×
25.08.2017
217.015.9bc4

Результат интеллектуальной деятельности: СПОСОБ ПОДГОТОВКИ СУСПЕНЗИИ НАНОЧАСТИЦ МЕТАЛЛОВ ДЛЯ НАРУЖНОГО И ВНУТРЕННЕГО ПРИМЕНЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к химико-фармацевтической промышленности, ветеринарии, сельскому хозяйству и представляет собой способ получения суспензии наночастиц меди для наружного применения на водной основе, характеризующийся тем, что осуществляют ультразвуковое диспергирование наночастиц меди в течение 30 мин с частотой 35 кГц с водным раствором католита с параметрами: Eh=-300 мВ, рН 7-8, стабилизированный аминокислотой треонин в количестве не менее 0,01 мас.% при температуре не выше 40°С. Изобретение позволяет получить стабильно биологически активную суспензию препарата наночастиц меди, не вызывающую токсического действия. 2 з.п. ф-лы, 2 ил.

Изобретение относится к медицине, ветеринарии, фармацевтической промышленности, сельскому хозяйству, рыбоводству и другим областям техники.

Способ представляет собой модель подготовки препаратов из наночастиц металлов на водной основе для наружного и внутреннего применения.

Наночастицы металлов и их соединения в настоящее время нашли широкое применение в различных областях, в том числе в биологии и медицине в качестве препаратов микроэлементов. Наличие низкой токсичности для организма в сравнении с широко применяемыми препаратами микроэлементов, высокая биодоступность, определяемая малыми размерами, явилась определяющим в их повсеместном применении [1, 2, 3, 4].

В этой связи определенный интерес представляют исследования, направленные на создание новых препаратов на основе наночастиц.

Одним из направлений в вопросе создания и совершенствования нанопрепаратов является уточнение размера наночастиц и способ их подготовки. Установлены различия в биологических свойствах препаратов, содержащих высокодисперсные частицы разного размера, уменьшение их размера повышает абсорбцию элемента [5, 6, 7].

Известен способ применения препарата наночастиц в виде мазей или свечей, характеризующийся пролонгированным действием и стабильностью при хранении [8].

Однако данный способ применения препарата на основе наночастиц является узконаправленным, применим для наружного применения, только в области фармакологии и требует при производстве нескольких дополнительных компонентов.

В связи с этим альтернативным решением является способ подготовки препаратов наночастиц на водной основе, позволяющей использовать препарат как для наружного, так и для внутреннего применения.

Для исследования нами были использованы наночастицы меди со следующими физико-химическими характеристиками: средний размер, имеющий сферическую форму, составляет 103±2 нм; содержание кристаллической меди в ядре частиц - 96±4,5%; оксида меди - 4±0,4%; толщина оксидной пленки на поверхности наночастиц - 6 нм [9, 10]. Наночастицы меди получали методом высокотемпературной конденсации на установке Миген-3 [11].

С целью повышения стабилизации полезных биологических и химических свойств водных препаратов высокодисперсных частиц меди вместо дистиллированной воды использовали электрохимически активированный католитный водный раствор со стабилизатором со следующими параметрами Eh=-300 мВ, рН 7-8. Стабилизатор представляет собой аминокислоту треонин в количестве не менее 0,01 мас. % [12, 13].

Электрохимическая активация воды осуществлялась на установке «ЭСПЕРО-1» Ташкентской фирмы.

Согласно изобретению предлагается на стадии подготовки суспензии осуществлять ультразвуковое диспергирование наночастиц меди с католитной водной средой, что улучшает смачивание наночастиц и дает возможность увеличить их удельную поверхность и, таким образом, снизить скорость осаждения и повысить равномерность распределении частиц в суспензии. Процесс ведут при температуре не выше 40°С. Соотношение компонентов суспензии определяется в зависимости от назначения.

Определение времени диспергирования суспензии наночастиц меди проводилось нами путем обработки ультразвуком частотой 35 кГц (f - 35 кГц, N - 300 Вт, А - 10 мкм) в течение 0,33; 0,66; 1; 1,5; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15 и 30 мин. Полученные образцы стерилизовали ультрафиолетом.

Определение морфометрических характеристик частиц в полученных образцах проводилось методом атомно-силовой микроскопии в контактном режиме с использованием мультимикроскопа SMM-2000 (ОАО «ПРОТОН-МИЭТ», Россия). Опытные образцы препарата меди в объеме 20 мкл наносили на свежий скол слюды и высушивали при комнатной температуре. В процессе сканирования использовались кантилеверы MSCT-AUNM (Pack Scientific Instruments, США) с жесткостью балки 0,01 Н/м и радиусом кривизны иглы 15-20 нм. Количественный морфометрический анализ полученных изображений проводили с использованием штатного программного обеспечения микроскопа.

