×
13.01.2017
217.015.78ca

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ БИОМЕДИЦИНСКОГО МАТЕРИАЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицины, в частности к способам получения костных имплантов на основе титана с биоактивным покрытием. Для этого на пористую основу, содержащую титан, наносят 12-14% водную суспензию гидроксиапатита (ГАП) в течение 2-3 сек. Затем материал помещают в 2-3%-ную водную суспензию ГАП и импрегнируют в вакууме при 2·10÷9·10 мм рт. ст. в трех-пятикратном пульсационном режиме. Соотношение между длительностью импульса и паузы составляет от 3-5 до 10-15. Изобретение обеспечивает технологически простой способ получения биомедицинского материала на основе пористого титана, позволяющий достичь равномерного и прочного покрытия во всем объеме пор материала и сохранить биологическую активность ГАП. 1 ил., 4 пр.

Изобретение относится к области медицины, в частности к способам получения пористого материала на основе титана с биоактивным покрытием, который в дальнейшем может быть использован для изготовления костного имплантата.

Известен способ получения имплантатов, в котором в качестве основы используется титановая лента, из которой просекают сетку с квадратными или ромбовидными ячейками с величиной сторон 0,8-2,5 мм и шагом 0,05-0,1 мм. На поверхность сетки методом плазменного напыления наносят слой титана толщиной 50-100 мкм из порошка дисперсностью 60-150 мкм, который затем покрывают слоем биокерамики толщиной 30-50 мкм из порошка дисперсностью 40-60 мкм. Напыление может быть однослойным (титан) или двухслойным (титан + биокерамика), односторонним или двусторонним (патент RU №2157245; МПК A61L 27/06, A61F 2/28; 1999 год).

Известный способ является сложным, трудоемким, а биологическая активность гидроксиапатита (ГАП) теряется при высокотемпературной обработке в процессе плазменного напыления.

Известен также способ получения биомедицинского материала для создания костных имплантатов на основе пористого сплава титан-кобальт в режиме СВС, включающий приготовление экзотермической смеси исходных реагентов из порошка титана и кобальта, добавление в смесь не более 4 мас. % гидрида титана, не более 15 мас. % аморфного нанодисперсного порошка ГАП или аморфного нанокомпозита ГАП с биополимером природного происхождения, прессование из смеси порошков заготовки, размещение ее в реакторе СВС, предварительный нагрев заготовки до 350-580°C, инициирование процесса горения в инертной атмосфере с последующим выделением целевого продукта (патент RU №2341293; МПК A61L27/04, A61L27/06, A61L27/24, A61F2/28; 2007 год)(прототип).

Известный способ является многостадийным, высокотемпературная обработка приводит к разложению биоактивного гидроксиапатита и поровое пространство сплава покрывается соединениями кальция, фосфора и кислорода, представляющими собой продукты его распада, биоактивность которых значительно ниже, чем у гидроксиапатита. Необходимо отметить, что любая высокотемпературная обработка переводит гидроксиапатит в кристаллическую структуру, менее растворимую по сравнению с минеральной составляющей кости (Е.А. Богданова. Диссерт. на соискание уч. степ. канд. хим. наук. Физико-химические свойства биоактивных композиционных материалов на основе фосфатов кальция и кремнийорганических соединений. Екатеринбург, 2012).

Таким образом, перед авторами была поставлена задача - разработать простой способ получения биомедицинского материала, обеспечивающий сохранение минерального состава биоактивного компонента - гидроксиапатита (ГАП) наряду с хорошей адгезией нанесенного покрытия.

Поставленная задача решена в предлагаемом способе получения биомедицинского материала, включающем нанесение на пористую основу, содержащую титан, покрытия из гидроксиапатита, в котором нанесение осуществляют путем импрегнирования водной суспензией гидроксиапатита, при этом окунают пористый титан в 12-14%-ную водную суспензию гидроксиапатита на 2-3 сек, а затем помещают в 2-3%-ную водную суспензию гидроксиапатита и осуществляют в вакууме 2·10-10÷9·10-10 мм рт. ст. 3-5-кратный пульсационный режим с соотношением между длительностью импульса и паузы 3÷5:10÷5.

