×
13.01.2017
217.015.6ad8

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТА FeNi/C В ПРОМЫШЛЕННЫХ МАСШТАБАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi/C. Техническим результатом является получение нанокомпозита FeNi/C, содержащего наночастицы FeNi с размером от 12 до 85 нм. Способ синтеза нанокомпозита FeNi/C включает приготовление совместного раствора порошка графита, полиакрилонитрила, FeCl·6HO и NiCl·6HO в диметилформамиде, выдержку до полного растворения всех компонентов, удаление диметилформамида путем выпаривания и нагревание полученного твердого остатка. Приготовление раствора полиакрилонитрила, порошка графита, FeCl·6HO и NiCl·6HO в диметилформамиде осуществляют при температуре 50÷70°C, при следующем соотношении компонентов: полиакрилонитрил от 2 до 5 мас. % от диметилформамида, порошок графита от 2 до 5 мас. % от диметилформамида, концентрация железа от 0,3 до 1 мас. %, никеля - от 1 до 3 мас. % от массы полиакрилонитрила и графита, до полного растворения компонентов. Выпаривание растворителя проводят при температуре 70÷90°C. Термообработку твердого остатка осуществляют в несколько этапов: предварительный нагрев на воздухе в течение 6-14 часов при температуре 150÷200°C, и финальный нагрев в атмосфере N при температуре от 500 до 900°C с интервалом подъема температуры 100°C и выдержкой 30÷60 минут при соответствующих температурах. 1 пр.

Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi3/C.

Одним из способов получения наночастиц FeNi3 является восстановление в гидразине N2H4·H2O солей FeCl2·4H2O и NiCl2·6H2O, предварительно растворенных в деионизованной воде [Xuegang Lu, Gongying Liang, Yumei Zhang. Synthesis and characterization of magnetic FeNi3 particles obtained by hydrazine reduction in aqueous solution // Material Science and Engineering B. 2007. V. 139. PP. 124-127]. К недостаткам этого способа следует отнести отсутствие стабилизирующей среды для наночастиц FeNi3 и длительное время реакции, составляющее 24 часа, что затрудняет возможность контролировать размер частиц и однородность их распределения.

Для применения в области высоких частот наночастицы FeNi3 инкапсулируют SiO2, таким образом увеличивая сопротивление композита. Наночастицы FeNi3 приготавливают с помощью химического восстановления солей FeCl2·4H2O и NiCl2·6H2O в гидразин гидрате N2H4·H2O (С=80%). При этом в качестве поверхностно-активного вещества используют полиэтиленгликоль. Время реакции составляет 24 часа при комнатной температуре. В процессе реакции рН контролируется и поддерживается в интервале 12≤рН≤13 [X. Lu, G. Liang, Q. Sun, С. Yang. High-frequency magnetic properties of FeNi3-SiO2 nanocomposite synthesized by a facile chemical method. // Journal of Alloys and Compounds. 2011. V. 509. PP. 5079-5083]. К недостаткам этого способа синтеза наночастиц FeNi3 можно отнести сложность контролирования размера и фазовый состав наночастиц из-за флуктуаций условий реакции (температура, рН, концентрация реагентов) в процессе длительной реакции восстановления.

Другой способ получения нанокомпозита FeNi3/C заключается в инфракрасном нагреве смеси на основе FeCl3·6H2O, NiCl2·6H2O и полиакрилонитрила (ПАН) при давлении 10-3÷10-2 мм рт. ст. до 700°С в течение от 1 до 30 мин [Кожитов Л.В., Козлов В.В., Костикова А.В. Способ получения нанокомпозита FeNi3/пиролизованный полиакрилонитрил. Патент на изобретение №2455225. Бюл. №19. 10.07.2012]. Недостатками этого способа являются следующие ограничения: обработка с помощью ИК-излучения требует автоматизированных устройств для синтеза наноматериала в промышленных масштабах, которые не производятся; обработка с помощью ИК-излучения происходит в вакууме (Р=10-3÷10-2 мм рт. ст.), получение которого сопряжено с усложнением конструкции реактора, необходимостью использования вакуумного насоса. Кроме того, проведение пиролиза полиакрилонитрила в вакууме способствует уменьшению углеродного остатка и уменьшению количества получаемого наноматериала.

