×
13.01.2017
217.015.6b4c

Результат интеллектуальной деятельности: СПОСОБ РЕГУЛИРОВАНИЯ АВИАЦИОННОГО ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

№ охранного документа
0002592562
Дата охранного документа
27.07.2016
Аннотация: Изобретение относится к способам регулирования турбореактивного двигателя в зависимости от целей полета самолета, в частности обеспечения максимальной продолжительности и дальности полета. Способ регулирования авиационного турбореактивного двигателя включает управление суммарным расходом топлива в форсажной камере сгорания по измеренным температуре воздуха на входе в двигатель и давлению воздуха за компрессором, измерение расхода топлива для первого и второго форсажных коллекторов при поддержании одинакового суммарного расхода топлива в зависимости от давления воздуха за компрессором и температуры воздуха на входе в двигатель, измерение значения тяги и определения удельного расхода топлива, построение зависимости удельного расхода топлива от тяги при разных соотношениях топлива, подаваемого в первый и второй форсажный коллекторы, и установление соотношения топлива, подаваемого в первый и второй форсажный коллекторы, обеспечивающего минимальный удельный расход топлива при заданных значениях тяги. Изобретение позволяет повысить экономичность двигателя на форсированном сверхзвуковом режиме, режимах перегона самолета, а также увеличить дальность и продолжительность полета самолета. 1 табл., 4 ил.

Изобретение относится к способам регулирования турбореактивного двигателя (ТРД) в зависимости от целей полета самолета, в частности обеспечения максимальной продолжительности и дальности полета.

Известен способ регулирования авиационного турбореактивного двигателя, включающий в себя поддержание суммарного расхода топлива через топливные коллекторы форсажной камеры в зависимости от давления за компрессором на максимальном форсированном режиме работы двигателя (Ю.Н. Нечаев «Законы управления и характеристики авиационных силовых установок», Москва, Машиностроение, 1995, с. 287-288).

Наиболее близким к данному изобретению по технической сущности является известный способ управления газотурбинным двигателем с форсажной камерой сгорания, где по измеренным температуре воздуха на входе в двигатель, давлению воздуха за компрессором, положению рычага управления двигателем (РУД) и расходу топлива в основную камеру сгорания управляют расходом топлива в форсажной камере сгорания. Дополнительно на установившихся форсажных режимах измеряют давление и температуру газов в форсажной камере сгорания, подают возрастающее по частоте пульсирующее воздействие на расход воздуха через двигатель с помощью направляющих аппаратов компрессора и створок реактивного сопла двигателя. В момент увеличения полноты сгорания форсажного топлива, определяемый по скачкообразному росту давления и температуры газов в форсажной камере сгорания, фиксируют частоту пульсирующего воздействия на расход воздуха через двигатель и уменьшают расход форсажного топлива до тех пор, пока температура газов в форсажной камере сгорания не снизится до исходной /RU 2386837 C2, Открытое акционерное общество "СТАР", 20.04.2010/.

Данный способ не является оптимальным во всей области эксплуатации газотурбинного двигателя в силу того, что он не обеспечивает наибольшую дальность полета на форсированном сверхзвуковом режиме полета самолета (режимах перегона).

Задача изобретения заключается в повышении экономичности двигателя на форсированном сверхзвуковом режиме, режимах перегона самолета, а также в увеличении дальности и продолжительности полета самолета.

Ожидаемый технический результат заключается в снижении расхода топлива и увеличении дальности полета.

Ожидаемый технический результат достигается тем, что управляют суммарным расходом топлива в форсажной камере сгорания по измеренным температуре воздуха на входе в двигатель и давлению воздуха за компрессором, по предложению проводят измерение расхода топлива для первого и второго форсажных коллекторов при поддержании одинакового суммарного расхода топлива в зависимости от давления воздуха за компрессором и температуры воздуха на входе в двигатель, измеряют значения тяги и определяют удельный расход топлива, после чего строят зависимости удельного расхода топлива от тяги при разных соотношениях топлива, подаваемого в первый и второй форсажный коллекторы, и устанавливают соотношение топлива, подаваемого в первый и второй форсажный коллекторы, обеспечивающее минимальный удельный расход топлива при заданных значениях тяги.

