×
28.02.2019
219.016.c849

Активный элемент интегрального коммутатора

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Использование: для создания элементов интегральных коммутаторов. Сущность изобретения заключается в том, что активный элемент интегрального коммутатора содержит полуизолирующую GaAs-подложку, барьерную AlGaAs-область второго типа проводимости, образующую с ней переход Шоттки управляющую металлическую шину, AlGaAs-область спейсера собственной проводимости, GaAs-область канала собственной проводимости, четыре коммутируемые металлические шины, четыре коммутируемые области второго типа проводимости, AlGaAs-области управляющего p-n-перехода, AlGaAs-область туннельного барьера собственной проводимости, изолирующие AlGaAs-области собственной проводимости, введены GaAs-область ортогонального канала собственной проводимости, ориентированная перпендикулярно GaAs-области канала собственной проводимости, AlGaAs-область ортогонального спейсера собственной проводимости, расположенная под GaAs-областью ортогонального канала собственной проводимости и ориентированная перпендикулярно GaAs-области канала собственной проводимости. Технический результат - обеспечение возможности: увеличения быстродействия и снижения потерь энергии и токов утечки. 3 ил.
Реферат Свернуть Развернуть

Предполагаемое изобретение относится к области интегральной электроники, а именно - к элементам интегральных коммутаторов.

Аналогом заявляемого изобретения является элемент интегрального коммутатора - селективно легированный транзистор с высокой подвижностью электронов (HEMT - High Electron Mobility Transistor) [Пат. JP S63308965 (А), Япония. Yoshida Jiro. «Hetero-Junction Field-Effect Transistor», 1988], содержащий полуизолирующую GaAs-подложку, барьерную AlGaAs-область второго типа проводимости, расположенную под ней GaAs-область канала собственной проводимости, управляющую металлическую шину, расположенную над барьерной AlGaAs-областью второго типа проводимости и образующую с ней переход Шоттки, первую коммутируемую металлическую шину, первую коммутируемую область второго типа проводимости, граничащую с GaAs-областью канала собственной проводимости и образующую омический контакт с первой коммутируемой металлической шиной, вторую коммутируемую металлическую шину, вторую коммутируемую область второго типа проводимости, граничащую с GaAs-областью канала собственной проводимости и образующую омический контакт со второй коммутируемой металлической шиной, расположенную между полуизолирующей GaAs-подложкой и областью GaAs собственной проводимости широкозонную AlGaAs-область собственной проводимости.

Признаками аналога, совпадающими с существенными признаками заявляемого изобретения, являются полуизолирующая GaAs-подложка, барьерная AlGaAs-область второго типа проводимости, расположенная под ней GaAs-область канала собственной проводимости, управляющая металлическая шина, расположенная над барьерной AlGaAs-областью второго типа проводимости и образующая с ней переход Шоттки, первая коммутируемая металлическая шина, первая коммутируемая область второго типа проводимости, граничащая с GaAs-областью канала собственной проводимости и образующая омический контакт с первой коммутируемой металлической шиной, вторая коммутируемая металлическая шина, вторая коммутируемая область второго типа проводимости, граничащая с GaAs-областью канала собственной проводимости и образующая омический контакт со второй коммутируемой металлической шиной.

Причинами, препятствующими достижению технического результата, являются ограничение времени переключения элемента временем пролета электронами GaAs-области канала собственной проводимости между первой и второй высоколегированными областями второго типа проводимости, отсутствие функциональной интеграции.

Аналогом заявляемого изобретения является элемент интегрального коммутатора - HEMT [Пат. US 5419809 А, Соединенные Штаты Америки. Tetsuji Nagayama, Toshiharu Yanagida. «Dry etching method», 1995, Fig. 5], содержащий полуизолирующую GaAs-подложку, барьерную AlGaAs-область второго типа проводимости, расположенную под ней AlGaAs-область спейсера собственной проводимости, расположенную под ней GaAs-область канала собственной проводимости, управляющую металлическую шину, расположенную над барьерной AlGaAs-областью второго типа проводимости и образующую с ней переход Шоттки, первую коммутируемую металлическую шину, первую коммутируемую область второго типа проводимости, граничащую с GaAs-областью канала собственной проводимости и образующую омический контакт с первой коммутируемой металлической шиной, вторую коммутируемую металлическую шину, вторую коммутируемую область второго типа проводимости, граничащую с GaAs-областью канала собственной проводимости и образующую омический контакт со второй коммутируемой металлической шиной.

