×
13.01.2017
217.015.8bf2

Результат интеллектуальной деятельности: ЛЮМИНЕСЦИРУЮЩИЙ СТЕКЛОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к прозрачным стеклокристаллическим оксидным материалам, которые могут использоваться в качестве активной части конверторов в видимую область спектра УФ излучения солнечно-слепого диапазона. Технический результат изобретения - создание прозрачного стеклокристаллического материала на основе γ-GaO, люминесцирующего в синей области спектра с минимальным откликом при возбуждении на длине волны >290 нм. Стеклокристаллические материалы имеют следующий состав, мас.%: LiO 0,03-3,02; NaO 0,08-6,07; GaO 27,9-52,5; SiO 15,4-25,5; GeO 26,8-44,4. 4 ил., 2 табл.

Изобретение относится к прозрачным стеклокристаллическим оксидным материалам, которые могут использоваться в качестве активной части конверторов в видимую область спектра УФ излучения солнечно-слепого диапазона.

Особый интерес представляют прозрачные стеклокристаллические материалы на основе кристаллов Ga2O3, которые характеризуются большой шириной запрещенной зоны (Eg≈4,9 эВ) и способностью люминесцировать в видимой части спектра [1]. Нанопорошки γ-Ga2O3 также люминесцируют в синей области спектра [2]. Однако на зернах порошковых люминофоров происходит сильное рассеяние и преломление полезного излучения, что приводит к его большим потерям. Кроме того, применение порошковых люминофоров, например, для создания твердотельных источников света, связано с использованием клеевого композита на органической основе, что значительно ограничивает их температурный диапазон применения. В отличие от люминесцирующих нанопорошков γ-Ga2O3 выделение этой фазы в матрице стекла позволит получить прозрачный стеклокристаллический материал с высокой термо- и химической стабильностью. Это обусловливает возможность применения подобного материала, в том числе и в форме волокна, для визуализации и детектирования УФ излучения (детекторы типа solar-blind) в промышленных установках, медицинских приборах, при появлении открытого пламени.

Фаза γ-Ga2O3 обнаружена в допированном NiO стекле расчетного состава 4,5Li2O-50,5Ga2O3-45,0SiO2 (мас.%) [3], и вполне вероятно наличие в них синей люминесценции, которая, однако, была не выявлена. Кроме того, варка галлиевосиликатных стекол, причем только лабораторных образцов, осуществляется при температурах не ниже 1580°C в течение нескольких (не менее 2) часов. Это означает повышение температуры при переходе к большим объемам варки с использованием операций бурления и перемешивания, что чрезвычайно затрудняет реализацию подобной технологии в производстве.

Наиболее близким аналогом к заявляемому материалу является легированный NiO прозрачный стеклокристаллический материал состава (мас.%): (1,3-2,3)Li2O-(1,5-2,7)Na2O-(32,5-37,9)Ga2O3-(7,0-21,2)SiO2-(37,0-56,5)GeO2-(0,01-0,8)NiO [4]. Недостатком прототипа является низкая эффективность люминесценции в видимой области из-за наличия в составе легирующей примеси NiO, снижающего количество собственных дефектов выделяющейся кристаллической фазы γ-Ga2O3. Это не позволяет использовать прототип в качестве визуализатора и детектора УФ излучения для применений в биологических и медицинских исследованиях, в системах для контроля возгораний, в портативных УФ датчиках для защиты кожи, а также в широкой сфере задач, связанных с юстировкой оптических и лазерных систем, визуализацией невидимого пятна лазера, регулировкой его профиля, в «солнечно-слепых» системах контроля состояния озонового слоя и т.д.

Техническим результатом настоящего изобретения является разработка прозрачного стеклокристаллического материала на основе γ-Ga2O3, люминесцирующего в синей области спектра с минимальным откликом при возбуждении на длине волны>290 нм.

Технический результат достигается составом стекла, включающего Li2O, Na2O, Ga2O3, SiO2, GeO2, при следующем соотношении компонентов (мас.%):

Li2O 0,03-3,02
Na2O 0,08-6,07
Ga2O3 27,9-52,5
SiO2 15,4-25,5
GeO2 26,8-44,4

Изменение концентрации вышеуказанных оксидов в заявляемых пределах слабо влияет на положение синей полосы люминесценции, а только на интегральную интенсивность люминесценции заявляемого стекла и его кристаллизационные свойства.

В таблице 1 представлен ряд составов синтезированных стекол, на основе которых получены стеклокристаллические материалы.