Способ согласно изобретению иллюстрируется рисунками 1-4. На рис. 1 и 2 представлены графики, отражающие зависимость Gт.ф1/Р*к от Тв для 1 форсажного коллектора и Gт.ф2/Р*к от Тв для 2 форсажного коллектора соответственно. На рис. 3 представлен график, отражающий зависимость удельного расхода топлива (CR) от тяги (R). На рис. 4 схематично представлена система управления ТРД.

Gт.ф1 - расход топлива через 1 топливный коллектор форсажной камеры;

Gт.ф2 - расход топлива через 2 топливный коллектор форсажной камеры;

Р*к - измеренное давление воздуха за компрессором двигателя;

Тв - измеренная температура воздуха на входе в двигатель;

CR - удельный расход топлива;

R - тяга.

Способ регулирования авиационного турбореактивного двигателя реализуется следующим образом. При проведении испытаний на стенде с имитацией полетных условий в регулятор двигателя задают предварительно сформированные алгоритмы управления подачей топлива для 1 и 2 форсажных коллекторов при поддержании суммарного расхода топлива в зависимости от степени повышения давления за компрессором. По измеренным расходам топлива через 1 и 2 коллекторы форсажной камеры, давлению воздуха за компрессором двигателя и температуре воздуха на входе в двигатель строят зависимости Gт.ф./Р*к от Тв.

Рассмотрим графики, представленные на рис. 1 (зависимость Gт.ф1/Р*к от Тв для 1 форсажного коллектора) и рис. 2 (Gт.ф2/Р*к от Тв для второго форсажного коллектора).

кривая 1 - штатный 1 алгоритм управления, обеспечивающий заданные тяговые характеристики (расход топлива в первом и втором коллекторах форсажной камеры одинаковый, т.е. на первый и второй коллекторы подают по 50% от суммарного расхода топлива);

кривая 2 - дополнительный 2 алгоритм управления подачей топлива (на первый коллектор подают 40% от суммарного расхода топлива, а на второй - 60% от суммарного расхода топлива);

кривая 3 - дополнительный 3 алгоритм управления подачей топлива (на первый коллектор подают 60% от суммарного расхода топлива, а на второй - 40% от суммарного расхода топлива).

Суммарный расход топлива через 1 и 2 топливный коллекторы форсажной камеры постоянен, что можно выразить следующими уравнениями:

, где

Gт.ф1 по 1 алг. - расход топлива через 1 топливный коллектор форсажной камеры по первому алгоритму управления,

Gт.ф2 по 1 алг - расход топлива через 2 топливный коллектор форсажной камеры по первому алгоритму управления,

Gт.ф1 по 2 алг. - расход топлива через 1 топливный коллектор форсажной камеры по второму алгоритму управления,

Gт.ф2 по 2 алг. - расход топлива через 2 топливный коллектор форсажной камеры по второму алгоритму управления,

Gт.ф1 по 3 алг.- - расход топлива через 1 топливный коллектор форсажной камеры по третьему алгоритму управления,

Gт.ф2 по 3 алг. - расход топлива через 2 топливный коллектор форсажной камеры по третьему алгоритму управления.

Для каждого алгоритма управления при требуемых условиях полета выполняют измерения тяги (R) и суммарного расхода топлива (Gт.ф), после чего определяют удельный расход топлива CR=Gт.ф/R и строят зависимость CR=f(R) (рис. 3), где

CR - удельный расход топлива;

R - тяга;

кривая 1 - зависимость CR=f(R) для 1 алгоритма управления (штатного);

кривая 2 - зависимость CR=f(R) для 2 алгоритма управления;

кривая 3 - зависимость CR=f(R) для 3 алгоритма управления.

