извне через оболочку контура АДТ, так и падение давления по тем же причинам, т.е. регулировать давление необходимо в условиях неопределенности причин его изменения.

Задачей и техническим результатом изобретения является разработка способа и создание реализующего его устройства регулирования давления воздуха в замкнутом объеме, позволяющего в условиях неопределенности информации о причине изменения давления в контуре рассчитывать значение фиктивной площади сечения щели несанкционированного наполнения или сброса давления воздуха Fщ и определять регулирующий орган - дроссель сброса или наполнения.

Решение поставленной задачи и технический результат достигаются тем, что в способе регулирования давления воздуха в замкнутом объеме, заключающемся в том, что определяют разницу между заданным и измеренным давлением в контролируемом объеме, вычисляют по этой разнице площадь сечения фиктивной щели утечки/протечки Fщ в контролируемом объеме и открывают дроссель наполнения или сброса воздуха трубопроводной магистрали.

Решение поставленной задачи и технический результат достигаются тем, что устройство регулирования давления в замкнутом объеме, содержит трубопроводную магистраль наполнения с дросселем наполнения и датчиком его положения, трубопроводную магистраль сброса с дросселем сброса и датчиком его положения, блок расчета площади сечения щели утечки/протечки Fщ, блок переключения.

Фиг. 1 - структурная схема устройства системы управления давлением воздуха в контуре АДТ непрерывного действия, замкнутого типа дросселями сброса и наполнения;

Фиг. 2 - график переходного процесса наполнения контура АДТ воздухом до заданного давления с учетом утечки воздуха через фиктивную щель сечением Fщ4=0,001 м2;

Фиг. 3 - график переходного процесса сброса воздуха из контура АДТ в атмосферу до заданного давления с учетом протечки воздуха через фиктивную щель сечением Fщ2=0,001 м2.

На фиг. 1 представлена структурная схема включения блока расчета фиктивной площади щели, блока переключения и ключа в систему управления давлением воздуха в контуре АДТ непрерывного действия, замкнутого типа дросселями сброса и наполнения, подведенными к АДТ через трубопроводные магистрали. Регулирование давления воздуха выполняется дросселями наполнения 2 и сброса 4. Газгольдеры 1 через регулирующий дроссель наполнения 2 соединены с контуром АДТ 3, в рабочей части которой расположена испытуемая модель. Регулирующий дроссель сброса 4 соединяет контур АДТ с атмосферой. Задатчик требуемого на эксперимент давления 5 соединен со входами цифровых регуляторов давления 6 и 7 и входом блока 15 расчета фиктивной площади щели утечки/протечки. Также, входы регуляторов 6, 7 и блока 15 расчета фиктивной щели утечки/протечки соединены с выходом датчика давления 12 в газгольдерах, выходом датчика давления 13 в контуре трубы и датчиком 14 атмосферного давления. Вход регулятора 6 соединен с выходом датчика 10 положения плунжера (8 - плунжер) регулирующего дросселя наполнения 2, а вход регулятора 7 соединен с выходом датчика 11 положения плунжера (9 - плунжер) регулирующего дросселя сброса 4. Вход блока расчета фиктивной площади щели утечки/протечки соединен с выходами датчиков 10, 11. Выход блока расчета фиктивной щели утечки/протечки 15 соединен со входом блока переключения 16, определяющего наличие щели утечки или протечки в контуре АДТ или ее отсутствие. Выход переключателя 16 соединен с ключом 17, который имеет три положения:

- положение 1 - в работе находятся регулятор 6 и дроссель наполнения 2;

- положение 0 - дроссели наполнения 2 и сброса 4 закрыты;

- положение 2 - в работе находятся регулятор 7 и дроссель сброса 4.

После наполнения АДТ воздухом до заданного давления, сформированного задатчиком 5 регулирующие дроссели сброса 4 и наполнения 2 принимают закрытое положение. На вход блока 15 расчета фиктивной площади щели поступают сигналы с датчиков 10 (датчик хода плунжера дросселя наполнения 2, S), 11 (датчик хода плунжера дросселя сброса 4, S), 12 (датчик давления воздуха в газгольдерах, Рг), 13 (датчик давления воздуха в контуре АДТ, Р0), 14 (датчик атмосферного давления воздуха) и рассчитывается фиктивная площадь щели, утечки/протечки. Далее выходной сигнал с блока расчета Fщ поступает на вход блока переключения 15, который анализирует величину площади сечения щели, определяет утечку (Fщ>0,0001), протечку (Fщ<0,0001) или ее отсутствие (Fщ=0,0001) и формирует входной сигнал для ключа 17. Ключ 17 выполняет переключение в одно из трех положений:

- положение 1 - регулирование утечки;

- положение 0 - утечки и протечки отсутствуют;

- положение 2 регулирование протечки.

