×
25.08.2017
217.015.9c82

Результат интеллектуальной деятельности: БОРФТОРСОДЕРЖАЩАЯ ЭНЕРГОЕМКАЯ КОМПОЗИЦИЯ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к борфторсодержащим композициям, которые могут быть использованы в качестве высококалорийных компонентов энергетических конденсированных систем (ЭКС), например порохов, пиротехнических и взрывчатых составов, смесевых твердых ракетных топлив. Борфторсодержащая энергоемкая композиция содержит в качестве горючего интеркалированное соединение оксида графита с додекагидро-клозо-додекаборатным соединением при их мольном соотношении 1 к (0.1-0,3) и в качестве окислителя - ультрадисперсный политетрафторэтилен (УПТФЭ) в количестве, обеспечивающем полноту и скорость перехода бора боргидридного соединения в оксофторид бора (BOF), при этом додекагидро-клозо-додекаборатное соединение представляет собой аммонийную соль додекагидро-клозо-додекаборат аммония (NH)BH. Композицию получают смешением горючего в виде водного геля оксида графита и водного раствора додекагидро-клозо-додекабората аммония при их мольном соотношении 1 к (0,1-0,3) с окислителем – УПТФЭ в виде этанольной дисперсии в соответствующем количестве до однородного геля. После чего полученную смесь сушат до постоянной массы. Изобретение обеспечивает упрощение способа и получение термически более устойчивой энергоемкой композиции. 2 н.п. ф-лы, 4 пр.

Изобретение относится к борфторсодержащим композициям, которые могут быть использованы в качестве высококалорийных компонентов энергетических конденсированных систем (ЭКС), например порохов, пиротехнических и взрывчатых составов, смесевых твердых ракетных топлив.

Известно, что бор и его соединения являются одними из самых энергоемких веществ, уступая лишь алюминию и бериллию и их соединениям (Сарнер С. Химия ракетных топлив. М.: Мир, 1969. 488 с.).

Известно применение бора и его более стабильных водородных соединений в качестве энергоемких добавок в ЭКС. В частности, бор входит в пиротехнический состав, содержащий порошок титана, порошок перхлората калия и гексафторалюминат натрия (Пат. РФ №2286325, опубл. 27.10.2006).

Известен замедляющий пиротехнический состав, используемый в детонаторах, содержащий по варианту 1 горючее - аморфный бор, окислитель - монооксид или диоксид титана или их смесь и оксид железа (III) или оксид железа (II, III) или их смесь; по варианту 2 замедляющий пиротехнический состав содержит горючее - аморфный бор, окислитель - оксид железа (III) или оксид железа (II, III) или их смесь. Изобретение направлено на создание замедляющего пиротехнического состава с высокой стабильностью горения, в том числе и после длительного хранения в негерметичном состоянии (Пат. РФ №2230053, опубл. 10.06.2004 г. ). Способ заключается в следующем.

Составляющие ингредиенты после дозировки поочередно засыпают в воду до образования вязкой массы, которую перемешивают в течение 20 минут с помощью электромешалки, затем смесь высушивают при 110°C, высушенную смесь дробят, раздробленные фракции просеивают через сито с ячейками от 0,3 до 1 мм, после чего гранулы запрессовывают в стальные трубки замедляющих элементов. Изобретение обеспечивает высокую стабильность горения, в том числе и после длительного хранения в негерметичном состоянии.

Известны композиции на основе декаборана или алкилдекаборана, а также твердые продукты, получаемые из декаборана и дихлорэтана с AlCl3 или декаборана и ацетиленовых углеводородов в композиции с различными окислителями в качестве ракетного топлива (Сарнер С. Химия ракетных топлив. М.: Мир, 1969. 488 с.).

Известно использование соединений состава (NR1NR2)2B10H10, где R1, R2 - алифатический радикал или Н (водород) (Пат.США №3126305, опубл. 24.03.1964), а также соли NH4B11H14 (Пат. США №3795491, опубл. 05.03.1974) в качестве добавок в ракетные топлива.

Известно, что декагидро-клозо-декабората цезия Cs2B10H10 в смеси с окислителями образует высокоэнергетические горючие составы (Пат. США №3149010, опубл. 15.09.1964).