По заданному значению тяги определяют наименьший удельный расход топлива CR и соответствующий данному расходу алгоритм управления поддержания заданного перепада давления на турбинах. Алгоритм управления с наименьшим удельным расходом топлива вводят в регулятор двигателя. В соответствии с выбранным алгоритмом управления расход топлива, подаваемого в первый и второй коллекторы, может быть разным.

Система управления ТРД (рис. 4) включает: ТРД 1 как объект управления, датчик 2 расхода топлива, характеризующий подачу топлива в 1 форсажный коллектор, датчик 3 расхода топлива, характеризующий подачу топлива во 2 форсажный коллектор, датчик 4 давления воздуха за компрессором, датчик 5 температуры воздуха на входе в двигатель, датчик 6 тяги, программный блок 7 управления ТРД.

В таблице 1 отражены удельные расходы топлива CR для алгоритмов управления 1-3 при заданных значениях тяги R=2000 кгс, R=3500 кгс, R=4500 кгс.

Пример 1.

На рис. 3 видно, что при заданном значении тяги R=3500 кгс, соответствующем крейсерскому режиму - режиму максимальной дальности и продолжительности полета, наименьший удельный расход топлива CR=1,260 кг/ч кгс, что соответствует 3 алгоритму управления подачей топлива. Переход с штатного алгоритма управления 1 на алгоритм управления 3 дает снижение удельного расхода топлива CR на 8% и, следовательно, увеличение дальности и продолжительности полета на эту же величину - 8%.

Пример 2.

При заданном значении тяги R=2000 кгс (рис. 3) наименьший удельный расход топлива CR=1,515 кг/ч кгс, что соответствует 3 алгоритму управления подачей топлива. Переход с штатного алгоритма управления 1 на алгоритм управления 3 дает снижение удельного расхода топлива CR на 6% и, следовательно, увеличение дальности и продолжительности полета на эту же величину - 6%.

Пример 3.

При заданном значении тяги R=4500 кгс (рис. 3) наименьший удельный расход топлива CR=1,365 кг/ч кгс, что соответствует 3 алгоритму управления подачей топлива. Переход с штатного алгоритма управления 1 на алгоритм управления 3 дает снижение удельного расхода топлива CR на 7% и, следовательно, увеличение дальности и продолжительности полета на эту же величину - 7%.

Способ регулирования авиационного турбореактивного двигателя, включающий управление суммарным расходом топлива в форсажной камере сгорания по измеренным температуре воздуха на входе в двигатель и давлению воздуха за компрессором, отличающийся тем, что проводят измерение расхода топлива для первого и второго форсажных коллекторов при поддержании одинакового суммарного расхода топлива в зависимости от давления воздуха за компрессором и температуры воздуха на входе в двигатель, измеряют значения тяги и определяют удельный расход топлива, после чего строят зависимости удельного расхода топлива от тяги при разных соотношениях топлива, подаваемого в первый и второй форсажный коллекторы, и устанавливают соотношение топлива, подаваемого в первый и второй форсажный коллекторы, обеспечивающее минимальный удельный расход топлива при заданных значениях тяги.
СПОСОБ РЕГУЛИРОВАНИЯ АВИАЦИОННОГО ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ
СПОСОБ РЕГУЛИРОВАНИЯ АВИАЦИОННОГО ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ
СПОСОБ РЕГУЛИРОВАНИЯ АВИАЦИОННОГО ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ
СПОСОБ РЕГУЛИРОВАНИЯ АВИАЦИОННОГО ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Показаны записи 231-237 из 237.
29.12.2017
№217.015.f907

Способ регулирования авиационного турбореактивного двигателя

Изобретение относится к системам регулирования, оптимизирующим параметры турбореактивного двигателя (ТРД) в зависимости от целей полета самолета. При осуществлении способа предварительно для данного типа двигателей со штатной программой регулирования проводят его испытания на максимальном и...
Тип: Изобретение
Номер охранного документа: 0002639409
Дата охранного документа: 21.12.2017
19.01.2018
№218.016.088e

