×
13.01.2017
217.015.740f

ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники и микросистемной техники. Сущность изобретения заключается в том, что в устройство дополнительно введены четыре дополнительных неподвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке так, что они образуют конденсатор с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, четыре дополнительных неподвижных электрода электростатических приводов, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке так, что они образуют конденсаторы с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, восемь дополнительных опор, выполненные из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке, восемь дополнительных «П»-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, причем четыре подвижных электрода емкостных преобразователей перемещений выполнены в виде «Т»-образных пластин с перфорацией с гребенчатыми структурами с трех сторон, четыре неподвижных электрода емкостных преобразователей перемещений объединены в один, а инерционная масса выполнена с перфорацией. Технический результат - возможность измерения величин угловой скорости и линейного ускорения вдоль осей Z, направленной перпендикулярно плоскости подложки гироскопа-акселерометра, и X, Y, расположенных в плоскости подложки устройства. 2 ил.

Предлагаемое изобретение относится к области измерительной техники и микросистемной техники, а более конкретно к интегральным измерительным элементам величин угловой скорости и линейного ускорения.

Известен интегральный микромеханический акселерометр [A. Selvakumar, F. Ayazi, K. Najafi, A High Sensitivity Z-Axis Torsional Silicon Accelerometer, Digest, IEEE International Electron Device Meeting (IEDM′96), San Francisco, CA, December 1996, p. 765, fig. 1a], содержащий диэлектрическую подложку и инерционную массу, расположенную с зазором относительно диэлектрической подложки, выполненную в виде пластины с гребенчатой структурой с одной стороны из полупроводникового материала и связанную с подложкой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко соединены с инерционной массой, а другими - с опорами, выполненными из полупроводникового материала и расположенными непосредственно на диэлектрической подложке, неподвижный электрод емкостного преобразователя перемещений с гребенчатой структурой с одной стороны, выполненный из полупроводникового материала и расположенный на диэлектрической подложке с зазором относительно инерционной массы так, что образует конденсатор в плоскости ее пластины через боковые зазоры и взаимопроникающие друг в друга гребенки электродов.

Данный акселерометр позволяет измерять величину линейного ускорения вдоль оси Z, направленной перпендикулярно плоскости подложки акселерометра.

Признаками аналога, совпадающими с существенными признаками, являются инерционная масса, упругие балки, выполненные из полупроводникового материала и расположенные с зазором относительно подложки, опоры, выполненные из полупроводникового материала и расположенные непосредственно на подложке, неподвижный электрод емкостного преобразователя перемещений с гребенчатой структурой с одной стороны, выполненный из полупроводникового материала и расположенный непосредственно на подложке.

Недостатком конструкции акселерометра является невозможность измерения величин линейного ускорения вдоль двух взаимно перпендикулярных осей X и Y, расположенных в плоскости подложки и величин угловой скорости.

Функциональным аналогом заявляемого объекта является интегральный микромеханический акселерометр [M.A. Lemkin, B.E. Boser, D. Auslander, J.H. Smith, A 3-Axis Force Balanced Accelerometer Using a Single Proof-Mass, International Conference on Solid-State Sensors and Actuators (Transducers′97), Chicago, June 16-19, 1997, p. 1186, fig. 1], содержащий полупроводниковую подложку с расположенным на ней неподвижным электродом, выполненным из полупроводникового материала, и инерционную массу, расположенную с зазором относительно подложки, выполненную в виде пластины из полупроводникового материала, образующую с неподвижным электродом плоский конденсатор за счет их полного перекрытия, используемый в качестве емкостного преобразователя перемещений, и связанную с полупроводниковой подложкой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко соединены с инерционной массой, а другими - с опорами, выполненными из полупроводникового материала и расположенными непосредственно на подложке, и неподвижные электроды, выполненные из полупроводникового материала с гребенчатыми структурами и расположенные непосредственно на подложке с зазором относительно инерционной массы так, что образуют конденсаторы в плоскости ее пластины через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, используемые в качестве емкостных преобразователей перемещений.

Данный акселерометр позволяет измерять величины линейного ускорения вдоль осей X и Y, расположенных взаимно перпендикулярно в плоскости подложки, и оси Z, направленной перпендикулярно плоскости подложки.