Если ключ 17 занимает положение 1, выходной сигнал с блока переключения 15 поступает на вход регулятора дросселя наполнения 6, куда также подаются сигналы с датчиков давления 12, 13 и с датчика хода плунжера регулирующего дросселя наполнения 10. Выходной сигнал регулятора 6 поступает на вход привода дросселя наполнения 2 и определяет его положение.

Если ключ 17 занимает положение 2, выходной сигнал с блока переключения 15 поступает на вход регулятора дросселя сброса 7, куда также подаются сигналы с датчиков давления 13, 14 и с датчика хода плунжера регулирующего дросселя сброса 11. Выходной сигнал регулятора 7 поступает на вход привода дросселя сброса 4 и определяет его положение.

Если ключ 17 занимает положение 0, значит утечка и протечка воздуха отсутствует, либо уравновешивают друг друга и регулирование давления воздуха в контуре АДТ не требуется, дроссели сброса 4 и наполнения 2 находятся в закрытом состоянии

Основным элементом регуляторов новой системы регулирования является блок вычисления эффективной площади щели, реальной или фиктивной. Формулы расчета блока получены из уравнения математической модели АДТ, описывающего закон сохранения энергии.

На примере уравнения математической модели с учетом утечки воздуха из контура из уравнения сохранения массы (1):

где - расход воздуха через фиктивную или реальную щель утечки;

расход воздуха через дроссель наполнения;

ΔР00зад.0 - разность между заданным и измеренным давлениями;

к - показатель адиабаты для воздуха, равный 1,4;

R - универсальная газовая постоянная;

Тф - температура воздуха в контуре АДТ, К;

Тг - температура воздуха в газгольдерах АДТ, К;

Vф - объем форкамеры АДТ, м3;

qщ4) - приведенный удельный расход воздуха через щель утечки воздуха из контура АДТ;

qдр2) - приведенный удельный расход воздуха через дроссель наполнения.

Протечка воздуха в контур АДТ рассчитывается согласно уравнению:

где - расход воздуха через фиктивную или реальную щель утечки;

- расход воздуха через дроссель сброса.

qщ2) - приведенный удельный расход воздуха через щель протечки воздуха в контур АДТ;

qдр4) - приведенный удельный расход воздуха через дроссель сброса.

Используя уравнения, приведенные выше, получены выражения для расчета постоянной времени Т0 и коэффициента усиления объекта управления К0:

- постоянная времени и коэффициент усиления для дросселя наполнения;

- постоянная времени и коэффициент усиления для дросселя сброса.

В результате получаем формулу апериодического звена для объекта управления:

а привод описывается последовательным соединением интегрирующего и инерционного звеньев:

Передаточная функция цифрового регулятора поддержания давления воздуха в контуре АДТ реализует функцию (согласно прототипу):

Коэффициенты регулятора рассчитываются через текущие параметры объекта регулирования:

где:

Тƒ - постоянная времени фильтра нижних частот;

Тпр, Кпр - постоянная времени и коэффициент усиления приводного устройства соответственно;

Управляющий сигнал регулятора поддержания давления в контуре АДТ реализует функцию:

где Δt - временной интервал между тактами пересчета;

- номера тактов рассогласования;

- рассогласование между заданным Р и измеренным Р0 значениями давления в контуре трубы на тактах соответственно.

Фиг. 2 и 3 иллюстрируют переходный процесс выхода давления воздуха в контуре АДТ на заданное значение при величине фиктивной площади щели утечки и протечки соответственно Fщ4=Fщ2=0,001 м2.