Признаками аналога, совпадающими с существенными признаками заявляемого изобретения, являются полуизолирующая GaAs-подложка, барьерная AlGaAs-область второго типа проводимости, расположенная под ней AlGaAs-область спейсера собственной проводимости, расположенная под ней GaAs-область канала собственной проводимости, управляющая металлическая шина, расположенная над барьерной AlGaAs-областью второго типа проводимости и образующая с ней переход Шоттки, первая коммутируемая металлическая шина, первая коммутируемая область второго типа проводимости, граничащая с GaAs-областью канала собственной проводимости и образующая омический контакт с первой коммутируемой металлической шиной, вторая коммутируемая металлическая шина, вторая коммутируемая область второго типа проводимости, граничащая с GaAs-областью канала собственной проводимости и образующая омический контакт со второй коммутируемой металлической шиной.

Причинами, препятствующими достижению технического результата, являются ограничение времени переключения элемента временем пролета электронами GaAs-области канала собственной проводимости между первой и второй высоколегированными областями второго типа проводимости, отсутствие функциональной интеграции.

Наиболее близким по технической сущности к заявляемому изобретению является интегральный элемент [Пат. RU 2287896 C1, Российская Федерация. Коноплев Борис Георгиевич, Рындин Евгений Адальбертович. «Интегральный логический элемент «НЕ» на основе туннельного эффекта», 2006, Фиг. 2], содержащий полуизолирующую GaAs-подложку, барьерную AlGaAs-область второго типа проводимости, расположенную под ней AlGaAs-область спейсера собственной проводимости, расположенную под ней GaAs-область канала собственной проводимости, управляющую металлическую шину, расположенную над барьерной AlGaAs-областью второго типа проводимости и образующую с ней переход Шоттки, первую коммутируемую металлическую шину, первую коммутируемую область второго типа проводимости, граничащую с GaAs-областью канала собственной проводимости и образующую омический контакт с первой коммутируемой металлической шиной, вторую коммутируемую металлическую шину, вторую коммутируемую область второго типа проводимости, граничащую с GaAs-областью канала собственной проводимости и образующую омический контакт со второй коммутируемой металлической шиной, расположенную над полуизолирующей GaAs-подложкой AlGaAs-область управляющего p-n-перехода первого типа проводимости, расположенную над ней AlGaAs-область управляющего p-n-перехода второго типа проводимости, вторую управляющую металлическую шину, соединенную с AlGaAs-областью управляющего p-n-перехода первого типа проводимости и образующую с ней омический контакт, третью коммутируемую металлическую шину, третью коммутируемую область второго типа проводимости, образующую омический контакт с третьей коммутируемой металлической шиной, четвертую коммутируемую металлическую шину, четвертую коммутируемую область второго типа проводимости, образующую омический контакт с четвертой коммутируемой металлической шиной, AlGaAs-область туннельного барьера собственной проводимости, расположенную под GaAs-областью канала собственной проводимости, изолирующие AlGaAs-области собственной проводимости, расположенную под AlGaAs-областью туннельного барьера собственной проводимости GaAs-область параллельного канала собственной проводимости, граничащую с третьей и четвертой коммутируемыми областями второго типа проводимости и ориентированную параллельно GaAs-области канала собственной проводимости, AlGaAs-область параллельного спейсера собственной проводимости, расположенную под GaAs-областью параллельного канала собственной проводимости и ориентированную параллельно GaAs-области канала собственной проводимости.