Известно использование декагидро-клозо-декабората гуанидиния и его производных в воспламеняющихся и пиротехнических составах (пат. США №4108679, опубл. 22.08.1978 г. и пат. США №4130585, опубл. 19.12.1978 г. )

Известно использование двойных солей Cs2B10H10×CsNO3 (Пат. США №3107613, опубл. 22.10.1963 г. ) и Cs2B12H12×CsNO3 (Пат. США №3184286, опубл. 18.05.1965 г. ) для запальных и пиротехнических устройств

Недостатком бора и перечисленных бороводородных соединений, использующихся в качестве горючего в сочетании с кислородсодержащими окислителями, является неполнота их сгорания. Это связано с тем, что в качестве продукта сгорания на поверхности горящей частицы образуется защитный расплав оксида бора, который затрудняет доступ окислителя к ее внутренним слоям. Результатом является замедление скорости горения и неполнота сгорания боргидридного горючего. Это резко ограничивает применение таких композиций в канальных системах, в том числе, в качестве твердого топлива в ракетной технике, поскольку в ходе ее эксплуатации оксид бора может наплавляться на стенки сопла ракетного двигателя, что приводит к его забиванию и выводу из строя. (Энергетические конденсированные системы. Краткий энциклопедический словарь / под ред. Б.П. Жукова. М.: Янус-К, 2000. 596 с.).

Известно (Сарнер С. Химия ракетных топлив. М.: Мир, 1969. 488 с.), что согласно специальным расчетам энергетических параметров двухкомпонентных топлив (горючее - водород, керосин, гидразин, несимметричный гидразин, гидрид бериллия, гидрид алюминия, пентаборан-9, литий, бериллий; окислитель - кислород, диоксид азота, азотная кислота, пероксид водорода, фтор, дифторид кислорода, дифторид азота, трифторид хлора, пентафторид хлора, триоксофторид хлора), топлива на основе В5Н9 по своим совокупным энергетическим характеристикам уступают лишь водороду. При этом они сравнимы с большинством других топлив (на основе лития, гидридов бериллия или алюминия, гидразина) или заметно превосходят остальные топлива (на основе бериллия, керосина, скипидара). Продуктами окисления топлив на основе пентаборана и фторсодержащих соединений являются летучие трифторид BF3 или оксофторид бора (BOF)3. Поэтому в этом случае за счет испарения с поверхности горящей частицы летучих фтористых соединений бора не создается препятствий для подхода окислителя к горючему, что и приводит к полному сгоранию горючего. Хотя теплота образования (BOF)3 (3,15 ккал/г) имеет промежуточное значение между теплотами образования В2О3 (3,02 ккал/г) и BF3 (3,98 ккал/г), (BOF)3 термически более стабилен, чем каждое из указанных соединений. Кроме того, (BOF)3 не диссоциирует при высоких температурах, что положительно отражается на удельном импульсе.

Недостатки таких борфторсодержащих топлив вытекают из свойств компонентов: они представляют собой химически агрессивные, крайне токсичные, нестабильные газы или жидкости, что затрудняет их использование в составе ЭКС без использования криогенной техники (Сарнер С. Химия ракетных топлив. М.: Мир, 1969. 488 с.; Михайлов Б.М. Химия бороводородов. М.: Наука, 1967. 520 с.).

Известны пиротехнические составы на основе смесей политетрафторэтилена ПТФЭ формулы (C2F4)n в виде порошкообразного фторопласта-4 в качестве окислителя и порошков алюминия, магния, титана, циркония в качестве горючего (Долгобородов А.Ю., Махов М.Н., Стрелецкий А.Н., Колбанев И.В., Фортов В.Е. Пиротехнические составы на основе механоактивированных смесей металл-окислитель // Материалы III Всероссийской конф. «Энергетические конденсированные системы». Черноголовка. 2006. С. 32).

Получение таких пиротехнических составов проводят механоактивационной обработкой исходных компонентов в шаровой мельнице.

Недостатком указанных выше композиций является образование при сгорании плавких фторидов, что ограничивает применение таких композиций в канальных системах. Кроме того, удельные теплоты сгорания Mg и Zr до MgF2 (2,84 ккал/г) и ZrF4 (2,39 ккал/г) соответственно ниже удельной теплоты образования (BOF)3 и еще ниже теплоты образования BF3 (Сарнер С. Химия ракетных топлив. М.: Мир, 1969. 488 с.).