Определение биологической активности полученных суспензий было изучено в тесте ингибирования бактериальной люминесценции. В качестве объекта использован генно-инженерный люминесцирующий штамм Есherichia coli K12 TG1, конститутивно зкспрессирующий luxСDАВЕ-гены природного морского микроорганизма Photobacterium leiongnathi 54D10, производство HBO «Иммунотех» (Россия, Москва) в лиофилизированном состоянии под коммерческим названием «Эколюм». Непосредственно перед проведением исследований данный препарат восстанавливали добавлением охлажденного электрохимически активированного католитного водного раствора со стабилизатором и стандартизировали до оптической плотности 0,3 при длине волны 600 нм. Суспензию выдерживали при температуре +2… +4°С в течение 30 мин, после чего доводили температуру бактериальной суспензии до 15-25°С.

Водные католитные суспензии наночастиц меди для оценки биологической активности готовились в концентрации 20 мМ, характеризующейся как биотическая в отношении живой клетки [14].

При проведении теста использовался алгоритм, аналогичный использованному Д.Г. Дерябиным с соавт. (2011) при анализе биотоксичности ионов, нано- и микрочастиц металлов. Для этого в ячейки 96-луночных планшетов вносили тестируемые препараты с суспензией люминесцирующих бактерий в соотношении 1:1, после чего планшет помещали в измерительный блок анализатора микропланшетного Infinite PRO F200 (TECAN, Австрия), осуществляющего регистрацию интенсивности свечения полученных смесей в течение 180 мин с интервалом 3 мин. Результаты влияния препарата наночастиц меди на интенсивность бактериальной биолюминесценции (I) оценивали с использованием формулы

,

где Ik и Io - интенсивность свечения контрольных к опытных проб на 0-й и n-й минутах измерения.

Статистическую обработку полученных данных проводили с использованием программного пакета «Statistica 6.0», включая определение средней арифметической величины (М) и стандартной ошибки средней (m). Достоверными считали результаты при Р≤0,05.

Проведенные нами исследования показали, что наиболее интенсивное разрушение агломератов наночастиц частиц меди на более мелкие происходит в первые 5-6 мин обработки ультразвуком, тогда как последующее увеличение времени диспергирования не приводит к значительным разрушениям агломератов наночастиц. Динамика значений размеров при увеличении времени воздействия ультразвуком показана на фиг. 1.

Агломераты препарата меди на основе электрохимически активированного антиокислительного католитного водного раствора со стабилизатором, полученные в результате диспергирования в течение первых 14 минут, были неоднородны по размерам.

Агломераты в образцах, подвергшихся обработке ультразвуком в течение 0,33-1,5 мин до 85%, были представлены частицами сферической формы размером от 200 до 980 нм. Средний размер агломераций наночастиц меди, полученных в течение первых 0,33 мин воздействия ультразвуком, составил 937±24,6 нм. Увеличение времени воздействия ультразвуком на опытные образцы от 2 до 14 мин позволило уменьшить размер с 515 до 200 нм. Препараты, полученные в результате обработки ультразвуком в течение 15 и 30 мин на 92 и 98%, были представлены отдельными наночастицами, на 8 и 2% агломератами, размером в среднем 200-400 нм.

Реализация теста ингибирования бактериальной биолюминесценции при контакте E.сoli TG1 с водными образцами препарата меди, полученными при диспергировании в течении 0,33-15 мин. в концентрации 20 мМ и содержащими агломераты наночастиц, показала отсутствие значимого изменения динамики свечения бактерий в сравнении с контролем. В тоже время оценка интенсивности биолюминесценции при контакте с водными образцами, полученными при обработке ультразвуком в течение 30 мин и содержащими наночастицы, показало проявление биологической активности препарата сохраняющейся в течение эксперимента.

Интенсивность свечения Е.соli с клонированными luxCDABЕ-генами Р. leiognathi при контакте с опытными образцами суспензий препарата меди, подвергшихся ультразвуковому воздействию в течение 0,33, 0,66, 1, 1,5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 и 30 мин, показана на фиг. 2; где контроль «K» представляет собой водный электрохимический активированный католитный раствор без внесения препарата меди.