В настоящее время из патентной и научно-технической литературы не известен способ получения биомедицинского материала путем импрегнирования суспензией гидроксиапатита разной концентрации и осуществлением в вакууме 2·10-10÷9·10-10 мм рт. ст. 3-5-кратного пульсационного режима с определенным соотношением между длительностью импульса и паузы.

В качестве биосовместимой высокопористой основы авторы предлагают использовать пористый титан, обладающий такими свойствами, как: биосовместимость, коррозионная стойкость, достаточно низкий модуль упругости (С.М. Баринов, B.C. Комлев. Биокерамика на основе фосфатов кальция. М.: Наука, 2005. 205 с.). Роль биоактивного материала, усиливающего остеоинтеграцию имплантата с костью, выполняет покрытие гидроксиапатита (ГАП), которое получают из суспензии, полученной в соответствии с патентом RU 2406693. Проведенные авторами исследования позволили разработать способ получения биоактивного покрытия на пористом титане, позволяющий сохранить минеральный состав биоактивного компонента - гидроксиапатита (ГАП) наряду с хорошей адгезией нанесенного покрытия. Для достижения необходимого результата авторами предлагается способ пульсационного вакуумного импрегнирования, в ходе которого осуществляют осаждение частиц ГАП из суспензии, получая покрытие не только пор поверхности высокопористого титана равномерным слоем биоактивного материала, но и пор во всем его объеме. Перед обработкой в вакууме образцы титана окунают в 12-14%-ную суспензию ГАП для снижения пористости и исключения проскока суспензии при вакуумировании. При использовании суспензии с концентрацией менее 12% возможен проскок суспензии при дальнейшем вакуумировании. Использование суспензии с концентрацией выше 14% ведет к значительному снижению пористости, что затрудняет получение покрытия в порах по всему объему. Обработку суспензией ГАП в вакууме осуществляют в интервале определенных технологических параметров. Так повышение давления выше 9·10-10 мм рт. ст. не позволяет прокачать водную суспензию через весь объем образца, поэтому происходит излишнее увеличение толщины покрытия на его поверхности, способствующее в дальнейшем растрескиванию последнего, при одновременном слабом покрытии пор в объеме. При снижении давления меньше 2·10-10 мм рт. ст. наблюдается неконтролируемый проскок водной суспензии через пористый образец, что приводит к нарушению равномерности покрытия. Пульсационный режим импрегнирования включает в себя чередующиеся стадии подвода вакуума и паузы. Длительность импульса составляет 3-5 сек, длительность паузы -10-15 сек. Пролонгирование первой стадии ведет к утоньшению покрытия, а второй - к замедлению технологического процесса. 3-5-кратная пропитка ГАП позволяет достичь его максимального содержания от массы титана в зависимости от исходной пористости основы. Увеличение количества пропиток приводит к зарастанию и снижению остеоинтеграционных свойств материала, а уменьшение мешает возможности создания сплошного биоактивного покрытия.

Предлагаемый способ может быть осуществлен следующим образом.

Пористый титан (пористость 40-45%) окунают в емкость с сетчатым дном с водной суспензией ГАП состава Ca10(PO4)6(ОН)2 с концентрацией 12-14% в течение 2-3 сек, затем заполняют емкость 2-3% водной суспензией ГАП состава Ca10(PO4)6(OH)2 с размером частиц 3-4 мкм и осуществляют в вакууме 2·10-10÷9·10-10 мм рт. ст. 3-5-кратный пульсационный режим с соотношением между длительностью импульса и паузы 3÷5:10÷5. После чего образцы сушат на воздухе при комнатной температуре в течение 10 часов и получают пористый материал на основе титана с покрытием ГАП, при этом содержание ГАП составляет 6,0-13,5 мас. % от массы титана.