Признаками прототипа, совпадающими с существенными признаками заявляемого изобретения, являются полуизолирующая GaAs-подложка, барьерная AlGaAs-область второго типа проводимости, расположенная под ней AlGaAs-область спейсера собственной проводимости, расположенная под ней GaAs-область канала собственной проводимости, управляющая металлическая шина, расположенная над барьерной AlGaAs-областью второго типа проводимости и образующая с ней переход Шоттки, первая коммутируемая металлическая шина, первая коммутируемая область второго типа проводимости, граничащая с GaAs-областью канала собственной проводимости и образующая омический контакт с первой коммутируемой металлической шиной, вторая коммутируемая металлическая шина, вторая коммутируемая область второго типа проводимости, граничащая с GaAs-областью канала собственной проводимости и образующая омический контакт со второй коммутируемой металлической шиной, расположенная над полуизолирующей GaAs-подложкой AlGaAs-область управляющего p-n-перехода первого типа проводимости, расположенная над ней AlGaAs-область управляющего p-n-перехода второго типа проводимости, вторая управляющая металлическая шина, соединенная с AlGaAs-областью управляющего p-n-перехода первого типа проводимости и образующая с ней омический контакт, третья коммутируемая металлическая шина, третья коммутируемая область второго типа проводимости, образующая омический контакт с третьей коммутируемой металлической шиной, четвертая коммутируемая металлическая шина, четвертая коммутируемая область второго типа проводимости, образующая омический контакт с четвертой коммутируемой металлической шиной, AlGaAs-область туннельного барьера собственной проводимости, расположенная под GaAs-областью канала собственной проводимости, изолирующие AlGaAs-области собственной проводимости.

Причины, препятствующие достижению технического результата:

1) вследствие параллельной взаимной ориентации длина GaAs-области параллельного канала собственной проводимости между граничащими с ней третьей и четвертой коммутируемыми областями второго типа проводимости более чем в три раза превышает длину GaAs-области канала собственной проводимости между граничащими с ней первой и второй коммутируемыми областями второго типа проводимости, что приводит к значительному увеличению сопротивления параллельного канала в открытом состоянии и, как следствие, к увеличению потерь энергии в процессе коммутации сигналов и снижению быстродействия активного элемента интегрального коммутатора;

2) параллельная взаимная ориентация при вертикальной интеграции GaAs-областей каналов, разделенных AlGaAs-областью туннельного барьера, а также граничащих с GaAs-областями каналов коммутируемыми областями второго типа проводимости приводит к повышенным токам утечки между первой и третьей, а также второй и четвертой коммутируемыми областями активного элемента интегрального коммутатора.

Задачей предполагаемого изобретения является снижение потерь энергии в процессе коммутации сигналов, увеличение быстродействия и снижение токов утечки между коммутируемыми контактами активного элемента интегрального коммутатора.

Для достижения необходимого технического результата в активный элемент интегрального коммутатора, содержащий полуизолирующую GaAs-подложку, барьерную AlGaAs-область второго типа проводимости, расположенную под ней AlGaAs-область спейсера собственной проводимости, расположенную под ней GaAs-область канала собственной проводимости, управляющую металлическую шину, расположенную над барьерной AlGaAs-областью второго типа проводимости и образующую с ней переход Шоттки, первую коммутируемую металлическую шину, первую коммутируемую область второго типа проводимости, граничащую с GaAs-областью канала собственной проводимости и образующую омический контакт с первой коммутируемой металлической шиной, вторую коммутируемую металлическую шину, вторую коммутируемую область второго типа проводимости, граничащую с GaAs-областью канала собственной проводимости и образующую омический контакт со второй коммутируемой металлической шиной, расположенную над полуизолирующей GaAs-подложкой AlGaAs-область управляющего p-n-перехода первого типа проводимости, расположенную над ней AlGaAs-область управляющего p-n-перехода второго типа проводимости, вторую управляющую металлическую шину, соединенную с AlGaAs-областью управляющего p-n-перехода первого типа проводимости и образующую с ней омический контакт, третью коммутируемую металлическую шину, третью коммутируемую область второго типа проводимости, образующую омический контакт с третьей коммутируемой металлической шиной, четвертую коммутируемую металлическую шину, четвертую коммутируемую область второго типа проводимости, образующую омический контакт с четвертой коммутируемой металлической шиной, AlGaAs-область туннельного барьера собственной проводимости, расположенную под GaAs-областью канала собственной проводимости, изолирующие AlGaAs-области собственной проводимости, введены расположенная под AlGaAs-областью туннельного барьера собственной проводимости GaAs-область ортогонального канала собственной проводимости, граничащая с третьей и четвертой коммутируемыми областями второго типа проводимости и ориентированная перпендикулярно GaAs-области канала собственной проводимости, AlGaAs-область ортогонального спейсера собственной проводимости, расположенная под GaAs-областью ортогонального канала собственной проводимости и ориентированная перпендикулярно GaAs-области канала собственной проводимости.