Зависимость времени ультразвукового диспергирования суспензий наночастиц меди в водном католите на равномерность и однородность распределения отдельных наночастиц в нашем эксперименте показана интенсивностью свечения бактерий в течение 180 мин.

В результате проведенного эксперимента было установлено, что для получения однородных, биологически и химически активных препаратов наночастиц металлов на основе электрохимически активированного католитното водного раствора со стабилизатором, не оказывающих токсического действия, необходима обработка ультразвуковым излучением в течение 30 мин частотой 35 кГц.

Список литературы

1. Zhang I, Wang Н, Yan X, Zhang L. 2005. Comparison of short-term toxicity between Nano-Se and selenite in mice. LifeSci. Jan 21; 76(10):1099-109.

2. Hao L, Wang Z, Xing B. 2009. Effect of sub-acute exposure to ТiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinuscarpio). J EnvironSci (China); 21(10):1459-66.

3. Wang H, Sun X, Liu Z, Lei Z. 2014. Creation of nanopores on graphene planes with MgO template for preparing high-performance supercapacitor electrodes. Nanoscale. May 7.

4. Rohner F, Ernst FO, Arnold M, Hilbe M, Biebinger R, Ehrensperger F, Pratsinis SE, Langhans W, Hurrell RF, Zimmermann MB. 2007. Synthesis, characterization, and bioavailability in rats of ferric phosphate nanoparticles. I Nutr.Mar; 137(3):614-9.

5. Yang L, Kuang H, Zhang W, Aguilar ZP, Xiong Y, Lai W, Xu H, Wei H. 2014 Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice. Nanoscale. Dec 11; 7(2):625-36. doi: 10.1039/c4nr05061d.

6. Cho WS, Kim S, Han BS, Son WC, Jeong J. 2009. Comparison of gene expression profiles in mice liver following intravenous injection of 4 and 100 nm-sized PEG-coated gold nanoparticles. Toxicol Lett.; 191:96-102.

7. Prietl B, Meindl C, Roblegg E, Pieber TR, Lanzer G, . 2014. Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell BiolToxicol. Feb; 30(1):1-16. doi. 10.1007/s10565-013-9265-y. Epub 2013 Nov 29.

8. Патент на изобретение RU №2296571 Ранозаживляющий состав и способ его получения. Опубликовано 10.04.2007.

9. Нотова С.В., Тимашева А.Б., Лебедев С.В., Сизова Е.А., Мирошников С.А. Элементы статус и биохимический состав крови лабораторных животных при внутримышечном введении аспаргината и наночастиц, меди // Вестник Оренбургского государственного университета, №122, 2013. - С. 159-163.

10. Яушева Е.В., Мирошников С.А., Иван О.В. Оценка влияния наночастиц металлов на морфологические показатели периферической крови животных // Вестник Оренбургского государственного университета, №12, 2013. - С. 203-207.

11. Ген М.Я., Миллер А.В. Авторское свидетельство СССР №814432, 1981. Бюл. №11.

12. Патент на изобретение RU №2234945 Стабилизатор водного раствора и водосодержащего сырья с самопроизвольно изменяющимися окислительно-восстановительными свойствами. Опубликовано 27.08.2004.

13. Патент на изобретение RU №2367513 Способ получения полимерного покрытия на поверхности наночастиц. Опубликовано 20.09.2009.

14. Дерябин Д.Г., Алешина Е.С., Дерябина Т.Д., Ефремова Л.В. 2011. Биологическая активность ионов, нано- и микрочастиц Сu и Fe в тесте ингибирования бактериальной биолюминесценции // Вопросы биологической, медицинской и фармацевтической химий. №6. С. 31-36.


СПОСОБ ПОДГОТОВКИ СУСПЕНЗИИ НАНОЧАСТИЦ МЕТАЛЛОВ ДЛЯ НАРУЖНОГО И ВНУТРЕННЕГО ПРИМЕНЕНИЯ
СПОСОБ ПОДГОТОВКИ СУСПЕНЗИИ НАНОЧАСТИЦ МЕТАЛЛОВ ДЛЯ НАРУЖНОГО И ВНУТРЕННЕГО ПРИМЕНЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 51-58 из 58.
18.05.2018
№218.016.510b

Способ повышения продуктивности цыплят-бройлеров

Изобретение относится к птицеводству, в частности к способу повышения продуктивности цыплят-бройлеров. Способ включает скармливание в составе основного рациона экстракта коры дуба в суточной дозе 2,5 мл/кг живой массы и фермента Глюколюкс при норме ввода 5 г/10 кг корма в течение всего периода...
Тип: Изобретение
Номер охранного документа: 0002653372
Дата охранного документа: 08.05.2018
25.06.2018
№218.016.66ff