Признаками аналога, совпадающими с существенными признаками, являются полупроводниковая подложка, инерционная масса, упругие балки, выполненные из полупроводникового материала и расположенные с зазором относительно подложки, опоры, выполненные из полупроводникового материала и расположенные непосредственно на подложке, неподвижные электроды емкостных преобразователей перемещений, выполненные из полупроводникового материала и расположенные на полупроводниковой подложке.

Недостатком конструкции акселерометра является невозможность измерения величин угловой скорости.

Из известных наиболее близким по технической сущности к заявляемому объекту является интегральный микромеханический акселерометр [Б.Г. Коноплев, И.Е. Лысенко, Интегральный микромеханический акселерометр-клинометр, патент РФ на изобретение №2279092, опубликовано 27.06.2006, Бюл. №18], содержащий полупроводниковую подложку с расположенными на ней четырьмя неподвижными электродами емкостных преобразователей перемещений, выполненными из полупроводникового материала, и четырьмя неподвижными электродами емкостных преобразователей перемещений, выполненных из полупроводникового материала с гребенчатыми структурами с одной стороны, четыре подвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные с зазором относительно полупроводниковой подложки, образующие конденсаторы с неподвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов, и связанных с полупроводниковой подложкой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений, а другими - с опорами, выполненными из полупроводникового материала и расположенными непосредственно на полупроводниковой подложке, инерционную массу, выполненную в виде пластины из полупроводникового материала, расположенную с зазором относительно полупроводниковой подложки, связанную с подвижными электродами емкостных преобразователей перемещений с помощью упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки.

Данный акселерометр позволяет измерять величины линейного ускорения вдоль осей X и Y, расположенных взаимно перпендикулярно в плоскости подложки, и оси Z, направленной перпендикулярно плоскости подложки.

Признаками прототипа, совпадающими с существенными признаками, являются полупроводниковая подложка, инерционная масса, упругие балки, подвижные электроды емкостных преобразователей перемещений, выполненные из полупроводникового материала и расположенные с зазором относительно подложки, опоры, неподвижные электроды емкостных преобразователей перемещений, выполненные из полупроводникового материала и расположенные на полупроводниковой подложке.

Недостатком конструкции акселерометра является невозможность измерения величин угловой скорости.

Задачей предлагаемого изобретения является возможность измерения величин угловых скоростей и линейного ускорения вдоль осей X и Y, расположенных взаимно перпендикулярно в плоскости подложки, и оси Z, направленной перпендикулярно плоскости подложки.

Технический результат, достигаемый при осуществлении предполагаемого изобретения, заключается в возможности измерения величин угловых скоростей и линейного ускорения вдоль осей X и Y, расположенных взаимно перпендикулярно в плоскости подложки, и оси Z, направленной перпендикулярно плоскости подложки.

Технический результат достигается за счет введения четырех дополнительных неподвижных электродов емкостных преобразователей перемещений, выполненных в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенных непосредственно на полупроводниковой подложки так, что он образует конденсатор с подвижными электродами емкостного преобразователя перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, четырех дополнительных неподвижных электродов электростатических приводов, выполненных в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенных непосредственно на полупроводниковой подложки, так, что они образуют конденсаторы с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, восьми дополнительных опор, выполненных из полупроводникового материала и расположенных непосредственно на полупроводниковой подложки, восьми дополнительных «П»-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, причем четыре подвижных электрода емкостных преобразователей перемещений выполнены в виде «Т»-образных пластин с перфорацией с гребенчатыми структурами с трех сторон, четыре неподвижных электрода емкостных преобразователей перемещений объединены в один, а инерционная масса выполнена с перфорацией.

Для достижения необходимого технического результата в интегральный микромеханический акселерометр, содержащий полупроводниковую подложку с расположенными на ней четырьмя неподвижными электродами емкостных преобразователей перемещений, выполненными из полупроводникового материала, четыре неподвижных электрода емкостных преобразователей перемещений, выполненных из полупроводникового материала с гребенчатыми структурами с одной стороны и расположенные непосредственно на полупроводниковой подложке, четыре подвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные с зазором относительно полупроводниковой подложки, образующие конденсаторы с неподвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов, и связанных с полупроводниковой подложкой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений, а другими - с опорами, выполненными из полупроводникового материала и расположенными непосредственно на полупроводниковой подложке, инерционную массу, выполненную в виде пластины из полупроводникового материала, расположенную с зазором относительно полупроводниковой подложки, связанную с подвижными электродами емкостных преобразователей перемещений с помощью упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки введены четыре дополнительных неподвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на полупроводниковой подложки так, что он образует конденсатор с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, четыре дополнительных неподвижных электрода электростатических приводов, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на полупроводниковой подложки, так, что они образуют конденсаторы с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, восемь дополнительных опор, выполненные из полупроводникового материала и расположенные непосредственно на полупроводниковой подложки, восемь дополнительных «П»-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, причем четыре подвижных электрода емкостных преобразователей перемещений выполнены в виде «Т»-образных пластин с перфорацией с гребенчатыми структурами с трех сторон, четыре неподвижных электрода емкостных преобразователей перемещений объединены в один, а инерционная масса выполнена с перфорацией.