Сравнивая предлагаемое устройство с прототипом, видим, что оно содержит новые признаки, то есть соответствует критерию новизны. Проводя сравнение с аналогами, приходим к выводу, что предлагаемое устройство соответствует критерию «существенные отличия», так как в аналогах не обнаружены предъявляемые новые признаки. Получен положительный эффект, заключающийся в снижении потерь энергии в процессе коммутации сигналов, увеличении быстродействия и снижении токов утечки между коммутируемыми контактами активного элемента интегрального коммутатора.

На фиг. 1 приведена топология предлагаемого активного элемента интегрального коммутатора. На фиг. 2 приведено поперечное сечение предлагаемого активного элемента интегрального коммутатора по GaAs-области канала собственной проводимости и граничащим с ней первой и второй коммутируемым областям второго типа проводимости. На фиг. 3 приведено поперечное сечение предлагаемого активного элемента интегрального коммутатора по GaAs-области ортогонального канала собственной проводимости и граничащим с ней третьей и четвертой коммутируемым областям второго типа проводимости.

Активный элемент интегрального коммутатора содержит полуизолирующую GaAs-подложку 1, барьерную AlGaAs-область второго типа проводимости 2, расположенную под ней AlGaAs-область спейсера собственной проводимости 3, расположенную под ней GaAs-область канала собственной проводимости 4, управляющую металлическую шину 5, расположенную над барьерной AlGaAs-областью второго типа проводимости 2 и образующую с ней переход Шоттки, первую коммутируемую металлическую шину 6, первую коммутируемую область второго типа проводимости 7, граничащую с GaAs-областью канала собственной проводимости 4 и образующую омический контакт с первой коммутируемой металлической шиной 6, вторую коммутируемую металлическую шину 8, вторую коммутируемую область второго типа проводимости 9, граничащую с GaAs-областью канала собственной проводимости 4 и образующую омический контакт со второй коммутируемой металлической шиной 8, расположенную над полуизолирующей GaAs-подложкой 1 AlGaAs-область управляющего p-n-перехода первого типа проводимости 10, расположенную над ней AlGaAs-область управляющего p-n-перехода второго типа проводимости 11, вторую управляющую металлическую шину 12, соединенную с AlGaAs-областью управляющего p-n-перехода первого типа проводимости 10 и образующую с ней омический контакт, третью коммутируемую металлическую шину 13, третью коммутируемую область второго типа проводимости 14, образующую омический контакт с третьей коммутируемой металлической шиной 13, четвертую коммутируемую металлическую шину 15, четвертую коммутируемую область второго типа проводимости 16, образующую омический контакт с четвертой коммутируемой металлической шиной 15, AlGaAs-область туннельного барьера собственной проводимости 17, расположенную под GaAs-областью канала собственной проводимости 4, изолирующие AlGaAs-области собственной проводимости 18, расположенную под AlGaAs-областью туннельного барьера собственной проводимости 17 GaAs-область ортогонального канала собственной проводимости 19, граничащую с третьей и четвертой коммутируемыми областями второго типа проводимости и ориентированную перпендикулярно GaAs-области канала собственной проводимости 4, AlGaAs-область ортогонального спейсера собственной проводимости 20, расположенную под GaAs-областью ортогонального канала собственной проводимости 19 и ориентированную перпендикулярно GaAs-области канала собственной проводимости 4.