Недостатком способа получения вышеуказанных композиций является использование взрывоопасной механохимической обработки исходных компонентов.

Наиболее близкой к заявляемой энергоемкой композиции и способу ее получения является композиция, содержащая в качестве горючего интеркалированное соединение оксида графита ОГ с додекагидро-клозо-додекаборатной кислотой ОГ×nH2B12H12, где n=0,1-0,3, а в качестве окислителя ультрадисперсный ПТФЭ (УПТФЭ), взятого в соотношении, обеспечивающем выделение бора в виде оксофторида бора (Пат. РФ №2479560 на изобретение "Способ получения борфторсодержащей энергоемкой композиции", опубл. 20.04.2013).

Получение борфторсодержащих энергоемких композиций осуществляют в водной среде с применением активационного воздействия на смесь механическим способом, например, в сверхскоростной мешалке или ультразвуковым воздействием следующим образом.

Сначала к водному гелю, содержащему оксид графита ОГ, добавляют ультрадисперсный политетрафторэтилен УПТФЭ в предварительно рассчитанном количестве и осуществляют активационное воздействие на эту смесь одним из указанных выше способов. Активационное воздействие на смесь осуществляют до полного перехода гидрофобных частиц УПТФЭ с поверхности в объем водного геля. Затем к сформировавшемуся однородному гелю добавляют раствор додекагидро-клозо-додекаборной кислоты H2B12H12 в количестве, обеспечивающем мольное отношение оксида графита к додекагидро-клозо-додекаборной кислоте, равное 1 к (0,1÷0,3), и перемешивают смесь до получения гелеобразного целевого продукта с равномерным распределением в нем компонентов.

Недостатком вышеуказанной композиции является ее низкая термостабильность (не выше 100°C).

Недостатком способа получения вышеуказанной композиции является его энерго- и трудозатратность в связи с необходимостью использования специальной техники: сверхвысокооборотной мешалки или ультразвукового генератора.

Задачей изобретения является упрощение способа и получение термически более устойчивой борфторсодержащей энергоемкой композиции, которая может быть использована в качестве высококалорийного компонента конденсированных систем на основе УПТФЭ и интеркалированных соединений оксида графита с додекагидро-клозо-додекаборатами.

Поставленная задача решается борфторсодержащей энергоемкой композицией, в состав которой входят в качестве горючего интеркалированное соединение оксида графита с додекагидро-клозо-додекаборатным соединением при их мольном отношении 1 к (0,1-0,3) и в качестве окислителя - ультрадисперсный политетрафторэтилен УПТФЭ в количестве, обеспечивающем полноту и скорость перехода бора боргидридного соединения в оксофторид бора (BOF)3, при этом додекагидро-клозо-додекаборатное соединение представляет собой додекагидро-клозо-додекаборат аммония (NH4)2В12Н12.

Поставленная задача решается также тем, что в способе получения энергоемкой композиции, включающем смешение горючего в виде водного геля оксида графита ОГ и водного раствора додекагидро-клозо-додекаборатного соединения при их мольном соотношении 1 к (0,1-0,3) с окислителем - ультрадисперсным политетрафторэтиленом УПТФЭ в количестве, обеспечивающем полноту и скорость перехода бора боргидридного соединения в оксофторид бора (BOF)3, до однородного геля и сушку полученной смеси до постоянной массы, при этом в качестве додекагидро-клозо-додекаборатного соединения используют додекагидро-клозо-додекаборат аммония (NH4)2B12H12, а ультрадисперсный политетрафторэтилен УПТФЭ берут в виде этанольной дисперсии.

При этом средняя молекулярная масса УПТФЭ составляет 3200 а.е.м., допустимое значение "n" лежит в интервале 4-60, а среднее значение составляет 32, что соответствует формуле полимера (C2F4)32.