Сравнивая предлагаемое устройство с прототипом, видим, что оно содержит новые признаки, то есть соответствует критерию новизны. Проводя сравнение с аналогами, приходим к выводу, что предлагаемое устройство соответствует критерию «существенные отличия», так как в аналогах не обнаружены предъявляемые новые признаки.

На Фиг. 1 приведена топология предлагаемого интегрального микромеханического гироскопа-акселерометра и показаны сечения. На Фиг. 2 приведена структура предлагаемого интегрального микромеханического гироскопа-акселерометра.

Интегральный микромеханический гироскоп-акселерометр (Фиг. 1) содержит полупроводниковую подложку 1 с расположенными на ней восьмью неподвижными электродами емкостных преобразователей перемещений 2, 3, 4, 5, 6, 7, 8, 9, выполненными из полупроводникового материала с гребенчатыми структурами с одной стороны, неподвижный электрод емкостного преобразователя перемещений 10, выполненного из полупроводникового материала и расположенного непосредственно на подложке, четыре подвижных электрода емкостных преобразователей перемещений 11, 12, 13, 14, выполненные в виде «Т»-образных пластин с перфорацией с гребенчатыми структурами с трех сторон из полупроводникового материала и расположенные с зазором относительно полупроводниковой подложки 1, образующие конденсаторы с неподвижными электродами емкостных преобразователей перемещений 2, 3, 4, 5, 6, 7, 8, 9 в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов, и связанные с полупроводниковой подложкой 1 с помощью упругих балок 15, 16, 17, 18, 19, 20, 21, 22, выполненных из полупроводникового материала, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений 11, 12, 13, 14, а другими - с опорами 23, 24, 25, 26, выполненными из полупроводникового материала и расположенными непосредственно на полупроводниковой подложке 1, и с помощью «П»-образных систем дополнительных упругих балок 27, 28, 29, 30, 31, 32, 33, 34, выполненных из полупроводникового материала, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений 11, 12, 13, 14, а другими - с дополнительными опорами 35, 36, 37, 38, 39, 40, 41, 42, выполненными из полупроводникового материала и расположенными непосредственно на полупроводниковой подложке 1, четыре неподвижных электрода электростатических приводов 43, 44, 45, 46, выполненные из полупроводникового материала с гребенчатыми структурами с одной стороны и расположенные непосредственно на полупроводниковой подложки 1, образующие конденсаторы с подвижными электродами емкостных преобразователей перемещений 11, 12, 13, 14 в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов, инерционную массу 47, выполненную в виде пластины с перфорацией из полупроводникового материала, расположенную с зазором относительно полупроводниковой подложки 1, образующую с расположенным на полупроводниковой подложке 1 неподвижным электродом емкостного преобразователя перемещений 10 плоский конденсатор за счет их полного перекрытия, и связанную с подвижными электродами емкостных преобразователей перемещений 11, 12, 13, 14 с помощью упругих балок 48, 49, 50, 51, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки 1.

Работает устройство следующим образом.

При возникновении линейного ускорения вдоль оси X, расположенной в плоскости полупроводниковой подложки 1, инерционная масса 47 под действием сил инерции начинает перемещаться вдоль оси X в плоскости полупроводниковой подложки 1, за счет изгиба упругих балок 17, 18, 21, 22, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений 12, 14, а другими - с опорами 23, 24, 25, 26, соответственно, упругих балок 49, 51, и «П»-образных систем упругих балок 27, 28, 31, 32, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений 12, 14, а другими - с опорами 35, 36, 39, 40. Разность напряжений, генерируемых на емкостных преобразователях перемещений, образованных неподвижными электродами емкостных преобразователей перемещений 4, 5, 8, 9 и подвижными электродами емкостных преобразователей перемещений 12, 14, соответственно, за счет изменения величины зазора между ними, характеризует величину линейного ускорения.