Работает устройство следующим образом. При подаче положительного напряжения на управляющую металлическую шину 5, расположенную над барьерной AlGaAs-областью второго типа проводимости 2 и образующую с ней переход Шоттки, и отрицательного напряжения на вторую управляющую металлическую шину 12, соединенную с расположенной над полуизолирующей GaAs-подложкой 1 AlGaAs-областью управляющего p-n-перехода первого типа проводимости 10, расположенной под AlGaAs-областью управляющего p-n-перехода второго типа проводимости 11, поперечное управляющее поле вызывает туннельную передислокацию максимума плотности двумерного электронного газа из GaAs-области ортогонального канала собственной проводимости 19, расположенной над AlGaAs-областью ортогонального спейсера собственной проводимости 20, в GaAs-область канала собственной проводимости 4, расположенную под AlGaAs-областью спейсера собственной проводимости 3, через AlGaAs-область туннельного барьера собственной проводимости 17, в результате чего плотность двумерного электронного газа в GaAs-области канала собственной проводимости 4 увеличивается, а в GaAs-области ортогонального канала собственной проводимости 19 уменьшается, что приводит, с одной стороны, к коммутации первой коммутируемой области второго типа проводимости 7, образующей омический контакт с первой коммутируемой металлической шиной 6, и второй коммутируемой области второго типа проводимости 9, образующей омический контакт со второй коммутируемой металлической шиной 8, а с другой стороны, - к разъединению третьей коммутируемой области второго типа проводимости 14, образующей омический контакт с третьей коммутируемой металлической шиной 13, и четвертой коммутируемой области второго типа проводимости 16, образующей омический контакт с четвертой коммутируемой металлической шиной 15.

При подаче отрицательного напряжения на управляющую металлическую шину 5, расположенную над барьерной AlGaAs-областью второго типа проводимости 2 и образующую с ней переход Шоттки, и положительного напряжения на вторую управляющую металлическую шину 12, соединенную с расположенной над полуизолирующей GaAs-подложкой 1 AlGaAs-областью управляющего p-n-перехода первого типа проводимости 10, расположенной под AlGaAs-областью управляющего p-n-перехода второго типа проводимости 11, поперечное управляющее поле вызывает туннельную передислокацию максимума плотности двумерного электронного газа из GaAs-области канала собственной проводимости 4, расположенной под AlGaAs-областью спейсера собственной проводимости 3, в GaAs-область ортогонального канала собственной проводимости 19, расположенную над AlGaAs-областью ортогонального спейсера собственной проводимости 20, через AlGaAs-область туннельного барьера собственной проводимости 17, в результате чего плотность двумерного электронного газа в GaAs-области ортогонального канала собственной проводимости 19 увеличивается, а в GaAs-области канала собственной проводимости 4 уменьшается, что приводит, с одной стороны, к разъединению первой коммутируемой области второго типа проводимости 7, образующей омический контакт с первой коммутируемой металлической шиной 6, и второй коммутируемой области второго типа проводимости 9, образующей омический контакт со второй коммутируемой металлической шиной 8, а с другой стороны, - к коммутации третьей коммутируемой области второго типа проводимости 14, образующей омический контакт с третьей коммутируемой металлической шиной 13, и четвертой коммутируемой области второго типа проводимости 16, образующей омический контакт с четвертой коммутируемой металлической шиной 15.

AlGaAs-область спейсера собственной проводимости 3 и AlGaAs-область ортогонального спейсера собственной проводимости 20 обеспечивают увеличение подвижности электронов в GaAs-области канала собственной проводимости 4 и GaAs-области ортогонального канала собственной проводимости 19, соответственно, за счет пространственного разделения электронов в каналах от ионов легирующих примесей в барьерной AlGaAs-области второго типа проводимости 2 и AlGaAs-области управляющего p-n-перехода второго типа проводимости 11.

При всех рассмотренных выше комбинациях управляющих напряжений управляемая туннельная передислокация максимума плотности двумерного электронного газа происходит при практически неизменном суммарном числе электронов в GaAs-области канала собственной проводимости 4 и GaAs-области ортогонального канала собственной проводимости 19. В результате время переключения предложенного активного элемента интегрального коммутатора определяется малой инерционностью процесса туннелирования электронов через AlGaAs-область туннельного барьера собственной проводимости 17 и не ограничено временем пролета электронами расстояний между коммутируемыми областями второго типа проводимости 7 и 9 или 14 и 16, что обеспечивает увеличение быстродействия предложенного активного элемента интегрального коммутатора по сравнению с аналогами.