Техническим результатом является получение нанокомпозита FeNi3/C, содержащего наночастицы FeNi3 с размером от 12 до 85 нм, при термообработке композита FeCl3·6H2O/NiCl2·6H2O/ПАН/Графит.

Технический результат достигается следующим образом.

Способ синтеза нанокомпозита FeNi3/C включает приготовление совместного раствора порошка графита, полиакрилонитрила, FeCl3·6H2O и NiCl2·6H2O в диметилформамиде, выдержку до полного растворения всех компонентов, удаление диметилформамида путем выпаривания и нагревание полученного твердого остатка. Приготовление раствора полиакрилонитрила, порошка графита, FeCl3·6H2O и NiCl2·6H2O в диметилформамиде осуществляют при температуре 50-70°С, при следующем соотношении компонентов: полиакрилонитрил от 2 до 5 мас. % от диметилформамида, порошок графита от 2 до 5 мас. % от диметилформамида, концентрация железа от 0,3 до 1 мас. %, никеля от 1 до 3 мас. % от массы полиакрилонитрила и графита до полного растворения компонентов, выпаривание растворителя проводят при температурах 70-90°С, термообработка твердого остатка осуществляют в несколько этапов, предварительный нагрев на воздухе в течение 6-14 часов при температурах 150-200°С, и финальный нагрев осуществляют в атмосфере N2 при температуре от 500 до 900°С с интервалом подъема температуры 100°С и выдержкой 30-60 минут при соответствующих температурах с образованием наночастиц FeNi3 с размером частиц от 12 до 85 нм.

Для измерения размеров наночастиц FeNi3 использованы рентгеновский дифрактометр ДРОН-1,5 (CuKα-излучение) с модернизированной коллимацией и метод сканирующей электронной микроскопии (СЭМ) с использованием низковакуумного растрового двухлучевого электронного микроскопа Quanta 3D FEG. Средний размер кристаллитов (LC) интерметаллида FeNi3 рассчитан из рентгеновских спектров с помощью уравнения Дебая-Шерера:

LC=kλ/Bcosθ,

где k - константа, равная 0,89; В - полуширина дифракционного угла, соответственного дифракционного максимума; λ=1,54056 - длина волны рентгеновского CuKα-излучения, Θ - дифракционный угол, град.

Пример. Для синтеза нанокомпозита FeNi3/C с C(FeNi3)=40 % были использованы хлорид железа (III) шестиводный (FeCl3·6H2O), х.ч.; хлорид никеля (II) шестиводный (NiCl2·6H2O), х.ч.; полиакрилонитрил (ПАН); порошок графита (Гр); диметилформамид (ДМФА), х.ч. Были приготовлены следующие навески для синтеза нанокомпозита FeNi3/C с C(FeNi3)=40 %: m(ПАН)=50 г; m(Гр)=50 г; m(NiCl2·6H2O)=120,5 г; m(FeCl3·6H2O)=42,27 г. На первом этапе получили совместный раствор FeCl3·6H2O, NiCl2·6H2O и ПАН, высыпав заготовленные навески, в ДМФА (V=800 мл). Для ускорения растворения необходимо перемешивать раствор при 60°С. Время приготовления раствора составило 4 час. Приготовленный порошок графита нагревали в муфеле при 350°С в течение 3 часов. Затем графитовый порошок добавили в совместный раствор FeCl3·6H2O, NiCl2·6H2O и ПАН в ДМФА. Полученную смесь перемешивали в течение 30 мин при 60°С.