При возникновении линейного ускорения вдоль оси Y, расположенной в плоскости полупроводниковой подложки 1, инерционная масса 47 под действием сил инерции начинает перемещаться вдоль оси Y в плоскости полупроводниковой подложки 1, за счет изгиба упругих балок 15, 16, 19, 20, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений 11, 13, а другими - с опорами 23, 24, 25, 26, соответственно, упругих балок 48, 50, и «П»-образных систем упругих балок 29, 30, 33, 34, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений 11, 13, а другими - с опорами 37, 38, 41, 42. Разность напряжений, генерируемых на емкостных преобразователях перемещений, образованных неподвижными электродами емкостных преобразователей перемещений 2, 3, 6, 7 и подвижными электродами емкостных преобразователей перемещений 11, 13, соответственно, за счет изменения величины зазора между ними, характеризует величину линейного ускорения.

При возникновении линейного ускорения вдоль оси Z, направленной перпендикулярно плоскости полупроводниковой подложки 1, инерционная масса 47 под действием сил инерции начинает перемещаться перпендикулярно плоскости полупроводниковой подложки 1, за счет изгиба упругих балок 48, 49, 50, 51 и кручения упругих балок 15, 16, 17, 18, 19, 20, 21, 22. Напряжение, генерируемое на емкостном преобразователе перемещений, образованного неподвижным электродом емкостного преобразователя перемещений 10 и инерционной массой 47, соответственно, за счет изменения величины зазора между ними, характеризуют величину линейного ускорения.

При подаче на неподвижные электроды электростатических приводов с гребенчатыми структурами с одной стороны 43, 45 переменных напряжений, сдвинутых относительно друг друга по фазе на 180°, относительно подвижных электродов 14, 12 между ними возникает электростатическое взаимодействие, что приводит к возникновению колебаний инерционной массы 47 в плоскости полупроводниковой подложки 1 вдоль оси X, за счет изгиба упругих балок 17, 18, 21, 22, 49, 51, и «П»-образных систем упругих балок 27, 28, 31, 32.

При возникновении угловой скорости вдоль оси Z, расположенной перпендикулярно плоскости полупроводниковой подложки 1, инерционная масса 47 и подвижные электроды емкостных преобразователей перемещений 11, 13 под действием сил инерции Кориолиса начинает совершать колебания в плоскости полупроводниковой подложки 1 вдоль оси Y, за счет изгиба упругих балок 15, 16, 19, 20, 48, 50 и «П»-образных систем упругих балок 29, 30, 33, 34. Разность напряжений, генерируемых на емкостных преобразователях перемещений, образованных неподвижными электродами емкостных преобразователей перемещений 2, 3, 6, 7 и подвижными электродами емкостных преобразователей перемещений 11, 13, соответственно, за счет изменения величины зазора между ними, характеризует величину угловой скорости.

При возникновении угловой скорости вдоль оси Y, расположенной в плоскости полупроводниковой подложки 1, инерционная масса 47 под действием сил инерции Кориолиса начинает совершать колебания перпендикулярно плоскости полупроводниковой подложки 1 вдоль оси Z, за счет изгиба упругих балок 48, 49, 50, 51 и кручения упругих балок 15, 16, 17, 18, 19, 20, 21, 22. Напряжение, генерируемое на емкостном преобразователе перемещений, образованного неподвижным электродом емкостного преобразователя перемещений 10 и инерционной массой 47, за счет изменения величины зазора между ними, характеризует величину угловой скорости.

При подаче на неподвижные электроды электростатических приводов с гребенчатыми структурами с одной стороны 44, 46 переменных напряжений, сдвинутых относительно друг друга по фазе на 180°, относительно подвижных электродов 11, 13 между ними возникает электростатическое взаимодействие, что приводит к возникновению колебаний инерционной массы 47 в плоскости полупроводниковой подложки 1 вдоль оси Y, за счет изгиба упругих балок 15, 16, 19, 20, 48, 50, и «П»-образных систем упругих балок 29, 30, 33, 34.