Способ повышения стрессоустойчивости животных и сокращения потерь продукции при транспортировке и предубойном содержании

Изобретение относится к области животноводства. Способ предусматривает скармливание бычкам за 5-7 суток до транспортировки с концентратами смесь дилудина и энергосила при соотношении компонентов 1:3 в дозе 40-50 мг на 1 кг живой массы. Обеспечивается сокращение потерь продукции при...
Тип: Изобретение
Номер охранного документа: 0002658360
Дата охранного документа: 21.06.2018
25.06.2018
№218.016.671c

Способ повышения продуктивности цыплят-бройлеров путем внутримышечных инъекций лиозолей наноформ железа и меди в смеси со стабилизированным электрохимически активированным водным раствором католита

Изобретение относится к сельскому хозяйству, а именно к способу повышения продуктивности цыплят-бройлеров при совместном применении внутримышечных инъекций наноформ железа и меди с электрохимически активированным католитом. Способ включает внутримышечные инъекции в бедро цыплят-бройлеров в...
Тип: Изобретение
Номер охранного документа: 0002658391
Дата охранного документа: 21.06.2018
06.12.2018
№218.016.a3fe

Способ повышения питательности грубых кормов при скармливании их крупному рогатому скоту

Изобретение относится к отрасли сельского хозяйства, в частности к способу повышения питательности грубых кормов, используемых в составе рационов крупного рогатого скота. Способ включает кавитационную обработку грубых кормов на ультразвуковом кавитаторе, диапазон частот звуковых колебаний...
Тип: Изобретение
Номер охранного документа: 0002674068
Дата охранного документа: 04.12.2018
09.05.2019
№219.017.49ef

Способ комплектования стада мясного скота желательного типа

Изобретение относится к животноводству, в частности к мясному скотоводству. Способ комплектования стада мясного скота желательного типа обеспечивает определение и прогнозирование племенной ценности коров, а также учитывает селекционную значимость и экономическую характеристику отдельных...
Тип: Изобретение
Номер охранного документа: 0002687183
Дата охранного документа: 07.05.2019
29.05.2019
№219.017.637f

Способ определения генетического потенциала молочной продуктивности тёлок крупного рогатого скота мясных пород

Изобретение относится к области биотехнологии и представляет собой способ определения генетического потенциала молочной продуктивности телок крупного рогатого скота мясных пород, включающий отбор цельной крови у телок в возрасте не менее 3 месяцев, выделение ДНК с установлением генотипов...
Тип: Изобретение
Номер охранного документа: 0002688336
Дата охранного документа: 21.05.2019
19.06.2019
№219.017.83f8

Способ применения гамма-окталактона в качестве ингибитора системы "кворум сенсинга" luxi/luxr типа у бактерий

Изобретение относится к микробиологии и фармацевтике и может быть использовано для применения гамма-окталактона в качестве ингибитора системы «кворум сенсинга» LuxI/LuxR типа у бактерий. Изобретение обеспечивает предупреждение и лечение бактериальных инфекций растений, животных и человека,...
Тип: Изобретение
Номер охранного документа: 0002691634
Дата охранного документа: 17.06.2019
14.07.2019
№219.017.b413

Способ подготовки корма для скармливания жвачным животным

Изобретение относится к отрасли сельского хозяйства, в частности к способу производства кормовых высокоэнергетических жировых добавок жвачным животным. Способ включает барогиротермическую обработку масложировой кормовой смеси, мас. %: ячменя дробленого - 81,5, фуза-отстоя – 8, стеариновой...
Тип: Изобретение
Номер охранного документа: 0002694409
Дата охранного документа: 12.07.2019
Показаны записи 51-60 из 91.
17.07.2019
№219.017.b5bf

Способ размножения вермикультуры красного дождевого червя eisenia foetida

Изобретение относится к сельскому хозяйству, а именно к размножению беспозвоночных червей. Способ размножения вермикультуры красного дождевого червя Eisenia foetida, включает поддержание влажности корма-субстрата в пределах 65-85% при рН 6,5-7,5, при этом влажность и рН субстрата поддерживаются...
Тип: Изобретение
Номер охранного документа: 0002694554
Дата охранного документа: 16.07.2019
19.07.2019
№219.017.b64f

Способ идентификации видовой принадлежности баранины и говядины в продовольственном сырье, кормах и пищевых продуктах

Изобретение относится к области биотехнологии. Изобретение представляет собой способ идентификации видовой принадлежности баранины и говядины в продовольственном сырье, кормах и пищевых продуктах, включающий выделение ДНК из баранины (Ovis) и говядины (Bos) сорбционным методом, постановку...
Тип: Изобретение
Номер охранного документа: 0002694713
Дата охранного документа: 16.07.2019
15.08.2019
№219.017.bfe5

Способ предпосевной одноразовой обработки семян гороха pisum sativum l.