На втором этапе выпаривали растворитель ДМФА. Для этого раствор разлили в четыре фарфоровые чашки (V=250 мл). Чашки с раствором выдерживали при 80°С в течение 22 часов с использованием нагревательной плитки ES-H3040 (фирма Экрос) до образования вязкой массы.

Предварительная термическая обработка композита на основе полиакрилонитрила, графита, NiCl2·6H2O и FeCl3·6H2O на воздухе при 200°С осуществляли в муфеле в течение 14 часов. В результате получена твердая масса. Масса была размолота с использованием ступки и пестика.

Синтез нанокомпозита FeNi3/C из композита на основе полиакрилонитрила, графита, NiCl2·6H2O и FeCl3·6H2O происходил на стадии термической обработки в атмосфере N2 с использованием промышленной установки.

Для термической обработки были использованы три графитовые кюветы, которые одновременно помещались в реактор. Был применен ступенчатый нагрев. Температура нагрева и время выдержки (t) композита при этой температуре на каждой ступени указаны ниже: 1) 300°С; t=1 час. После термической обработки при 300°С три кюветы с композитом были извлечены из реактора. Полученная серая масса дополнительно подверглась измельчению с использованием ступки и пестика. Для дальнейшей термической обработки были использованы две графитовые кюветы в результате убыли веса массы композита из-за процессов карбонизации полимера и разложения солей, содержащихся в композите.

После загрузки двух кювет в установку был продолжен ступенчатый нагрев со следующими параметрами: 2) 400°С; t=1 час; 3) 500°С; t=30 мин; 4) 600°С; t=30 мин. После термической обработки при 600°С две кюветы с композитом были извлечены из реактора. Полученная серая масса дополнительно подверглась измельчению с использованием ступки и пестика. После загрузки двух кювет в реактор установки был продолжен ступенчатый нагрев со следующими параметрами: 5) 700°С; t=1 час; 6) 800°С; t=1 час; 7) 900°С; t=30 мин.

После термической обработки при 900°С две кюветы с композитом были извлечены из реактора установки. Полученная серая масса дополнительно подверглась измельчению с использованием ступки и пестика.

Полученный нанокомпозит FeNi3/C содержал наночастицы FeNi3 с размером в диапазоне от 12 до 85 нм, установленном с помощью методов рентгеновской дифрактометрии и сканирующей электронной микроскопии.

Способ синтеза нанокомпозита FeNi/C, включающий приготовление совместного раствора порошка графита, полиакрилонитрила, FeCl·6HO и NiCl·6HO в диметилформамиде, выдержку до полного растворения всех компонентов, удаление диметилформамида путем выпаривания и нагревание полученного твердого остатка, отличающийся тем, что приготовление раствора полиакрилонитрила, порошка графита, FeCl·6HO и NiCl·6HO в диметилформамиде осуществляют при температуре 50÷70°C, при следующем соотношении компонентов: полиакрилонитрил от 2 до 5 мас. % от диметилформамида, порошок графита от 2 до 5 мас. % от диметилформамида, концентрация железа от 0,3 до 1 мас. %, никеля - от 1 до 3 мас. % от массы полиакрилонитрила и графита, до полного растворения компонентов, выпаривание растворителя проводят при температуре 70÷90°С, термообработка твердого остатка осуществляют в несколько этапов: предварительный нагрев на воздухе в течение 6÷14 часов при температуре 150÷200°С, и финальный нагрев - в атмосфере N при температуре от 500 до 900°C с интервалом подъема температуры 100°С и выдержкой 30÷60 минут при соответствующих температурах с образованием наночастиц FeNi с размером частиц от 12 до 85 нм.
Источник поступления информации: Роспатент