Результаты использования устройства подтверждены математическим моделированием на имитаторе АДТ непрерывного действия, замкнутого типа с присутствием несанкционированных утечек/протечек воздуха. Процесс поддержания давления воздуха в контуре АДТ с учетом утечек иллюстрируется фиг. 3, с учетом протечек иллюстрируется фиг. 4. Как видно из графиков P0(t) давление воздуха поддерживается с заданной точностью за счет открытия регулирующего дросселя на расчетную величину, которая компенсирует утечку/протечку воздуха. Устройство эффективно в АДТ непрерывного действия замкнутого типа, а также применимо для АДТ периодического действия при Fщ=0 м2.


Способ регулирования давления в замкнутом объеме и устройство для его реализации
Способ регулирования давления в замкнутом объеме и устройство для его реализации
Способ регулирования давления в замкнутом объеме и устройство для его реализации
Источник поступления информации: Роспатент

Показаны записи 1-10 из 255.
10.02.2013
№216.012.2454

Способ адаптации рабочей части аэродинамической трубы для получения безындукционного обтекания моделей летательных аппаратов и устройство для его осуществления

Заявленная группа изобретений относится к области экспериментальной аэродинамики и может быть использована при проведении испытаний в трансзвуковых аэродинамических трубах. Предложен новый способ адаптации рабочей части аэродинамической трубы, содержащий новую технологию получения на границах...
Тип: Изобретение
Номер охранного документа: 0002474802
Дата охранного документа: 10.02.2013
20.03.2013
№216.012.302a

Измерительное устройство

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрических мостовых датчиков с инструментальными усилителями, запитанных постоянным током. Техническим результатом изобретения является повышение точности...
Тип: Изобретение
Номер охранного документа: 0002477865
Дата охранного документа: 20.03.2013
10.05.2013
№216.012.3cfa

Способ фрезерования на станках с чпу моделей лопаток роторов газотурбинных двигателей

Изобретение относится к машиностроению и может быть использовано в авиадвигателестроении при обработке профиля пера рабочих лопаток газотурбинных двигателей, в частности аэродинамических моделей лопаток роторов газотурбинных двигателей, имеющих малую толщину и осевые габариты 200-300 мм. Способ...
Тип: Изобретение
Номер охранного документа: 0002481177
Дата охранного документа: 10.05.2013
20.05.2013
№216.012.4044

Система управления самолётом

Изобретение относится к области систем управления летательными аппаратами. Предлагаемая система улучшает характеристики продольного движения за счет введения блока оценки продольной устойчивости самолета и компенсации ее изменения по режимам полета. Ликвидируются характерные для интегральных...
Тип: Изобретение
Номер охранного документа: 0002482022
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.41f7

Способ создания потока газа в гиперзвуковой вакуумной аэродинамической трубе и аэродинамическая труба

Изобретения относятся к области промышленной аэродинамики, в частности к гиперзвуковым аэродинамическим трубам (АДТ). Предложены способ создания потока и аэродинамическая труба (АДТ) непрерывного действия, охватывающая весь гиперзвуковой диапазон скоростей с числами Маха М≥5, причем для...
Тип: Изобретение
Номер охранного документа: 0002482457
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.427e

Аэродинамический стенд для проведения фундаментальных исследований по генерации электроэнергии мгд-методами с использованием в качестве рабочего газа высокотемпературного водорода (h)

Изобретение относится к области энергетики, преимущественно к созданию аварийных энергетических установок большой мощности, работающих на принципе магнитогазодинамического преобразования энергии. Заявленное устройство включает источник высокотемпературного газа, устройство подачи присадки,...
Тип: Изобретение
Номер охранного документа: 0002482592
Дата охранного документа: 20.05.2013
10.07.2013
№216.012.53c7

Треугольное крыло для сверхзвуковых летательных аппаратов

Изобретение относится к области авиационной техники. Треугольное крыло имеет вершину и центральную хорду, расположенные в плоскости симметрии крыла, прямолинейные передние кромки, выходящие из вершины, и неплоскую срединную поверхность. Срединная поверхность выполнена из двух элементов, которые...
Тип: Изобретение
Номер охранного документа: 0002487050
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.53c8

Предкрылок крыла самолета и способ его обтекания

Группа изобретений относится к области авиации. Предкрылок крыла самолета подвижно соединен с основным крылом и содержит аэродинамически обтекаемую поверхность, включающую заднюю нижнюю кромку. Часть задней нижней кромки предкрылка выполнена по форме гладкой волнистой линии либо волнистой линии...
Тип: Изобретение
Номер охранного документа: 0002487051
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.57a0