Содержание ГАП от массы титана определяют путем взвешивания образцов до и после обработки. Морфологию образующегося в процессе вакуумного импрегнирования покрытия пор исследовали методом Брунауэра, Эммета и Тейлера (БЭТ) низкотемпературной адсорбцией азота на приборе Gemini VII 2390 VI.03 (V1.03 t) и установили, что в результате пропитки ГАП формируется новая развитая поверхность, о чем свидетельствует изменение величины площади удельной поверхности в случае образцов с начальной пористостью 45% с 0,3256±0,0453 до 11,4029±0,0831 м2/г, а с начальной пористостью 40% с 0,3943±0,0120 до 8,7330±0,0585.

Микрофотографии образцов пористого титана до и после покрытия (см. фиг.1) получали на анализирующем сканирующем электронном микроскопе JSM 6390 LA (JEOL-Япония).

Прочность сцепления биоактивного покрытия с титановой основой определяли методом ультразвукового воздействия в ультразвуковой ванне «САПФИР 1,3 ТТЦ» при мощности 35 кГц. Потеря массы образца с покрытием ГАП по предлагаемому способу после обработки ультразвуком в течение 1 часа при температуре 25°C составляет 0,16 мас. %, что позволяет оценить прочность адгезии как достаточно высокую.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Образец пористого титана размером 10×10×4 мм (пористость 40%) окунают в емкость с сетчатым дном с водной суспензией ГАП состава Ca10(PO4)6(ОН)2 с концентрацией 12% в течение 2 сек, затем заполняют емкость 2% водной суспензией ГАП состава Ca10(PO4)6(ОН)2 с размером частиц 3-4 мкм и осуществляют в вакууме 2·10-10 мм рт. ст. 3-кратный пульсационный режим с соотношением между длительностью импульса и паузы 3:15 (длительность импульса 3 сек; длительность паузы 15 сек). После чего образцы сушат на воздухе при комнатной температуре в течение 10 часов и получают пористый материал на основе титана с покрытием ГАП, при этом содержание ГАП составляет 6,0 мас. % от массы титана. На фиг.1 изображена микрофотография поверхности титана пористости 40%: а) исходный образец титана; б) образец титана с покрытием ГАП.

Пример 2. Образец пористого титана размером 10×10×4 мм (пористость 40%) окунают в емкость с сетчатым дном с водной суспензией ГАП состава Ca10(PO4)6(ОН)2 с концентрацией 12% в течение 3 сек, затем заполняют емкость 2% водной суспензией ГАП состава Ca10(PO4)6(ОН)2 с размером частиц 3-4 мкм и осуществляют в вакууме 9·10-10 мм рт. ст. 5-кратный пульсационный режим с соотношением между длительностью импульса и паузы 5:10 (длительность импульса 5 сек; длительность паузы 10 сек). После чего образцы сушат на воздухе при комнатной температуре в течение 10 часов и получают пористый материал на основе титана с покрытием ГАП, при этом содержание ГАП составляет 8,1 мас. % от массы титана.

Пример 3. Образец пористого титана размером 10×10×4 мм (пористость 45%) окунают в емкость с сетчатым дном с водной суспензией ГАП состава Ca10(PO4)6(ОН)2 с концентрацией 14% в течение 2 сек, затем заполняют емкость 3% водной суспензией ГАП состава Ca10(PO4)6(ОН)2 с размером частиц 3-4 мкм и осуществляют в вакууме 2·10-10 мм рт. ст. 3-кратный пульсационный режим с соотношением между длительностью импульса и паузы 3:15 (длительность импульса 3 сек; длительность паузы 15 сек). После чего образцы сушат на воздухе при комнатной температуре в течение 10 часов и получают пористый материал на основе титана с покрытием ГАП, при этом содержание ГАП составляет 11,4 мас. % от массы титана. На фиг. 1 изображена микрофотография поверхности титана пористости 45%: в) исходный образец титана; г) образец титана с покрытием ГАП.