Режимы термообработок, интегральная относительная интенсивность люминесценции (при длине волны возбуждения λв=254 нм) и пропускание (для образцов толщиной 1 мм при λ=450 нм) полученных стеклокристаллических материалов представлены в таблице 2.

Достижение заявляемого технического результата подтверждается следующими примерами.

Пример 1

Готовят шихту для синтеза стекла №1 (Таблица 1). В качестве исходных компонентов для варки стекол используют SiO2, GeO2 марки «осч», Ga2O3, Li2CO3, Na2CO3, NiO марки «хч». Исходные компоненты взвешивают на аналитических весах с точностью 0,001 г и тщательно перемешивают в фарфоровой ступке. Варку стекол проводят в электрических лабораторных печах сопротивления в платиновых тиглях объемом ~40 мл при 1480°C в окислительных условиях (на воздухе). После этого расплав выливают из тигля на металлическую плиту и прессуют другой плитой до толщины 1,5-2 мм, а затем отжигают при температуре вблизи Tg. С целью получения люминесцирующего прозрачного стеклокристаллического материала на основе галлатной кристаллической фазы образцы стекол подвергают термообработкам в области температуры максимума экзотермического пика. Режимы термообработок выбраны на основе результатов дифференциальной сканирующей калориметрии (ДСК) (Фиг. 1. ДСК кривые стекол).

ДСК проводили с использованием термоанализатора STA-449 (Netzsch) как для порошковых образцов, так и для монолитов стекла массой 10-15 мг в режиме равномерного подъема температуры со скоростью 10°C/мин до 1000°C в платиновых тиглях в токе аргона.

Рентгенофазовый анализ (РФА) термообработанных и исходных стекол проводили на рентгеновском дифрактометре D2 Phaser (Bruker, CuKα, никелевый фильтр) для порошка стекла дисперсностью ~40 мкм в интервале углов 2θ=10-70°.

Спектры поглощения исходных и термообработанных стекол регистрировали на сканирующем двухлучевом спектрофотометре UV-3600 (Shimadzu). Спектры люминесценции в видимой области тех же образцов получали на спектрально-аналитическом комплексе на базе монохроматора/спектрографа MS3504i (СОЛ инструменте).

На рентгенограмме термообработанного стекла основные брэгговские рефлексы по положению удовлетворительно согласуются с рефлексами фазы γ-Ga2O3 (Фиг. 2. Рентгенограммы стекол составов №№1-7 (см. Таблица 1), обработанных при температуре максимума соответствующего экзотермического пика в течение 15 мин). Полученный стеклокристаллический материал демонстрирует интенсивную широкополосную люминесценцию в видимой области спектра при возбуждении ультрафиолетом, при частотах выше края фундаментального поглощения (Фиг. 3. Зависимость интенсивности люминесценции термообработанных стекол составов №№1-7 (см. Таблица 1) от состава стекла). Стоит отметить, что при увеличении длины волны возбуждения эффективность конверсии УФ излучения в видимое значительно снижается, что обуславливает низкую чувствительность разработанного стеклокристаллического материала к природному УФ фону (Фиг. 4. Зависимость интенсивности люминесценции термообработанного стекла состава №1 от длины волны возбуждающего излучения).

Пример 2

Готовят шихту и синтезируют стекло №2 (Таблица 1) аналогично методике, приведенной в примере 1. Отличие состоит в добавке 0,1 мас.% NiO сверх 100%. Свойства полученного стеклокристаллического материала приведены в таблице 2. Данное стекло после термообработки при температуре максимума экзотермического пика (685°C, 15 мин) также люминесцирует в видимой области (Фиг. 3). Однако локализация ионов никеля в нанокристаллах γ-Ga2O3 приводит к снижению более чем в два раза интегральной интенсивности люминесценции.

Пример 3

Готовят шихту и синтезируют стекло №3 (Таблица 1) аналогично методике, приведенной в примере 1. Отличие состоит в добавке 0,8 мас.% NiO сверх 100%. Свойства полученного стеклокристаллического материала приведены в таблице 2. Интенсивность люминесценция в видимой области для данного стекла значительно ниже, чем для термообработанного стекла состава №1 (Фиг. 3). Это обусловлено ионами Ni2+, которые снижают количество акцепторов в нанокристаллах γ-Ga2O3, влияя тем самым на люминесценцию этой фазы. Кроме того, наличие NiO в составе стекла существенно снижает пропускание конечного материала (Табл. 2).