При возникновении угловой скорости вдоль оси Z, расположенной перпендикулярно плоскости полупроводниковой подложки 1, инерционная масса 47 и подвижные электроды емкостных преобразователей перемещений 12, 14 под действием сил инерции Кориолиса начинает совершать колебания в плоскости полупроводниковой подложки 1 вдоль оси X, за счет изгиба упругих балок 17, 18, 21, 22, 49, 51 и «П»-образных систем упругих балок 27, 28, 31, 32. Разность напряжений, генерируемых на емкостных преобразователях перемещений, образованных неподвижными электродами емкостных преобразователей перемещений 4, 5, 8, 9 и подвижными электродами емкостных преобразователей перемещений 12, 14, соответственно, за счет изменения величины зазора между ними, характеризует величину угловой скорости.

При возникновении угловой скорости вдоль оси X, расположенной в плоскости полупроводниковой подложки 1, инерционная масса 47 под действием сил инерции Кориолиса начинает совершать колебания перпендикулярно плоскости полупроводниковой подложки 1 вдоль оси Z, за счет изгиба упругих балок 48, 49, 50, 51 и кручения упругих балок 15, 16, 17, 18, 19, 20, 21, 22. Напряжение, генерируемое на емкостном преобразователе перемещений, образованного неподвижным электродом емкостного преобразователя перемещений 10 и инерционной массой 47, за счет изменения величины зазора между ними, характеризует величину угловой скорости.

Опоры 23, 24, 25, 26 выполняют роль ограничителя движения инерционной массы 47 в плоскости полупроводниковой подложки 1.

Таким образом, предлагаемое устройство представляет собой интегральный микромеханический гироскоп-акселерометр, позволяющий измерять величины угловой скорости и ускорения вдоль осей X, Y, расположенных в плоскости подложки, и оси Z, направленной перпендикулярно плоскости подложки.

Введение четырех дополнительных неподвижных электродов емкостных преобразователей перемещений, выполненных в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенных непосредственно на полупроводниковой подложки так, что он образует конденсатор с подвижными электродами емкостного преобразователя перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, четырех дополнительных неподвижных электрода электростатических приводов, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на полупроводниковой подложки, так, что они образуют конденсаторы с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, восьми дополнительных опор, выполненных из полупроводникового материала и расположенных непосредственно на полупроводниковой подложки, восьми дополнительных «П»-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, причем четыре подвижных электрода емкостных преобразователей перемещений выполнены в виде «Т»-образных пластин с перфорацией с гребенчатыми структурами с трех сторон, четыре неподвижных электрода емкостных преобразователей перемещений объединены в один, а инерционная масса выполнена с перфорацией, позволяет измерять величины угловой скорости и линейного ускорения вдоль осей Z, направленной перпендикулярно плоскости подложки гироскопа-акселерометра, и X, Y, расположенных в плоскости подложки, что позволяет использовать предлагаемое изобретение в качестве интегрального измерительного элемента величин угловой скорости и линейного ускорения.

Таким образом, по сравнению с аналогичными устройствами, предлагаемый интегральный микромеханический гироскоп-акселерометр позволяет сократить площадь подложки, используемую под размещение измерительных элементов величин угловой скорости и линейного ускорения, так как для измерения величин угловой скорости и линейного ускорения по осям X, Y, Z используется только один интегральный микромеханический сенсор.

Интегральный микромеханический гироскоп-акселерометр, содержащий полупроводниковую подложку с расположенными на ней четырьмя неподвижными электродами емкостных преобразователей перемещений, выполненными из полупроводникового материала, четырьмя неподвижными электродами емкостных преобразователей перемещений, выполненными из полупроводникового материала с гребенчатыми структурами с одной стороны, четыре подвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные с зазором относительно полупроводниковой подложки, образующие конденсаторы с неподвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, связанные с полупроводниковой подложкой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений, а другими - с опорами, выполненными из полупроводникового материала и расположенными непосредственно на полупроводниковой подложке, инерционную массу, выполненную в виде пластины из полупроводникового материала, расположенную с зазором относительно полупроводниковой подложки, связанную с подвижными электродами емкостных преобразователей перемещений с помощью упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, отличающийся тем, что в него введены четыре дополнительных неподвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке так, что они образуют конденсатор с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, четыре дополнительных неподвижных электрода электростатических приводов, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке так, что они образуют конденсаторы с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, восемь дополнительных опор, выполненные из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке, восемь дополнительных «П»-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, причем четыре подвижных электрода емкостных преобразователей перемещений выполнены в виде «Т»-образных пластин с перфорацией с гребенчатыми структурами с трех сторон, четыре неподвижных электрода емкостных преобразователей перемещений объединены в один, а инерционная масса выполнена с перфорацией.
ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР
ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР
ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР
Источник поступления информации: Роспатент