Взаимно ортогональное расположение GaAs-области канала собственной проводимости 4 и GaAs-области ортогонального канала собственной проводимости 19, а также соответствующих коммутируемых областей второго типа проводимости 7, 9 и 14, 16, электрически изолированных друг от друга изолирующими AlGaAs-областями собственной проводимости 18, обеспечивает:

1) равенство длин каналов 4 и 19 (равенство расстояний между коммутируемыми областями второго типа проводимости 7, 9 и, соответственно, 14, 16), позволяющее снизить потери энергии в процессе коммутации сигналов;

2) увеличение расстояний между коммутируемыми областями второго типа проводимости 7, 14 и 9, 16, граничащими с разными каналами и электрически изолированными друг от друга изолирующими AlGaAs-областями собственной проводимости 18, позволяющее уменьшить емкости и токи утечки между коммутируемыми областями второго типа проводимости 7, 14 и 9, 16.

Таким образом, в зависимости от напряжений, подаваемых на управляющие металлические шины 5 и 12, осуществляется коммутация металлических шин 6 и 8 или металлических шин 13 и 15, характеризующаяся временем переключения, определяемым малой инерционностью процесса туннелирования электронов через AlGaAs-область туннельного барьера собственной проводимости 17, а предлагаемое устройство представляет собой активный элемент интегрального коммутатора с повышенным быстродействием, а также сниженными потерями энергии и токами утечки по сравнению с аналогами.

Положительный эффект, заключающийся в увеличении быстродействия и снижении потерь энергии и токов утечки активного элемента интегрального коммутатора, получен за счет введения перечисленных выше новых признаков.

Активный элемент интегрального коммутатора, содержащий полуизолирующую GaAs-подложку, барьерную AlGaAs-область второго типа проводимости, расположенную под ней AlGaAs-область спейсера собственной проводимости, расположенную под ней GaAs-область канала собственной проводимости, управляющую металлическую шину, расположенную над барьерной AlGaAs-областью второго типа проводимости и образующую с ней переход Шоттки, первую коммутируемую металлическую шину, первую коммутируемую область второго типа проводимости, граничащую с GaAs-областью канала собственной проводимости и образующую омический контакт с первой коммутируемой металлической шиной, вторую коммутируемую металлическую шину, вторую коммутируемую область второго типа проводимости, граничащую с GaAs-областью канала собственной проводимости и образующую омический контакт со второй коммутируемой металлической шиной, расположенную над полуизолирующей GaAs-подложкой AlGaAs-область управляющего p-n-перехода первого типа проводимости, расположенную над ней AlGaAs-область управляющего p-n-перехода второго типа проводимости, вторую управляющую металлическую шину, соединенную с AlGaAs-областью управляющего p-n-перехода первого типа проводимости и образующую с ней омический контакт, третью коммутируемую металлическую шину, третью коммутируемую область второго типа проводимости, образующую омический контакт с третьей коммутируемой металлической шиной, четвертую коммутируемую металлическую шину, четвертую коммутируемую область второго типа проводимости, образующую омический контакт с четвертой коммутируемой металлической шиной, AlGaAs-область туннельного барьера собственной проводимости, расположенную под GaAs-областью канала собственной проводимости, изолирующие AlGaAs-области собственной проводимости, отличающийся тем, что в него введены расположенная под AlGaAs-областью туннельного барьера собственной проводимости GaAs-область ортогонального канала собственной проводимости, граничащая с третьей и четвертой коммутируемыми областями второго типа проводимости и ориентированная перпендикулярно GaAs-области канала собственной проводимости, AlGaAs-область ортогонального спейсера собственной проводимости, расположенная под GaAs-областью ортогонального канала собственной проводимости и ориентированная перпендикулярно GaAs-области канала собственной проводимости.
Активный элемент интегрального коммутатора
Активный элемент интегрального коммутатора
Активный элемент интегрального коммутатора
Источник поступления информации: Роспатент