Пример 4

Готовят шихту и синтезируют стекло №4 (Таблица 1) аналогично методике, приведенной в примере 1. Отличие состоит в более высокой температуре обработки вследствие низкой склонности к кристаллизации. Данное стекло после термообработки (732°C, 15 мин) также обладает широкополосной люминесценцией в видимой области (Фиг. 3). Однако интенсивность свечения мала за счет низкой степени закристаллизованности стекла (Фиг. 2).

Пример 5

Готовят шихту и синтезируют стекло №5 (Таблица 1) аналогично методике, приведенной в примере 1. Данное стекло после термообработки (695°C, 15 мин) также обладает широкополосной люминесценцией в видимой области (Фиг. 3). Однако фазовое разделение при выработке затрудняет получение высокооднородных образцов исходного стекла.

Пример 6

Готовят шихту и синтезируют стекло №6 (Таблица 1) аналогично методике, приведенной в примере 1. Отличие состоит в пониженном содержании Ga2O3, что обуславливает низкую склонность к кристаллизации и высокую температуру обработки. Данное стекло после термообработки (900°C, 15 мин) также обладает широкополосной люминесценцией в видимой области (Фиг. 3). Однако интенсивность свечения мала вследствие низкой степени закристаллизованности стекла. Кроме того, высокая температура обработки приводит к превращению ранее выпавших кристаллов γ-Ga2O3 в LiGa5O8 (Фиг. 2).

Пример 7

Готовят шихту и синтезируют стекло №7 (Таблица 1) аналогично методике, приведенной в примере 1. Отличие состоит в более низкой температуре обработки вследствие высокой склонности стекла к кристаллизации. Данное стекло после термообработки (663°C, 15 мин) также обладает широкополосной люминесценцией в видимой области (Фиг. 3). Однако интенсивность свечения мала вследствие больших размеров кристаллов (Фиг. 2), для которых вероятность тушения люминесценции высока.

Таким образом, заявляемый малощелочной галлиевосиликогерманатный стеклокристаллический материал на основе фазы γ-Ga2O3 характеризуется в отличие от прототипа не только высоким УФ поглощением, но и эффективной конверсией этого излучения в видимое. Это обеспечивает заявляемому материалу преимущество в качестве активного элемента светового трансформатора УФ излучения солнечно-слепого диапазона в синюю область спектра.

Литература

1. J. Zhang, В. Li, С.Xia, G. Pei, Q. Deng, Z. Yang, W. Xud, H. Shi, F. Wu, Y. Wu, J. Xu. Growth and spectral characterization of β-Ga2O3 single crystals. Journal of Physics and Chemistry of Solids 67 (2006) 2448.

2. M. Hegde, T. Wang, Z.L. Miskovic, P.V. Radovanovic. Origin of size-dependent photoluminescence decay dynamics in colloidal gamma-Ga2O3 nanocrystals. Applied Physics Letters 100 (2012) 141903.

3. S. Zhou, N. Jiang, H. Dong, H. Zeng, J. Hao, J. Qiu. Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics. Nanotechnology 19 (2008) 015702.

4. H.B. Голубев, E.C. Игнатьева, В.И. Савинков, B.H. Сигаев, П.Д. Саркисов. Патент РФ 2494981.

Люминесцирующий стеклокристаллический материал, включающий LiO, NaO, GaO, SiO, GeO, при следующем соотношении компонентов, мас.%:
ЛЮМИНЕСЦИРУЮЩИЙ СТЕКЛОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 31.
27.03.2016
№216.014.db96

Способ локальной микрокристаллизации оксидных стекол

Изобретение относится к области оптического материаловедения, в частности к способу локальной кристаллизации легированных стекол под действием лазерного излучения. Техническим результатом изобретения является осуществление возможности кристаллизации стекла. Способ локальной микрокристаллизации...
Тип: Изобретение
Номер охранного документа: 0002579077
Дата охранного документа: 27.03.2016
25.08.2017
№217.015.b7ba

Способ получения легкоплавкой стеклокомпозиции

Изобретение относится к легкоплавким стеклокристаллическим композиционным материалам для вакуумплотного низкотемпературного спаивания корундовой керамики. Технический результат – повышение механической прочности получаемых спаянных изделий и повышение технологичности получения стеклокомпозиций....
Тип: Изобретение
Номер охранного документа: 0002614844
Дата охранного документа: 29.03.2017
25.08.2017
№217.015.bdd3