Показаны записи 21-30 из 44.
10.05.2018
№218.016.41c6

Интегральный микромеханический гироскоп-акселерометр

Изобретение относится к области измерительной техники и микросистемной техники, а более конкретно к интегральным измерительным элементам величин угловой скорости и ускорения. Сущность изобретения заключается в том, что интегральный микромеханический гироскоп-акселерометр дополнительно содержит...
Тип: Изобретение
Номер охранного документа: 0002649249
Дата охранного документа: 30.03.2018
08.07.2018
№218.016.6e7c

Интегральный микромеханический туннельный акселерометр

Изобретение относится к области измерительной и микросистемной техники, а именно к интегральным измерительным элементам величин ускорения. Акселерометр содержит полуизолирующую подложку, основание неподвижного электрода, основание электростатического актюатора, якорную область подвижного...
Тип: Изобретение
Номер охранного документа: 0002660412
Дата охранного документа: 06.07.2018
26.07.2018
№218.016.7586

Устройство контроля перемещения объектов относительно друг друга

Изобретение относится к контрольно-измерительной технике. Устройство контроля перемещения объектов относительно друг друга содержит оптическую систему, через которую изображения контролируемых n объектов попадают на ПЗС матрицу, выход которой подключен к входу блока преобразования изображений...
Тип: Изобретение
Номер охранного документа: 0002662256
Дата охранного документа: 25.07.2018
05.12.2018
№218.016.a32c

Способ повышения надежности биометрической идентификации личности по отпечатку пальца

Предлагаемый способ относится к области информационной безопасности, конкретно к системам биометрической идентификации на основе папиллярного узора пальца. Техническим результатом является повышение надежности биометрической аутентификации личности человека посредством повышения стойкости...
Тип: Изобретение
Номер охранного документа: 0002673978
Дата охранного документа: 03.12.2018
10.01.2019
№219.016.ae0a

Способ импрегнирования абразивных инструментов

Изобретение относится к производству абразивного инструмента на керамической связке и может быть использовано в различных отраслях машиностроения. Способ импрегнирования включает пропитку инструмента водным раствором поверхностно-активных веществ (ПАВ) при комнатной температуре в течение 5-8...
Тип: Изобретение
Номер охранного документа: 0002676546
Дата охранного документа: 09.01.2019
10.01.2019
№219.016.ae0d

Способ электрохимического осаждения кремний-углеродных пленок на электропроводящие материалы

Изобретение относится к области гальванотехники и может быть использовано в области микроэлектроники для создания устройств, в частности автоэмиссионных электродов, ионисторов, газовых сенсоров. Способ включает осаждение кремний-углеродной пленки из органического кремний и углеродсодержащего...
Тип: Изобретение
Номер охранного документа: 0002676549
Дата охранного документа: 09.01.2019
16.01.2019
№219.016.b016

Способ контроля длины электропроводного объекта

Изобретение относится к контрольно-измерительной технике и может быть использовано при автоматической сортировке или разбраковке объектов, а также в устройствах распознавания объектов. Способ основан на возбуждении в образцовом и контролируемом объектах частотно-модулированных электромагнитных...
Тип: Изобретение
Номер охранного документа: 0002677113
Дата охранного документа: 15.01.2019
28.02.2019
№219.016.c849

Активный элемент интегрального коммутатора

Использование: для создания элементов интегральных коммутаторов. Сущность изобретения заключается в том, что активный элемент интегрального коммутатора содержит полуизолирующую GaAs-подложку, барьерную AlGaAs-область второго типа проводимости, образующую с ней переход Шоттки управляющую...
Тип: Изобретение
Номер охранного документа: 0002680730
Дата охранного документа: 26.02.2019
21.03.2019
№219.016.ebaa