Проведенными исследованиями композиции ОГ×n(NH4)2B12H12 - УПТФЭ установлено, что при n<0,1 тепла, выделяющегося в результате первичной реакции внутримолекулярного взаимодействия ОГ с додекагидро-клозо-додекаборатом аммония, недостаточно для прогрева промежуточных продуктов разложения композиции до температур, необходимых для вовлечения УПТФЭ и кислорода воздуха в процесс их полного сгорания. При содержании додекагидро-клозо-додекабората аммония, большем чем 0,3 моль на 1 моль ОГ, в продуктах первичной реакции между ОГ и (NH4)2B12H12 возрастает доля малоактивной частично окисленной формы додекагидро-клозо-додекабората аммония. Это приводит к снижению температуры продуктов промежуточного разложения композиции, которой недостаточно для вовлечения УПТФЭ и кислорода в процесс их полного сгорания. Термическими исследованиями определена устойчивость заявляемой композиции, которая составляет 160°С, что значительно выше температуры разложения прототипа. Кроме того, экспериментально установлено, что УПТФЭ образует однородные устойчивые дисперсии с этанолом с полным смачиванием частиц фторполимера. Это позволяет кардинально упростить способ получения композиции. Смешение этанольной дисперсии УПТФЭ и водного геля интеркалированного соединения оксида графита (ИСОГ) можно проводить обычной лабораторной мешалкой с низкой скоростью оборотов в течение короткого времени. При этом идет образование однородного геля без его расслоения, коагуляции или разрушения. В результате выполненных исследований было установлено, что заявляемая композиция при быстром нагревании, ударе, трении или ином механическом воздействии способна активно разлагаться, что обеспечивает возможность ее использования в качестве высококалорийных компонентов энергетических конденсированных систем.

Сведений, относящихся к энергоемким композициям, содержащим УПТФЭ с интеркалированными соединениями оксида графита с додекагидро-клозо-додекаборатом аммония и способам их получения, из уровня техники не выявлено.

Оптимальное содержание окислителя УПТФЭ в композиции, которое должно обеспечивать перевод бора в (BOF)3 при ее сжигании на воздухе, определяется расчетным путем.

Например, если в качестве интеркалированного соединения взято соединение состава ОГ×0,3(NH4)2B12H12, то на 1 моль этого ИСОГ нужно взять 0,9 моль (C2F4)32 согласно схеме: ОГ×0,3(NH4)2B12H12+0,9(C2F4)32+O2→1,2(BOF)3.

Более высокое содержание УПТФЭ в композиции приводит не только к нерациональному использованию фторсодержащего окислителя, но и к понижению активности композиций, что подтверждено экспериментально.

Для анализа полученной борфторсодержащей композиции использованы методы рентгенофазового анализа и ИК-спектроскопии.

Рентгенофазовый анализ продукта подтверждает качественный состав композиции. Отражения в области со значениями d=11-12 относятся к ИСОГ, а ряд отражений (4,91, 2,83, 2,43, 2,19 ) характеризует УПТФЭ.

ИК-спектры композиций содержат набор полос поглощения, характеризующих исходные компоненты: ИСОГ - 750, 1080, 1625, 1720, 2480, 3280, 3588 см-1 и УПТФЭ - 500, 530, 625, 720 см-1. Это говорит об их вхождении в состав композиции без химических изменений или химического взаимодействия между компонентами, т.е. представляют собой механическую смесь.

Таким образом, техническим результатом заявляемого изобретения является получение термически устойчивой (до 160°С) борфторсодержащей энергоемкой композиции на основе УПТФЭ и интеркалированных соединений оксида графита с додекагидро-клозо-додекаборатом аммония. Заявляемый способ исключает опасность взрывного взаимодействия между компонентами смеси при ее приготовлении, а также возможность загрязнения композиции при активировании смеси.

Дополнительным техническим результатом является расширение ассортимента средств, которые могут быть использованы в качестве высококалорийных компонентов энергетических конденсированных систем.

Следует также отметить, что важным с прикладной точки зрения свойством ультрадисперсного политетрафторэтилена в составе борфторсодержащих энергоемких композиций является придание готовым композициям свойства гидрофобности, поскольку интеркалированные соединения оксида графита обладают заметной гигроскопичностью.