Способ локальной кристаллизации стекол

Изобретение относится к области оптического материаловедения. Технический результат – получение однородных кристаллических линий в объеме стекла. Локальная кристаллизация стекол проходит под действием фемтосекундного лазерного излучения. Пучок лазера пропускают через призматический телескоп или...
Тип: Изобретение
Номер охранного документа: 0002616958
Дата охранного документа: 18.04.2017
26.08.2017
№217.015.dcdf

Способ изготовления массивов кобальтовых нанопроволок

Изобретение относится к изготовлению массивов кобальтовых нанопроволок в порах трековых мембран. Способ включает электроосаждение кобальта в поры трековых мембран из электролита, содержащего CoSO⋅7HO - 300-320 г/л, HBO - 30-40 г/л, при рН 3,5-3,8 и температуре 40-45°С. Электроосаждение проводят...
Тип: Изобретение
Номер охранного документа: 0002624573
Дата охранного документа: 04.07.2017
29.12.2017
№217.015.f413

Фосфатное стекло и способ его получения

Изобретение относится к области оптического материаловедения, в частности к фосфатным стеклам. Стекло содержит следующие компоненты, мас.%: PO 58,00-70,00; KO 8,50-18,50; AlO 7,10-8,90; ВаО 9,80-11,50; BO 3,70-5,20; SiO 1,80-2,30; SnO 1,10-1,25 Au 0,005-0,02 (сверх 100%). При подготовке шихты...
Тип: Изобретение
Номер охранного документа: 0002637676
Дата охранного документа: 06.12.2017
20.01.2018
№218.016.1092

Фосфатное стекло

Изобретение относится к области оптического материаловедения, в частности к фосфатным стеклам, которые могут использоваться в качестве активных сред лазеров (в том числе волоконных) и усилителей лазерных импульсов сверхкороткой длительности, генерирующих в ближней инфракрасной области спектра....
Тип: Изобретение
Номер охранного документа: 0002633845
Дата охранного документа: 18.10.2017
20.01.2018
№218.016.142b

Замещенные 3-(3-пиридил)изоксазолидины, обладающие фунгицидной активностью

Изобретение относится к замещенным 3-(3-пиридил)изоксазолидинам общей формулы I, где R означает фенил или 4-хлорфенил, R означает атом водорода или 4-фторфенил, R означает карбэтокси-группу. Технический результат – 3-(3-пиридил)изоксазолидины, обладающие фунгицидной активностью. 3 табл., 3 пр.
Тип: Изобретение
Номер охранного документа: 0002634717
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1c30

Способ локальной кристаллизации стекол

Изобретение относится к способу локальной кристаллизации стекол под действием лазерного пучка. Локальную кристаллизацию стекол лантаноборогерманатной системы, легированных неодимом, проводят с помощью импульсного фемтосекундного лазера, перемещающегося относительно стекла со скоростью 10-50...
Тип: Изобретение
Номер охранного документа: 0002640604
Дата охранного документа: 10.01.2018
20.01.2018
№218.016.1cae

Способ локальной нанокристаллизации бариевотитаносиликатных стекол

Изобретение относится к способу локальной нанокристаллизации оксидных стекол под действием лазерного излучения. Стекло состава ВаО 35-45 мол.%, ТiO 10-20 мол.%, SiO 40-50 мол.% облучают сфокусированным фемтосекундным пучком лазера, генерирующего на длине волны 1030 нм импульсы с частотой...
Тип: Изобретение
Номер охранного документа: 0002640606
Дата охранного документа: 10.01.2018
20.01.2018
№218.016.1d06

Способ получения конвертера поляризации

Изобретение относится к области оптического материаловедения, в частности к конвертеру поляризации лазерного излучения. Оксидное стекло обрабатывают сфокусированным лазерным пучком. Варку стекла проводят при температурах от 1650 до 1700°C. Состав стекла следующий, в мол.%: MgO 5-10, CaO 5-10,...
Тип: Изобретение
Номер охранного документа: 0002640603
Дата охранного документа: 10.01.2018
Показаны записи 11-20 из 35.
27.03.2016
№216.014.db96

Способ локальной микрокристаллизации оксидных стекол

Изобретение относится к области оптического материаловедения, в частности к способу локальной кристаллизации легированных стекол под действием лазерного излучения. Техническим результатом изобретения является осуществление возможности кристаллизации стекла. Способ локальной микрокристаллизации...
Тип: Изобретение
Номер охранного документа: 0002579077
Дата охранного документа: 27.03.2016
25.08.2017
№217.015.b7ba