Устройство для локального подвода энергии к потоку воздуха, обтекающего объект (варианты)

Изобретение относится к аэродинамике и к энергетическим установкам транспортных средств, в частности к устройствам для улучшения аэродинамического качества путем подвода энергии к их внешней поверхности. Устройство для локального подвода энергии к потоку воздуха, обтекающего объект, содержит...
Тип: Изобретение
Номер охранного документа: 0002488040
Дата охранного документа: 20.07.2013
20.07.2013
№216.012.57cb

Способ измерения негерметичности изделий

Изобретение относится к области испытательной техники и может быть использовано для измерения негерметичности изделий, работающих под избыточным давлением. Техническим результатом является повышение точности измерения негерметичности изделия в разных условиях окружающей среды при неодинаковых...
Тип: Изобретение
Номер охранного документа: 0002488083
Дата охранного документа: 20.07.2013
Показаны записи 1-8 из 8.
10.02.2014
№216.012.9f8e

Способ управления гибкими стенками сопла аэродинамической трубы

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам с регулируемыми соплами. Способ заключается в том, что управление гибкими стенками сопла осуществляют автоматическими приводными механизмами по заданной программе. Задание на изменение контура...
Тип: Изобретение
Номер охранного документа: 0002506554
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9f8f

Устройство для согласования приводных рядов гибких стенок сопла аэродинамической трубы

Изобретение касается систем управления в экспериментальной аэродинамике, в частности к аэродинамическим трубам с регулируемыми соплами. Устройство содержит контроллер управления приводами ведомых рядов гибких стенок сопла, приводы управления гибкими стенками сопла, цифровые датчики обратной...
Тип: Изобретение
Номер охранного документа: 0002506555
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9f90

Устройство для управления гибкими стенками сопла аэродинамической трубы

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам с регулируемыми соплами. Устройство состоит из силового механизма, изменяющего его контур по заданной программе, и командного устройства, управляющего этой программой. В контур управления...
Тип: Изобретение
Номер охранного документа: 0002506556
Дата охранного документа: 10.02.2014
10.08.2015
№216.013.68f9

Система подогрева постели

Изобретение относится к бытовым приборам, в частности к системам подогрева постели, и направлено на упрощение устройства подогрева постели. Система подогрева постели состоит из двух параллельно включенных ламп накаливания, установленных на дне теплового ящика, образованного корпусом кровати и...
Тип: Изобретение
Номер охранного документа: 0002558426
Дата охранного документа: 10.08.2015
20.06.2016
№217.015.0363

Регулятор давления воздуха в форкамере аэродинамической трубы с форсированным выходом на заданный режим

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам. Устройство содержит задающее устройство, исполнительный механизм, датчики температуры, давления, положения, регулятор давления. Регулятор давления выполнен в виде последовательно включенных...
Тип: Изобретение
Номер охранного документа: 0002587518
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.04f5

Регулятор давления воздуха в форкамере аэродинамической трубы

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам. Устройство содержит задающее устройство, исполнительный механизм, датчики температуры, давления, положения, а также регулятор давления. Регулятор давления состоит из сумматора отрицательной...
Тип: Изобретение
Номер охранного документа: 0002587526
Дата охранного документа: 20.06.2016
06.07.2018
№218.016.6c9a

Способ управления положением модели в аэродинамической трубе

Изобретение относится к области экспериментальной аэродинамики, в частности, к автоматическим системам управления положением модели в аэродинамических трубах. Модель размещают таким образом, что ее ось вращения находится на равном расстоянии от узлов крепления державки, положение узлов...
Тип: Изобретение
Номер охранного документа: 0002660225
Дата охранного документа: 05.07.2018
07.06.2020
№220.018.24f4

Способ управления положением модели в аэродинамической трубе

Изобретение относится к области экспериментальной аэродинамики, в частности к автоматическим системам управления положением модели в аэродинамических трубах. Способ включает размещение модели на державке с возможностью изменения положения модели в набегающем потоке в одной плоскости по заданной...
Тип: Изобретение
Номер охранного документа: 0002722854
Дата охранного документа: 04.06.2020
+ добавить свой РИД