Пример 4. Образец пористого титана размером 10×10×4 мм (пористость 45%) окунают в емкость с сетчатым дном с водной суспензией ГАП состава Ca10(PO4)6(ОН)2 с концентрацией 14% в течение 3 сек, затем заполняют емкость 3% водной суспензией ГАП состава Ca10(PO4)6(ОН)2 с размером частиц 3-4 мкм и осуществляют в вакууме 9·10-10 мм рт. ст. 5-кратный пульсационный режим с соотношением между длительностью импульса и паузы 5:10 (длительность импульса 5 сек; длительность паузы 10 сек). После чего образцы сушат на воздухе при комнатной температуре в течение 10 часов и получают пористый материал на основе титана с покрытием ГАП, при этом содержание ГАП составляет 13,5 мас. % от массы титана.

Таким образом, авторами предлагается технологически простой способ получения биомедицинского материала на основе пористого титана, позволяющий сохранить биологическую активность ГАП за счет исключения высоких температур при обработке и достичь равномерного и прочного покрытия не только поверхности, но и пор во всем объеме.

Способ получения биомедицинского материала, включающий нанесение на пористую основу, содержащую титан, покрытия из гидроксиапатита, отличающийся тем, что нанесение осуществляют путем импрегнирования водной суспензией гидроксиапатита, при этом окунают пористый титан в 12-14%-ную водную суспензию гидроксиапатита на 2-3 сек, а затем помещают в 2-3%-ную водную суспензию гидроксиапатита и осуществляют в вакууме 2·10÷9·10 мм рт. ст. 3-5-кратный пульсационный режим с соотношением между длительностью импульса и паузы 3÷5:10÷15.
СПОСОБ ПОЛУЧЕНИЯ БИОМЕДИЦИНСКОГО МАТЕРИАЛА
Источник поступления информации: Роспатент

Показаны записи 21-24 из 24.
19.01.2018
№218.016.022b

Способ переработки золы-уноса тепловых электростанций

Изобретение относится к области переработки зольных отходов угольных тепловых электростанций с целью их утилизации в качестве, в частности, материалов для производства строительных изделий. В способе переработки золы-уноса угольных теплоэлектростанций, включающем высокотемпературную обработку в...
Тип: Изобретение
Номер охранного документа: 0002630021
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.0ce5

Способ получения полидивинилфосфиновой кислоты из красного фосфора и ацетилена

Настоящее изобретение относится к способу получения полидивинилфосфиновой кислоты из красного фосфора и ацетилена и может быть использовано в химической промышленности. Предложенный способ получения полидивинилфосфиновой кислоты из красного фосфора и ацетилена в системе гидроксид калия/ДМСО при...
Тип: Изобретение
Номер охранного документа: 0002632816
Дата охранного документа: 10.10.2017
20.01.2018
№218.016.1a27

Способ получения галлия из щелочно-алюминатных растворов глиноземного производства

Изобретение относится к способу электрохимического выделения галлия из щелочно-алюминатных растворов глиноземного производства процесса Байера. Предлагается способ получения галлия из щелочно-алюминатных растворов глиноземного производства, включающий подготовку исходной смеси из маточного и...
Тип: Изобретение
Номер охранного документа: 0002636337
Дата охранного документа: 22.11.2017
08.07.2018
№218.016.6dc4

Способ получения ультрадисперсного порошка металлического кобальта

Изобретение относится к получению ультрадисперсного порошка металлического кобальта. Способ включает термообработку кислородсодержащего соединения кобальта в газовой среде. Предварительно водный раствор оксалата или нитрата кобальта обрабатывают раствором гидроксида натрия или калия при рН=8-12...
Тип: Изобретение
Номер охранного документа: 0002660549
Дата охранного документа: 06.07.2018
Показаны записи 21-30 из 36.
19.01.2018
№218.016.0ce5

Способ получения полидивинилфосфиновой кислоты из красного фосфора и ацетилена

Настоящее изобретение относится к способу получения полидивинилфосфиновой кислоты из красного фосфора и ацетилена и может быть использовано в химической промышленности. Предложенный способ получения полидивинилфосфиновой кислоты из красного фосфора и ацетилена в системе гидроксид калия/ДМСО при...
Тип: Изобретение
Номер охранного документа: 0002632816
Дата охранного документа: 10.10.2017
20.01.2018
№218.016.1a27