Показаны записи 211-220 из 347.
10.05.2018
№218.016.4f2f

Алмазное лопастное буровое долото

Изобретение относится к породоразрушающему инструменту, в частности к буровым долотам, предназначенным для бурения глубоких нефтегазовых скважин. Технический результат заключается в повышении ресурса работы долота и повышении эффективности удаления шлама основным потоком промывочной жидкости....
Тип: Изобретение
Номер охранного документа: 0002652775
Дата охранного документа: 28.04.2018
10.05.2018
№218.016.4fba

Конструкционная литейная и деформируемая микролегированная азотом аустенитная теплостойкая криогенная сталь с высокой удельной прочностью и способ ее обработки

Изобретение относится к области металлургии, а именно к получению конструкционных литейных и деформируемых микролегированных азотом аустенитных теплостойких криогенных сталей, предназначенных для различных отраслей промышленности, в том числе для изготовления легких узлов и конструкций в...
Тип: Изобретение
Номер охранного документа: 0002652935
Дата охранного документа: 03.05.2018
10.05.2018
№218.016.4ff7

Конструкционная деформируемая аустенитная немагнитная теплостойкая криогенная сталь с высокой удельной прочностью и способ ее обработки

Изобретение относится к области металлургии, а именно к получению конструкционных деформируемых аустенитных немагнитных теплостойких криогенных сталей, предназначенных для различных отраслей промышленности, в том числе для изготовления легких узлов и конструкций в транспортном машиностроении, в...
Тип: Изобретение
Номер охранного документа: 0002652934
Дата охранного документа: 03.05.2018
18.05.2018
№218.016.50a6

Алмазное буровое долото

Изобретение относится к породоразрушающему инструменту, в частности к алмазным буровым долотам, предназначенным для бурения глубоких нефтегазовых скважин. Технический результат заключается в повышении ресурса работы долота. Алмазное буровое долото содержит корпус с присоединительной резьбой и...
Тип: Изобретение
Номер охранного документа: 0002653212
Дата охранного документа: 07.05.2018
18.05.2018
№218.016.5126

Композит с металлической матрицей и упрочняющими наночастицами карбида титана и способ его изготовления

Группа изобретений относится к композитам с алюминиевой матрицей и упрочняющими наночастицами карбида титана. Композит содержит упрочняющие наночастицы карбида титана округлой формы размером 5-500 нм в количестве 1-50 об. % от всего объема композита и алюминиевую матрицу, имеющую литую...
Тип: Изобретение
Номер охранного документа: 0002653393
Дата охранного документа: 08.05.2018
18.05.2018
№218.016.522b

Способ импульсно-периодического лазерно-ультразвукового контроля твердых материалов и устройство для его осуществления

Использование: для неразрушающего контроля материалов ультразвуковыми методами. Сущность изобретения заключается в том, что выполняют генерацию серии оптических импульсов, преобразование их в акустические сигналы, излучение полученных сигналов в исследуемый материал, возбуждение продольных и...
Тип: Изобретение
Номер охранного документа: 0002653123
Дата охранного документа: 07.05.2018
18.05.2018
№218.016.523f

Устройство измерения поверхностного натяжения и коэффициента вязкости металлов

Изобретение относится к средствам определения физико-химических констант вещества, а именно его поверхностного натяжения и коэффициента вязкости. Устройство содержит печь электросопротивления, установленную с возможностью вертикального перемещения посредством подвижного держателя, измерительную...
Тип: Изобретение
Номер охранного документа: 0002653114
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.572a

Способ дробления материалов и устройство для его осуществления

Группа изобретений относится к способу дробления и устройству для его осуществления, которые могут найти применение в горнодобывающей, металлургической, строительной и других отраслях промышленности, связанных с дезинтеграцией материалов. Способ дробления материалов заключается в том, что перед...
Тип: Изобретение
Номер охранного документа: 0002654788
Дата охранного документа: 22.05.2018
29.05.2018
№218.016.589b