Показаны записи 1-10 из 41.
20.10.2015
№216.013.844f

Устройство тестового контроля

Предлагаемое устройство относится к области вычислительной техники и может быть использовано в системах контроля и диагностики цифровых вычислительных устройств. Задачей заявляемого устройства является обеспечение возможности независимого оперативного переключения различных групп...
Тип: Изобретение
Номер охранного документа: 0002565474
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.8f69

Устройство формирования линейно-частотно-модулированных сигналов

Изобретение относится к технике формирования радиосигналов и может быть использовано в радиолокации, защищенной связи, радиотомографии, георазведке. Технический результат изобретения заключается в увеличении девиации частоты линейно-частотно-модулированных (ЛЧМ) сигналов. Изобретение включает...
Тип: Изобретение
Номер охранного документа: 0002568329
Дата охранного документа: 20.11.2015
10.02.2016
№216.014.c31b

Масса для изготовления абразивного инструмента

Изобретение относится к области механической обработки материалов и может быть использовано при изготовлении абразивных инструментов для шлифования. Используют массу, включающую абразив, эпоксидную смолу, полиэтиленполиамин, высокопрочный ферритный чугун, древесную золу и дийодид хрома в...
Тип: Изобретение
Номер охранного документа: 0002574183
Дата охранного документа: 10.02.2016
20.04.2016
№216.015.3406

Способ лазерного управляемого термораскалывания сапфировых пластин

Изобретение относится к способам резки хрупких неметаллических материалов, в частности сапфировых пластин импульсным лазерным излучением с длиной волны 1064 нм. Изобретение может быть использовано в различных областях техники и технологий для безотходной и высокоточной резки (термораскалывания)...
Тип: Изобретение
Номер охранного документа: 0002582181
Дата охранного документа: 20.04.2016
20.05.2016
№216.015.3fd3

Акустооптический измеритель параметров радиосигналов с повышенным разрешением

Акустооптический измеритель параметров радиосигналов включает в себя последовательно по свету расположенные лазер, коллиматор, АО дефлектор, на электрический вход которого подается измеряемый радиосигнал, интегрирующую линзу, в фокальной плоскости которой расположено регистрирующее устройство,...
Тип: Изобретение
Номер охранного документа: 0002584182
Дата охранного документа: 20.05.2016
13.01.2017
№217.015.73c8

Четырехконтактный элемент интегрального коммутатора

Изобретение относится к области интегральной электроники, а именно - к элементам интегральных коммутаторов. Для увеличения быстродействия и расширения функциональных возможностей в четырехконтактный элемент интегрального коммутатора, содержащий полуизолирующую GaAs-подложку, области GaAs и...
Тип: Изобретение
Номер охранного документа: 0002597677
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7408

Интегральный туннельный акселерометр

Изобретение относится к области измерительной техники и микросистемной техники. Сущность изобретения заключается в том, что в устройство дополнительно введены четыре дополнительных неподвижных электрода, выполненные с гребенчатыми структурами из полупроводникового материала и расположенные...
Тип: Изобретение
Номер охранного документа: 0002597951
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.740f

Интегральный микромеханический гироскоп-акселерометр

Изобретение относится к области измерительной техники и микросистемной техники. Сущность изобретения заключается в том, что в устройство дополнительно введены четыре дополнительных неподвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с гребенчатыми...
Тип: Изобретение
Номер охранного документа: 0002597950
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.74c7

Интегральный микромеханический гироскоп-акселерометр

Изобретение относится к области измерительной техники и микросистемной техники. Сущность изобретения заключается в том, что в устройство дополнительно введены четыре дополнительных подвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с перфорацией с...
Тип: Изобретение
Номер охранного документа: 0002597953
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.89ed

Высокочувствительный преобразователь емкости в частоту

Изобретение относится к цифровой измерительной технике, а именно к устройствам преобразования емкости в частоту, и может быть использовано в устройствах первичной обработки информации емкостных преобразователей микромеханических гироскопов и акселерометров. Высокочувствительный преобразователь...
Тип: Изобретение
Номер охранного документа: 0002602493
Дата охранного документа: 20.11.2016
Показаны записи 1-10 из 16.
10.04.2013
№216.012.32dc

Способ изготовления полимерного композита с ориентированным массивом углеродных нанотрубок регулируемой плотности