Рабочее колесо осевого компрессора газотурбинного двигателя

Изобретение относится к области турбо-машиностроения, в частности к авиационному моторостроению, и может быть использовано в рабочих колесах осевых компрессоров газотурбинных двигателей (ГТД). В известном рабочем колесе осевого компрессора газотурбинного двигателя, включающем установленные на...
Тип: Изобретение
Номер охранного документа: 0002631850
Дата охранного документа: 26.09.2017
20.01.2018
№218.016.1355

Способ регулирования авиационного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам регулирования турбореактивных двигателей (ТРД) с изменяемой геометрией сопла. Предварительно при приемо-сдаточных испытаниях двигателя на стенде выводят двигатель на максимальный режим при постоянном значении диаметра...
Тип: Изобретение
Номер охранного документа: 0002634506
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.1d99

Способ диагностики технического состояния двухконтурного газотурбинного двигателя при эксплуатации

Изобретение относится к области измерительной техники, к испытаниям, доводке, диагностике и эксплуатации реактивных двигателей, а конкретно к способам диагностики технического состояния двухконтурного газотурбинного двигателя по газодинамическим параметрам потока. Диагностику технического...
Тип: Изобретение
Номер охранного документа: 0002640972
Дата охранного документа: 12.01.2018
17.02.2018
№218.016.2a88

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы РВД и РНД модуля газогенератора и вал ротора...
Тип: Изобретение
Номер охранного документа: 0002642955
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.2ead

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы роторов высокого давления (РВД) и роторов...
Тип: Изобретение
Номер охранного документа: 0002644497
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.3176

Способ испытания авиационного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний турбореактивных двигателей (ТРД). Способ испытания ТРД включает подогрев и наддув воздуха на входе в двигатель. Для двигателя, содержащего топливно-масляный теплообменник, предварительно создают математическую...
Тип: Изобретение
Номер охранного документа: 0002645066
Дата охранного документа: 15.02.2018
Показаны записи 261-270 из 284.
08.04.2019
№219.016.fe67

Способ охлаждения ротора турбины высокого давления (твд) газотурбинного двигателя (гтд), ротор твд и лопатка ротора твд, охлаждаемые этим способом, узел аппарата закрутки воздуха ротора твд

Способ охлаждения ротора турбины высокого давления газотурбинного двигателя осуществляют путем того, что ротор охлаждают вторичным потоком воздуха из камеры сгорания газогенератора двигателя, имеющим температуру более низкую, чем температура первичного потока рабочего тела из жаровой трубы...
Тип: Изобретение
Номер охранного документа: 0002684298
Дата охранного документа: 05.04.2019
08.04.2019
№219.016.feba

Газоперекачивающий агрегат (гпа), тракт выхлопа гпа (варианты), выхлопная труба гпа и блок шумоглушения выхлопной трубы гпа

Группа изобретений относится к нефтегазовой области. Газоперекачивающий агрегат (ГПА) содержит последовательно сообщенные по рабочему телу тракт всасывания воздуха, газотурбинную установку с входным устройством для подачи воздуха из камеры всасывания воздуха на вход в ГТД, тракт выхлопа...
Тип: Изобретение
Номер охранного документа: 0002684297
Дата охранного документа: 05.04.2019
10.04.2019
№219.016.fedf

Ротор турбины низкого давления (тнд) газотурбинного двигателя (варианты), узел соединения вала ротора с диском тнд, тракт воздушного охлаждения ротора тнд и аппарат подачи воздуха на охлаждение лопаток ротора тнд

Группа изобретений относится к области авиадвигателестроения. Ротор ТНД двигателя содержит вал РНД с цапфой и рабочее колесо ТНД, включающее диск и лопаточный венец с системой рабочих лопаток. Диск рабочего колеса снабжен аппаратом подачи воздуха на охлаждение лопаток, содержащим напорное...
Тип: Изобретение
Номер охранного документа: 0002684355
Дата охранного документа: 08.04.2019
19.04.2019
№219.017.31fd