Кроме того, заявляемая борфторсодержащая энергоемкая композиция обладает следующими преимуществами перед известными:

- более высокой устойчивостью по сравнению с композициями, в которых в качестве фторокислителей используются неустойчивые на воздухе летучие или жидкие соединения (фтор, дифторид кислорода, дифторид азота, трифторид хлора, пентафторид хлора), а в качестве соединений бора - пентаборан-9, декаборан-10 и его производные, имеющие достаточно высокое давление паров при комнатной температуре, склонные к гидролизу;

- нетоксичностью в сравнении с композициями, содержащими фтор, дифторид кислорода, дифторид азота, трифторид хлора, пентафторид хлора, а в качестве соединений бора - петаборан-5 и декаборан-10 и его производные;

- более высокой энергоемкостью по сравнению с композициями, в качестве окислителей в которых используют только кислородные соединения, и более высокой скоростью и полнотой сгорания.

Возможность осуществления изобретения поясняется следующими примерами.

Заявляемый композит может быть получен в различной форме: полосок, порошка, стержней и др. (как и в прототипе).

Пример 1. К 200 мл водного геля, содержащего 1,4388 г (13,20 мг-моль) ОГ, добавляют 5 мл раствора, содержащего 0,7049 г (3,96 мг-моль) (NH4)2B12H12, а затем 20,8503 г спиртовой дисперсии, содержащей 1,1883 г (11,88 мг-моль) УПТФЭ. При таком соотношении компонентов это соответствует композиции состава 0,9(C2F4)32-ОГ×0,3(NH4)2B12H12. Образующуюся смесь перемешивают пропеллерной мешалкой со скоростью 60 об/мин в течение 15 мин. Полученную гелеобразную композицию выливают из стакана на фторопластовую пластину и сушат при 100°С до постоянной массы. Получают 3,31025 г продукта, что соответствует выходу 99,5% от суммы исходных компонентов. При действии открытого пламени образец легко вспыхивает и полностью сгорает на воздухе с полным переходом бора боргидридного компонента в газовую фазу в виде оксофторида бора:

0,9(C2F4)32-ОГ×0,3(NH4)2B12H12+O2→1,2(BOF)3.

Пример 2. К 200 мл водного геля, содержащего 1,3412 г (12,35 мг-моль) ОГ, добавляют 5 мл раствора, содержащего 0,4395 г (2,47 мг-моль) (NH4)2B12H12, и 13.0088 г этанольной дисперсии, содержащей 0,7414 г (7,41 мг-моль) УПТФЭ, что соответствует композиции состава 0,6(C2F4)32-ОГ×0,2(NH4)2B12H12. Далее образовавшуюся смесь перемешивают пропеллерной мешалкой со скоростью 60 об/мин в течение 15 мин. Полученную гелеобразную композицию выливают из стакана на фторопластовую пластину и сушат при 100°С до постоянной массы. Получают 2,5044 г композита, что соответствует его 99,3% выходу от суммы исходных компонентов. При поджигании образец вспыхивает и сгорает с полным переходом бора боргидридного компонента в оксофторид бора:

0,6(C2F4)32-ОГ×0,2(NH4)2B12H12+O2→0,8(BOF)3.

Пример 3. К 200 мл водного геля, содержащего 1,5343 г (14,13 мг-моль) ОГ, добавляют 5 мл раствора, содержащего 0,2509 г (1,41 мг-моль) (NH4)2B12H12, и 10.5952 г этанольной дисперсии, содержащей 0,4240 г (4,24 мг-моль) УПТФЭ. Это соответствует композиции состава 0,3(C2F4)32-ОГ×0,1(NH4)2B12H12. Полученную смесь перемешивают пропеллерной мешалкой со скоростью 60 об/мин в течение 15 мин. Полученную гелеобразную композицию выливают из стакана на фторопластовую пластину и сушат при 100°С до постоянной массы. В результате получают 2,18925 г композиции, что соответствует ее 99,3% выходу от суммы исходных компонентов. При поджигании образец взрывается на воздухе с полным переходом бора боргидридного компонента в газовую фазу в виде оксофторида бора:

0,3(C2F4)32-ОГ×0,1(NH4)2B12H12+O2→0,4(BOF)3.