Способ измерения длины электропроводного объекта

Предлагаемый способ относится к контрольно-измерительной технике и может быть использован в автоматизированных системах производства, а также при измерении длины радиоактивных объектов, отрезков тонких проводов и других электропроводных объектов, измерение которых известными способами...
Тип: Изобретение
Номер охранного документа: 0002682565
Дата охранного документа: 19.03.2019
04.04.2019
№219.016.fb2d

Интегральный микромеханический гироскоп-акселерометр

Изобретение относится к интегральным измерительным элементам величин угловой скорости и линейного ускорения. Сущность изобретения заключается в том, что интегральный микромеханический гироскоп-акселерометр дополнительно содержит восемь дополнительных неподвижных электродов емкостных...
Тип: Изобретение
Номер охранного документа: 0002683810
Дата охранного документа: 02.04.2019
Показаны записи 21-28 из 28.
28.02.2019
№219.016.c849

Активный элемент интегрального коммутатора

Использование: для создания элементов интегральных коммутаторов. Сущность изобретения заключается в том, что активный элемент интегрального коммутатора содержит полуизолирующую GaAs-подложку, барьерную AlGaAs-область второго типа проводимости, образующую с ней переход Шоттки управляющую...
Тип: Изобретение
Номер охранного документа: 0002680730
Дата охранного документа: 26.02.2019
04.04.2019
№219.016.fb2d

Интегральный микромеханический гироскоп-акселерометр

Изобретение относится к интегральным измерительным элементам величин угловой скорости и линейного ускорения. Сущность изобретения заключается в том, что интегральный микромеханический гироскоп-акселерометр дополнительно содержит восемь дополнительных неподвижных электродов емкостных...
Тип: Изобретение
Номер охранного документа: 0002683810
Дата охранного документа: 02.04.2019
10.04.2019
№219.017.03e0

Интегральный микромеханический гироскоп-акселерометр

Изобретение относится к области измерительной техники и микросистемной техники, а более конкретно к интегральным измерительным элементам величин угловой скорости и ускорения. Устройство содержит инерционную массу, расположенную с зазором относительно подложки, на которой расположены планарные...
Тип: Изобретение
Номер охранного документа: 0002351897
Дата охранного документа: 10.04.2009
10.11.2019
№219.017.e050

Интегральный микроэлектромеханический переключатель

Изобретение относится к области микросистемной техники и может быть использовано в интегральной электронике для коммутации сигналов. Техническим результатом является коммутация сигналов сантиметрового волнового диапазона с низкими вносимыми потерями, низкой индуктивностью, низким напряжением...
Тип: Изобретение
Номер охранного документа: 0002705564
Дата охранного документа: 08.11.2019
14.11.2019
№219.017.e1af

Интегральный микроэлектромеханический переключатель

Изобретение относится к области микросистемной техники и может быть использовано в интегральной электронике для коммутации сигналов. Техническим результатом является коммутации сигналов сантиметрового волнового диапазона с низкими вносимыми потерями, низкой индуктивностью, низким напряжением...
Тип: Изобретение
Номер охранного документа: 0002705792
Дата охранного документа: 12.11.2019
19.03.2020
№220.018.0d91

Интегральный микромеханический гироскоп-акселерометр

Изобретение относится к области измерительной техники и микросистемной технике. Сущность изобретения заключается в том, что интегральный микромеханический гироскоп-акселерометр дополнительно содержит четыре неподвижных электрода емкостных преобразователей перемещений, четыре неподвижных...
Тип: Изобретение
Номер охранного документа: 0002716869
Дата охранного документа: 17.03.2020
13.06.2020
№220.018.26b4

Цифровой фазовый преобразователь емкости в двоичный код

Заявленное изобретение относится к устройствам преобразования емкости в двоичный код и может быть использовано в устройствах обработки информации емкостных преобразователей микромеханических гироскопов и акселерометров. Техническим результатом является уменьшение числа логических элементов и,...
Тип: Изобретение
Номер охранного документа: 0002723156
Дата охранного документа: 09.06.2020
21.05.2023
№223.018.68f0

Интегральный наноэлектромеханический туннельный переключатель

Изобретение относится к области микросистемной техники, а более конкретно - к наноэлектромеханическим коммутационным устройствам. Технический результат заключается в повышении энергоэффективности. Изобретение представляет собой интегральный микромеханический туннельный переключатель,...
Тип: Изобретение
Номер охранного документа: 0002794468
Дата охранного документа: 19.04.2023
+ добавить свой РИД