Изобретение относится к области нано- и микросистемной техники и полимерных нанокомпозитов и может быть использовано для создания элементов наноэлектроники с регулируемым сопротивлением, защитных и теплоотводящих пленочных покрытий. Способ изготовления пленки, состоящей из полимерной матрицы,...
Тип: Изобретение
Номер охранного документа: 0002478563
Дата охранного документа: 10.04.2013
27.06.2014
№216.012.d781

Интегральный инжекционный лазер с модуляцией частоты излучения посредством управляемой передислокации максимума амплитуды волновых функций носителей заряда

Изобретение относится к квантовой электронной технике. В интегральный инжекционный лазер введены верхняя управляющая область второго типа проводимости, примыкающая к верхнему волноводному слою, нижняя управляющая область второго типа проводимости, примыкающая к нижнему волноводному слою, нижняя...
Тип: Изобретение
Номер охранного документа: 0002520947
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d782

Распределенный сенсор трещин, способ регистрации их возникновения и определения локализации

Изобретение относится к области диагностики механического состояния конструкций, а именно к технике диагностики повреждения поверхности конструкций, и может быть использовано для мониторинга поверхностей объектов авиационной техники. Распределенный сенсор трещин состоит из электрических...
Тип: Изобретение
Номер охранного документа: 0002520948
Дата охранного документа: 27.06.2014
13.01.2017
№217.015.73c8

Четырехконтактный элемент интегрального коммутатора

Изобретение относится к области интегральной электроники, а именно - к элементам интегральных коммутаторов. Для увеличения быстродействия и расширения функциональных возможностей в четырехконтактный элемент интегрального коммутатора, содержащий полуизолирующую GaAs-подложку, области GaAs и...
Тип: Изобретение
Номер охранного документа: 0002597677
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7408

Интегральный туннельный акселерометр

Изобретение относится к области измерительной техники и микросистемной техники. Сущность изобретения заключается в том, что в устройство дополнительно введены четыре дополнительных неподвижных электрода, выполненные с гребенчатыми структурами из полупроводникового материала и расположенные...
Тип: Изобретение
Номер охранного документа: 0002597951
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.740f

Интегральный микромеханический гироскоп-акселерометр

Изобретение относится к области измерительной техники и микросистемной техники. Сущность изобретения заключается в том, что в устройство дополнительно введены четыре дополнительных неподвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с гребенчатыми...
Тип: Изобретение
Номер охранного документа: 0002597950
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.74c7

Интегральный микромеханический гироскоп-акселерометр

Изобретение относится к области измерительной техники и микросистемной техники. Сущность изобретения заключается в том, что в устройство дополнительно введены четыре дополнительных подвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с перфорацией с...
Тип: Изобретение
Номер охранного документа: 0002597953
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.89ed

Высокочувствительный преобразователь емкости в частоту

Изобретение относится к цифровой измерительной технике, а именно к устройствам преобразования емкости в частоту, и может быть использовано в устройствах первичной обработки информации емкостных преобразователей микромеханических гироскопов и акселерометров. Высокочувствительный преобразователь...
Тип: Изобретение
Номер охранного документа: 0002602493
Дата охранного документа: 20.11.2016
10.05.2018
№218.016.41c6

Интегральный микромеханический гироскоп-акселерометр

Изобретение относится к области измерительной техники и микросистемной техники, а более конкретно к интегральным измерительным элементам величин угловой скорости и ускорения. Сущность изобретения заключается в том, что интегральный микромеханический гироскоп-акселерометр дополнительно содержит...
Тип: Изобретение
Номер охранного документа: 0002649249
Дата охранного документа: 30.03.2018
08.07.2018
№218.016.6e7c

Интегральный микромеханический туннельный акселерометр

Изобретение относится к области измерительной и микросистемной техники, а именно к интегральным измерительным элементам величин ускорения. Акселерометр содержит полуизолирующую подложку, основание неподвижного электрода, основание электростатического актюатора, якорную область подвижного...
Тип: Изобретение
Номер охранного документа: 0002660412
Дата охранного документа: 06.07.2018
+ добавить свой РИД