Способ получения легкоплавкой стеклокомпозиции

Изобретение относится к легкоплавким стеклокристаллическим композиционным материалам для вакуумплотного низкотемпературного спаивания корундовой керамики. Технический результат – повышение механической прочности получаемых спаянных изделий и повышение технологичности получения стеклокомпозиций....
Тип: Изобретение
Номер охранного документа: 0002614844
Дата охранного документа: 29.03.2017
25.08.2017
№217.015.bdd3

Способ локальной кристаллизации стекол

Изобретение относится к области оптического материаловедения. Технический результат – получение однородных кристаллических линий в объеме стекла. Локальная кристаллизация стекол проходит под действием фемтосекундного лазерного излучения. Пучок лазера пропускают через призматический телескоп или...
Тип: Изобретение
Номер охранного документа: 0002616958
Дата охранного документа: 18.04.2017
26.08.2017
№217.015.dcdf

Способ изготовления массивов кобальтовых нанопроволок

Изобретение относится к изготовлению массивов кобальтовых нанопроволок в порах трековых мембран. Способ включает электроосаждение кобальта в поры трековых мембран из электролита, содержащего CoSO⋅7HO - 300-320 г/л, HBO - 30-40 г/л, при рН 3,5-3,8 и температуре 40-45°С. Электроосаждение проводят...
Тип: Изобретение
Номер охранного документа: 0002624573
Дата охранного документа: 04.07.2017
29.12.2017
№217.015.f413

Фосфатное стекло и способ его получения

Изобретение относится к области оптического материаловедения, в частности к фосфатным стеклам. Стекло содержит следующие компоненты, мас.%: PO 58,00-70,00; KO 8,50-18,50; AlO 7,10-8,90; ВаО 9,80-11,50; BO 3,70-5,20; SiO 1,80-2,30; SnO 1,10-1,25 Au 0,005-0,02 (сверх 100%). При подготовке шихты...
Тип: Изобретение
Номер охранного документа: 0002637676
Дата охранного документа: 06.12.2017
20.01.2018
№218.016.1092

Фосфатное стекло

Изобретение относится к области оптического материаловедения, в частности к фосфатным стеклам, которые могут использоваться в качестве активных сред лазеров (в том числе волоконных) и усилителей лазерных импульсов сверхкороткой длительности, генерирующих в ближней инфракрасной области спектра....
Тип: Изобретение
Номер охранного документа: 0002633845
Дата охранного документа: 18.10.2017
20.01.2018
№218.016.142b

Замещенные 3-(3-пиридил)изоксазолидины, обладающие фунгицидной активностью

Изобретение относится к замещенным 3-(3-пиридил)изоксазолидинам общей формулы I, где R означает фенил или 4-хлорфенил, R означает атом водорода или 4-фторфенил, R означает карбэтокси-группу. Технический результат – 3-(3-пиридил)изоксазолидины, обладающие фунгицидной активностью. 3 табл., 3 пр.
Тип: Изобретение
Номер охранного документа: 0002634717
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1c30

Способ локальной кристаллизации стекол

Изобретение относится к способу локальной кристаллизации стекол под действием лазерного пучка. Локальную кристаллизацию стекол лантаноборогерманатной системы, легированных неодимом, проводят с помощью импульсного фемтосекундного лазера, перемещающегося относительно стекла со скоростью 10-50...
Тип: Изобретение
Номер охранного документа: 0002640604
Дата охранного документа: 10.01.2018
20.01.2018
№218.016.1cae

Способ локальной нанокристаллизации бариевотитаносиликатных стекол

Изобретение относится к способу локальной нанокристаллизации оксидных стекол под действием лазерного излучения. Стекло состава ВаО 35-45 мол.%, ТiO 10-20 мол.%, SiO 40-50 мол.% облучают сфокусированным фемтосекундным пучком лазера, генерирующего на длине волны 1030 нм импульсы с частотой...
Тип: Изобретение
Номер охранного документа: 0002640606
Дата охранного документа: 10.01.2018
20.01.2018
№218.016.1d06

Способ получения конвертера поляризации

Изобретение относится к области оптического материаловедения, в частности к конвертеру поляризации лазерного излучения. Оксидное стекло обрабатывают сфокусированным лазерным пучком. Варку стекла проводят при температурах от 1650 до 1700°C. Состав стекла следующий, в мол.%: MgO 5-10, CaO 5-10,...
Тип: Изобретение
Номер охранного документа: 0002640603
Дата охранного документа: 10.01.2018
+ добавить свой РИД