Способ получения галлия из щелочно-алюминатных растворов глиноземного производства

Изобретение относится к способу электрохимического выделения галлия из щелочно-алюминатных растворов глиноземного производства процесса Байера. Предлагается способ получения галлия из щелочно-алюминатных растворов глиноземного производства, включающий подготовку исходной смеси из маточного и...
Тип: Изобретение
Номер охранного документа: 0002636337
Дата охранного документа: 22.11.2017
10.05.2018
№218.016.4cf5

Способ получения суспензии апатита

Изобретение относится к области получения биологически активных фармацевтических и медицинских материалов, которые могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани. Способ получения суспензии апатита включает взаимодействие гидроксида...
Тип: Изобретение
Номер охранного документа: 0002652193
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4d86

Биорезорбируемый материал и способ его получения

Группа изобретений относится к медицине. Описан биорезорбируемый материал, включающий гидроксиапатит и монооксид титана состава TiOx, где х = 0.99, 1.09, 1.23, в количестве 10 – 20 мас.% от общего. Описан способ получения биорезорбируемого материала, включающий получение исходной смеси...
Тип: Изобретение
Номер охранного документа: 0002652429
Дата охранного документа: 26.04.2018
25.06.2018
№218.016.66b0

Способ разделения скандия и сопутствующих металлов

Изобретение относится к технологии неорганических веществ, а именно к гидрометаллургии скандия. Способ разделения скандия и сопутствующих металлов заключается в обработке скандийсодержащего раствора серной кислотой в присутствии соли, содержащей ионы аммония, при нагревании с последующими...
Тип: Изобретение
Номер охранного документа: 0002658399
Дата охранного документа: 21.06.2018
18.01.2019
№219.016.b0ee

Стоматологический гель для реминерализации твердых тканей зубов и способ реминерализации твердых тканей зубов

Изобретение относится к медицине, а именно к стоматологии, и может быть использовано для реминерализации твердых тканей зубов с целью профилактики и лечения кариеса в стадии пятна, гиперестезии твердых тканей зуба. Предлагаемый стоматологический гель содержит в качестве гидрофильной основы...
Тип: Изобретение
Номер охранного документа: 0002677231
Дата охранного документа: 16.01.2019
21.02.2019
№219.016.c51a

Способ получения лигатуры на основе алюминия

Изобретение относится к области металлургии и может быть использовано для производства алюминиевых лигатур, применяемых для модифицирования сплавов. Способ включает приготовление и расплавление смеси, содержащей фторид натрия, фторид калия, соединение редкого металла и алюминий,...
Тип: Изобретение
Номер охранного документа: 0002680330
Дата охранного документа: 19.02.2019
29.03.2019
№219.016.ede3

Способ получения магнетита

Изобретение относится к области металлургии и может быть использовано для получения магнетита в целях повышения эффективности переработки красных шламов, являющихся отходами глиноземного производства. Способ получения магнетита включает обработку красного шлама в присутствии гидроксида кальция,...
Тип: Изобретение
Номер охранного документа: 0002683149
Дата охранного документа: 26.03.2019
30.03.2019
№219.016.f909

Биоактивный композиционный материал для замещения костных дефектов и способ его получения

Изобретение относится к области биологически активных фармацевтических и медицинских материалов с повышенной механической прочностью, такие материалы могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани, а также в качестве носителя...
Тип: Изобретение
Номер охранного документа: 0002683255
Дата охранного документа: 27.03.2019
16.05.2019
№219.017.5221

Способ извлечения оксида алюминия из отходов глиноземного производства

Изобретение может быть использовано при переработке отвальных красных шламов глиноземного производства в частности из красного шлама в процессе Байера. Способ извлечения оксида алюминия из отходов глиноземного производства включает автоклавное выщелачивание отходов при повышенных температуре и...
Тип: Изобретение
Номер охранного документа: 0002687470
Дата охранного документа: 13.05.2019
+ добавить свой РИД