Пример 4. К 200 мл водного геля, содержащего 1,33185 г (12,26 мг-моль) ОГ, добавляют 5 мл раствора, содержащего 0,65475 г (3,68 мг-моль) (NH4)2B12H12, и 21.5171 г этанольной дисперсии, содержащей 1,22625 г (12,26 мг-моль) УПТФЭ, что соответствует композиции состава 1,0(C2F4)32-ОГ×0,3(NH4)2B12H12. Далее образовавшуюся смесь перемешивают пропеллерной мешалкой со скоростью 60 об/мин в течение 15 мин. Полученную гелеобразную композицию выливают из стакана на фторопластовую пластину и сушат при 100°С до постоянной массы. Получают 3,18395 г композита, что соответствует его 99,1% выходу от суммы исходных компонентов. При поджигании образец вспыхивает и сгорает с полным переходом бора боргидридного компонента в оксофторид бора:

1,0(C2F4)32-ОГ×0,3(NH4)2B12H12+O2→1,2(BOF)3+0,1(C2F4)32.

Небольшой избыток ПТФЭ не сказывается на химической активности композита, но приводит к удорожанию и снижению удельной теплоты сгорания композиции, поскольку избыточный УПТФЭ выступает в качестве балласта.

Источник поступления информации: Роспатент

Показаны записи 81-90 из 128.
08.06.2019
№219.017.75ac

Способ получения борсодержащего биоактивного стекла

Изобретение относится к медицине, а именно к способу получения борсодержащего биоактивного стекла, которое может быть использовано в травматологии, ортопедии, челюстно-лицевой хирургии для создания на имплантатах биоактивного покрытия. Способ включает в себя смешение олеата кальция, олеата...
Тип: Изобретение
Номер охранного документа: 0002690854
Дата охранного документа: 06.06.2019
19.06.2019
№219.017.83cc

Металлооксидный электрод для потенциометрических измерений и способ его изготовления

Изобретение относится к металлооксидному электроду для потенциометрических измерений, содержащему титановую основу с покрытием из оксидов титана, сформированным методом плазменно-электролитического оксидирования. Электрод характеризуется тем, что внешний слой покрытия толщиной 1 мкм...
Тип: Изобретение
Номер охранного документа: 0002691661
Дата охранного документа: 17.06.2019
20.06.2019
№219.017.8d55

Способ определения содержания парафина в нефти, нефтепродуктах и нефтесодержащих отложениях

Изобретение относится к способу определения парафина в нефтесодержащих отложениях, включающий осаждение асфальтенов растворителем, отстаивание реакционной смеси в темном месте и ее последующую фильтрацию, удаление растворителя из полученного фильтрата и адсорбцию смолистых веществ оксидом...
Тип: Изобретение
Номер охранного документа: 0002691958
Дата охранного документа: 19.06.2019
29.06.2019
№219.017.9fe1

Способ получения катализатора дожига дизельной сажи

Изобретение относится к способам получения катализаторов очистки выбросов дизельных двигателей. Описан способ получения катализатора дожига дизельной сажи, включающий смешивание экстракта меди в н-каприловой кислоте и экстракта молибдена в изоамиловом спирте в соотношении, обеспечивающем...
Тип: Изобретение
Номер охранного документа: 0002455069
Дата охранного документа: 10.07.2012
03.07.2019
№219.017.a473

Способ получения сорбентов для извлечения цезия из высокоминерализованных щелочных сред

Изобретение относится к области радиохимии и радиоэкологии и может найти применение для получения сорбентов цезия. Способ включает нейтрализацию резорцина раствором гидроксида щелочного металла с последующей олигомеризацией реакционной смеси путем добавления избытка формальдегида при...
Тип: Изобретение
Номер охранного документа: 0002693174
Дата охранного документа: 01.07.2019
06.07.2019
№219.017.a735

Дигидрат додекагидро-клозо-додекабората 5-аминотетразол кобальта и способ его получения

Изобретение относится к химии полиэдрических боргидридных соединений и 5-аминотетразола, а именно к дигидрату додекагидро-клозо-додекабората 5-аминотетразол кобальта состава [Co(CHN)]BH⋅2HO. Также предложен способ его получения. Дигидрат додекагидро-клозо-додекабората 5-аминотетразол кобальта...
Тип: Изобретение
Номер охранного документа: 0002693700
Дата охранного документа: 04.07.2019
10.07.2019
№219.017.b163

Способ получения катализатора для очистки выхлопных газов двигателей внутреннего сгорания