Способ регулирования авиационного турбореактивного двигателя

Способ регулирования авиационного турбореактивного двигателя относится к способам регулирования, чувствительным к параметрам двигателя и внешней среды, в частности к температуре окружающего воздуха, и позволяет кратковременно на время, не меньшее чем время пробега самолета по палубе авианосца,...
Тип: Изобретение
Номер охранного документа: 0002456464
Дата охранного документа: 20.07.2012
29.04.2019
№219.017.3e44

Тракт воздушного охлаждения лопатки соплового аппарата турбины высокого давления газотурбинного двигателя (варианты)

Тракт воздушного охлаждения сопловой лопатки выполнен трехканальным. Сопловая лопатка выполнена полой, с аэродинамическим профилем и наделена радиальной перегородкой, разделяющей внутренний объем пера на переднюю и заднюю полости, снабженные дефлекторами. Входной участок первого канала тракта...
Тип: Изобретение
Номер охранного документа: 0002686430
Дата охранного документа: 25.04.2019
20.05.2019
№219.017.5cdb

Способ охлаждения соплового аппарата турбины высокого давления (твд) газотурбинного двигателя (гтд) и сопловый аппарат твд гтд (варианты)

Способ охлаждения соплового аппарата турбины высокого давления осуществляют путем охлаждения наиболее теплонапряженные элементы в лопатках и полках сопловых блоков соплового аппарата двумя потоками воздуха - вторичного потока воздуха камеры сгорания и воздухом от воздуховоздушного...
Тип: Изобретение
Номер охранного документа: 0002688052
Дата охранного документа: 17.05.2019
13.06.2019
№219.017.80db

Способ регулирования авиационного турбореактивного двигателя

Способ регулирования авиационного двухроторного турбореактивного двигателя относится к области авиационного двигателестроения, а именно к системам регулирования, чувствительным к параметрам двигателя и окружающей среды, и позволяет повысить тяговые характеристики двигателя за счет оптимизации...
Тип: Изобретение
Номер охранного документа: 0002691287
Дата охранного документа: 11.06.2019
13.06.2019
№219.017.8179

Сопловый аппарат турбины низкого давления (тнд) газотурбинного двигателя (гтд) (варианты) и лопатка соплового аппарата тнд (варианты)

Группа изобретений относится к области авиадвигателестроения. Сопловый аппарат ТНД двигателя содержит сопловые блоки, смонтированные между наружным и внутренним силовыми кольцами, соединенными полыми силовыми спицами. Каждый из сопловых блоков собран из трех жестко соединенных лопаток,...
Тип: Изобретение
Номер охранного документа: 0002691203
Дата охранного документа: 11.06.2019
13.06.2019
№219.017.818d

Способ охлаждения соплового аппарата турбины низкого давления (тнд) газотурбинного двигателя и сопловый аппарат тнд, охлаждаемый этим способом, способ охлаждения лопатки соплового аппарата тнд и лопатка соплового аппарата тнд, охлаждаемая этим способом

Группа изобретений относится к области авиадвигателестроения. Сопловый аппарат ТНД включает сопловый венец, образованный из сопловых блоков, собранный каждый не менее чем из трех сопловых лопаток, выполненных за одно целое с малой и большой. Сопловые блоки смонтированы между наружным и...
Тип: Изобретение
Номер охранного документа: 0002691202
Дата охранного документа: 11.06.2019
19.06.2019
№219.017.85ba

Способ наддува опор газотурбинного двигателя

Изобретение относится к области газотурбинного двигателестроения, а именно к способам наддува опор газотурбинных двигателей. Способ наддува опор двухконтурного газотурбинного двигателя заключается в подаче воздуха от одной из ступеней компрессора через стойки промежуточного корпуса компрессора...
Тип: Изобретение
Номер охранного документа: 0002344303
Дата охранного документа: 20.01.2009
+ добавить свой РИД