Изобретение относится к области сельского хозяйства. Способ предпосевной обработки семян гороха Pisum sativum L. включает обработку семенного материала эмульсией ЭХА католитом с рН 8,6-9,2 и редокс-потенциалом Eh=-400…-450 мВ, стабилизированным аминокислотой глицин в количестве 0,01мас.%,...
Тип: Изобретение
Номер охранного документа: 0002697277
Дата охранного документа: 13.08.2019
07.09.2019
№219.017.c8d7

Способ отбора лошадей с низким уровнем обмена токсичных элементов по желательному генотипу

Изобретение относится к области биотехнологии. Изобретение представляет собой способ отбора лошадей с низким уровнем обмена токсичных элементов по желательному генотипу для селекционного процесса, включающий определение полиморфизма микросателлитной ДНК по локусу HMS7, отбор животных производят...
Тип: Изобретение
Номер охранного документа: 0002699520
Дата охранного документа: 05.09.2019
02.10.2019
№219.017.cc28

Способ прогнозирования молочной продуктивности коров по элементному составу шерсти

Изобретение относится к области биотехнологии. Изобретение представляет собой способ прогнозирования молочной продуктивности коров по элементному составу шерсти, включающий отбор образца шерсти массой не менее 0,4 г с верхней части холки на 30 сутки после отела, дальнейшую оценку концентрации...
Тип: Изобретение
Номер охранного документа: 0002701350
Дата охранного документа: 25.09.2019
02.10.2019
№219.017.cde8

Способ повышения продуктивности цыплят-бройлеров

Изобретение относится к области биотехнологии. Изобретение представляет собой способ повышения продуктивности цыплят-бройлеров, включающий использование в поении сельскохозяйственной птицы водного электрохимически активированного (ЭХА) стабилизированного католитного раствора с химически чистым...
Тип: Изобретение
Номер охранного документа: 0002700619
Дата охранного документа: 18.09.2019
02.10.2019
№219.017.ced2

Способ предпосевной обработки семян яровой сильной пшеницы

Изобретение относится к сельскому хозяйству, а именно к новым регуляторам роста, которые могут быть использованы для предпосевной обработки семян зерновых культур, преимущественно пшеницы. Способ предпосевной обработки семян яровой сильной пшеницы Юго-Восточная 2 включает обработку суспензией с...
Тип: Изобретение
Номер охранного документа: 0002700616
Дата охранного документа: 18.09.2019
02.10.2019
№219.017.cee7

Способ снижения эндогенных потерь эссенциальных элементов (co, i, zn) из организма животных

Изобретение относится к биотехнологии и может быть использовано в решении вопросов по влиянию на снижение эндогенных потерь эссенциальных элементов из тела животных. Способ снижения эндогенных потерь кобальта, йода и цинка из организма животных включает введение крысам линии Wistar per os один...
Тип: Изобретение
Номер охранного документа: 0002700617
Дата охранного документа: 18.09.2019
02.10.2019
№219.017.cf53

Способ преодоления воздействия некурительных табачных изделий в организме лабораторных животных

Изобретение относится к области биотехнологии. Изобретение представляет собой способ преодоления воздействия некурительных табакосодержащих изделий в организме лабораторных крыс, включающий введение ректальным способом лабораторным крысам линии Wistar «Насвая» в количестве 0,05 мг/гол., с...
Тип: Изобретение
Номер охранного документа: 0002700618
Дата охранного документа: 18.09.2019
02.10.2019
№219.017.cf61

Способ выявления днк провируса лейкоза крупного рогатого скота (bovine leukosis virus, blv)

Изобретение относится к области биотехнологии. Изобретение представляет собой способ выявления ДНК провируса лейкоза крупного рогатого скота (Bovine leukosis virus, BLV), включающий выделение ДНК из биологического материала от инфицированных животных сорбционным методом, постановку одноэтапной...
Тип: Изобретение
Номер охранного документа: 0002700245
Дата охранного документа: 13.09.2019
+ добавить свой РИД