Изобретение относится к способам получения катализаторов, предпочтительно используемых для очистки выхлопных газов двигателей внутреннего сгорания. Способ включает пропитку инертного носителя смесью органических растворов соединений европия и/или церия, платины и/или палладия и висмута, отгонку...
Тип: Изобретение
Номер охранного документа: 0002465047
Дата охранного документа: 27.10.2012
09.08.2019
№219.017.bd46

Способ изготовления цилиндрического корпуса подводного аппарата

Изобретение относится к технологии формирования слоистых стеклометаллокомпозитов и может найти применение при изготовлении изделий и конструкций повышенной прочности, в частности в судостроении при изготовлении корпусов подводных аппаратов. Цилиндрический корпус подводного аппарата формируют из...
Тип: Изобретение
Номер охранного документа: 0002696536
Дата охранного документа: 02.08.2019
05.09.2019
№219.017.c6ee

Способ получения гибридных композитных материалов с электропроводящим покрытием

Изобретение относится к способу получения конструкционных слоистых композитных материалов на основе препрегов из стеклоткани либо углеткани, пропитанных отверждаемым полимером и может найти применение при изготовлении фюзеляжей в авиационной и аэрокосмической технике, а также композитных...
Тип: Изобретение
Номер охранного документа: 0002699120
Дата охранного документа: 03.09.2019
08.09.2019
№219.017.c933

Способ получения пористых материалов на основе хитозана

Изобретение относится к получению пористого материала на основе хитозана, который может найти применение в клеточной и тканевой инженерии, в медицине в качестве раневых покрытий, кровоостанавливающих и тампонирующих материалов, материалов для заполнения дефектов мягких и костных тканей, в...
Тип: Изобретение
Номер охранного документа: 0002699562
Дата охранного документа: 06.09.2019
Показаны записи 71-75 из 75.
30.10.2019
№219.017.dbc1

Способ формирования композиционных покрытий на магнии

Изобретение относится к способу обработки магниевых сплавов, а именно к композиционным покрытиям, формируемым сочетанием плазменного электролитического оксидирования и распыления фторполимера, и может быть применено в машиностроении, в том числе автомобильной промышленности, приборостроении,...
Тип: Изобретение
Номер охранного документа: 0002704344
Дата охранного документа: 28.10.2019
31.07.2020
№220.018.3a01

Способ исследования свойств защитных покрытий в потоке морской воды и установка для его осуществления

Изобретение относится к средствам исследования свойств защитных покрытий на субстратах, подвергающихся воздействию морской среды, а именно к способам оценки противообрастающих и антикоррозийных покрытий подводной части корпуса судов, а также к установкам для их осуществления. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002728490
Дата охранного документа: 29.07.2020
12.04.2023
№223.018.4861

Способ получения защитных покрытий на магнийсодержащих сплавах алюминия

Изобретение относится к области гальванотехники и может быть использовано при формировании композиционных полимерсодержащих покрытий для защиты от коррозии изделий и конструкций, эксплуатируемых в неблагоприятных погодных условиях, в частности в открытом море на нефтяных платформах, в...
Тип: Изобретение
Номер охранного документа: 0002734426
Дата охранного документа: 16.10.2020
12.04.2023
№223.018.4882

Способ для измерения адгезии льда к поверхностям из различных материалов и исследовательский модуль для его осуществления

Изобретение относится к исследовательской технике. Сущность: на поверхность конуса наносят покрытие, погружают конус в воду или солевой раствор, находящиеся в конической ёмкости, после чего замораживают в термостате, устанавливают в зажимы универсальной разрывной машины и определяют усилие...
Тип: Изобретение
Номер охранного документа: 0002772065
Дата охранного документа: 16.05.2022
17.06.2023
№223.018.8044

Додекагидро-клозо-додекаборат бис(аминогуанидин) никеля и способ его получения

Изобретение относится к химии полиэдрических боргидридных соединений и аминогуанидина, а именно к додекагидро-клозо-додекаборату бис(аминогуанидин) никеля состава Ni(СНN)ВН и способу его получения. Додекагидро-клозо-додекаборат бис(аминогуанидин) никеля получают при взаимодействии в водной...
Тип: Изобретение
Номер охранного документа: 0002762546
Дата охранного документа: 21.12.2021
+ добавить свой РИД