Датчик измерения механических деформаций

Изобретение относится к измерительной технике и представляет собой датчик механических деформаций на основе аморфных ферромагнитных микропроводов. Датчик конструктивно объединяет магниточувствительный элемент и электронное измерительное устройство. Магниточувствительный элемент представляет...
Тип: Изобретение
Номер охранного документа: 0002653563
Дата охранного документа: 11.05.2018
09.06.2018
№218.016.5caa

Способ получения порошка молибдена

Изобретение относится к получению порошка молибдена. Способ включает засыпку оксида молибдена MoO в лодочку, загрузку лодочки в трубчатую печь, подачу в трубчатую печь водорода и двухстадийное восстановление оксида молибдена MoO с продвижением лодочки в печи. Подачу водорода осуществляют...
Тип: Изобретение
Номер охранного документа: 0002656124
Дата охранного документа: 01.06.2018
Показаны записи 211-216 из 216.
27.04.2019
№219.017.3d45

Способ синтеза нанокомпозитов ag/c

Изобретение относится к области химии и нанотехнологии. Способ синтеза нанокомпозитов Ag/C включает приготовление совместного раствора полиакрилонитрила (ПАН) и нитрата серебра в диметилформамиде (ДМФА), выдержку до полного растворения всех компонентов, удаление диметилформамида путем...
Тип: Изобретение
Номер охранного документа: 0002686223
Дата охранного документа: 24.04.2019
29.04.2019
№219.017.445a

Способ получения радиопоглощающего магний-цинкового феррита

Изобретение относится к технологии получения радиопоглощающего магний-цинкового феррита, который может найти широкое применение в производстве безэховых камер, обеспечивающих исключение отражения радиоволн от стен камеры. Техническим результатом изобретения является получение дешевого...
Тип: Изобретение
Номер охранного документа: 0002454747
Дата охранного документа: 27.06.2012
19.06.2019
№219.017.89a3

Сверхширокодиапазонный поглотитель электромагнитных волн для безэховых камер и экранированных помещений

Изобретение относится к радиофизике, антенной технике и может найти применение при создании поглотителей электромагнитных волн, используемых для оснащения сверхширокодиапазонных многофункциональных безэховых камер (БЭК) и экранированных помещений, обеспечивающих проведение радиотехнических...
Тип: Изобретение
Номер охранного документа: 0002453953
Дата охранного документа: 20.06.2012
19.06.2019
№219.017.89e3

Способ получения нанокомпозита feni/пиролизованный полиакрилонитрил

Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi/пиролизованный полиакрилонитрил (ППАН). Способ получения нанокомпозита включает приготовление раствора FeCl·6НО, NiCl·6НО и ПАН (М=1·10) в диметилформамиде (ДМФА), выдерживание до растворения FеCl·6НO, NiCl·6HO и ПАН в ДМФА,...
Тип: Изобретение
Номер охранного документа: 0002455225
Дата охранного документа: 10.07.2012
08.11.2019
№219.017.df51

Способ изготовления анизотропных гексагональных ферритов типа м

Изобретение относится к технологии изготовления поликристаллических магнитотвердых анизотропных ферритов и может использоваться при изготовлении гексаферритов бария и гексаферритов стронция с высокой степенью магнитной текстуры. Изготовление анизотропных гексаферритов типа М включает...
Тип: Изобретение
Номер охранного документа: 0002705201
Дата охранного документа: 06.11.2019
15.05.2023
№223.018.5739

Способ синтеза нанокомпозитов nicocu/c на основе полиакрилонитрила

Изобретение относится к области химии и нанотехнологиям синтеза наночастиц металла (сплава), а именно к способу синтеза нанокомпозита NiCoCu/C. Способ включает приготовление совместного раствора полиакрилонитрила, Со(СНСОО)⋅4HO, Ni(CHCOO)⋅4HO, (CHCOO)Cu⋅HO в диметилформамиде при температуре...
Тип: Изобретение
Номер охранного документа: 0002770599
Дата охранного документа: 18.04.2022
+ добавить свой РИД