Вид РИД
Изобретение
Изобретение относится к области создания сплавов со специальными свойствами, в частности к высокопрочным сплавам на основе никеля.
Техника сегодняшнего дня существенно ужесточает требования к условиям эксплуатации конструкций различного применения, прежде всего с точки зрения повышения срока службы за счет нанесения функциональных металлических покрытий с высокой микротвердостью и соответственно высокой износостойкостью. Такие же ужесточенные требования предъявляются и к другим материалам микрометаллургического производства (волокна, микропровода, порошки и другие), которые могут быть использованы в качестве армирующих компонентов.
С этой точки зрения весьма перспективным является создание наноструктурированных композитов системы «металл-неметалл». Такая композиция позволит оптимально сочетать пластичность металлической составляющей с высокой микротвердостью неметаллической компоненты в виде армирующих наполнителей (нитриды, оксиды, карбиды или их комбинации).
Известны высокопрочные сплавы на основе никеля, созданные на основе p-фазы, наиболее перспективной в качестве металлической матрицы для создания износостойких нанокомпозитов, в т.ч. патенты 2219279 от 04.03.2002 «Аморфный сплав на основе никеля»; ЕР 1522602 от 13.04.2005 «Высокопрочный аморфный сплав на основе никеля»; 2418091 от 05.10.2011 «Аморфный износостойкий наноструктурированный сплав на основе никеля системы Ni-Cr-Mo-WC»; 2333987 от 20.09.2008 «Сплав на основе никеля»; 2446223 от 27.03.2012 «Жаропрочный хромоникелевый сплав с аустенитной структурой»
Наиболее близким по технической сущности и достигаемому эффекту является аморфный сплав на основе никеля (патент RU 2219279 С2 МПК C22C 45/04, опубликован 20.12.2003), выбранный в качестве прототипа и имеющий состав (мас.%): Cr - 10-20; Мо - 25-40; Si - 6-7,5; В - 4-5; Ce - 0,8-1,5; Ni - остальное.
Общим недостатком известных сплавов, в т.ч. и сплава-прототипа, является относительно низкая микротвердость, не превышающая 15 ГПа. Практика показывает, что для современных конструкций, использующих для защиты от износа функциональные покрытия, эффективно работающие в жестких условиях эксплуатации, необходимо, чтобы величина микротвердости была не ниже 30 ГПа.
Техническим результатом является повышение микротвердости и адгезионной прочности сплава на основе никеля для получения износостойких покрытий на металлические конструктивные элементы.
Технический результат достигается введением в высокопрочную металлическую матрицу на основе p-фазы системы Ni-Cr-Mo пластификатора для получения покрытий с высокой адгезионной прочностью и армирующих наночастиц с высокой микротвердостью в количестве, необходимом для обеспечения высокой микротвердости покрытия в целом.
В качестве металлической матрицы экспериментально выбрана тройная система состава Cr - 10-20; Mo - 25-45; Ni - остальное, структурно, составляющая p-фаза, как наиболее высокопрочная из известных составов. Однако не удается получить покрытие из этого тройного сплава перспективными методами газотермического напыления (плазменного, холодного газотермического напыления), т.к. адгезия к металлической подложке практически отсутствует.
Экспериментально установлено, что пластичность сплава и соответственно существенное улучшение технологичности при нанесении покрытий достигается при комплексном введении двойной лигатуры Al-Zn в количестве 9-12% при соотношении Al:Zn=5:1. Введение только Al, нестойкого с точки зрения коррозионного разрушения, приводит к коррозионному растрескиванию полученных покрытий. Поэтому для исключения этого нежелательного эффекта в качестве пластификатора используется коррозионно-стойкая лигатура Al-Zn. Оптимальным сочетанием пластичности и коррозионной стойкости обладает лигатура при соотношении Al:Zn=5:1, а количество лигатуры от 9 до 12%. При меньших количествах, чем 9%, не наблюдается увеличения пластичности; при больших, чем 12% - уменьшается прочность сплава.
Для улучшения адгезии предлагаемого сплава к металлической подложке (из стали или титановых сплавов) дополнительно вводится кремний в количестве от 6 до 9%. Эффект увеличения адгезии за счет уменьшения межфазного натяжения наблюдается, начиная с введения 6% Si, при содержании Si более 9% наблюдается существенное охрупчивание сплава и растрескивание наносимых покрытий.
Однако микротвердость сплава Ni-Cr-Mo-(Al+Zn) не достигает требуемых значений, не превышая 18 ГПа.
Существенное повышение микротвердости, как показывает практика, может быть достигнуто при введении армирующих наполнителей в виде наноразмерных частиц с высокой микротвердостью, прежде всего определенной объемной доли карбидных соединений.
Наибольшей микротвердостью из химических соединений, которые легко когерентно связываются с металлической матрицей системы Ni-Cr-Mo, обладает TiC. Эффект существенного увеличения микротвердости (до значений более 30 ГПа) наблюдается начиная с 2,0% TiC. При содержании более 4,0% происходит охрупчивание сплава и растрескивание наносимых из него покрытий.
С точки зрения технологичности сплава при нанесении покрытий газотермическими методами наилучшие результаты получены при использовании наночастиц TiC фракции 60-80 нм. То выбранное количество наночастиц, которое определяет в конечном счете критериальные свойства материала, достаточно для его определения как нанокомпозит.
Таким образом, оптимальный состав предлагаемого композитного сплава следующий (мас.%):
|
Обязательным условием получения покрытий с уровнем свойств, достигнутых в исходном нанокомпозитном материале, является использование высокоскоростных методов гетерофазного переноса, прежде всего микроплазменного газодинамического напыления и др.
В качестве вариантов практической реализации изобретения приводится два примера.
Пример 1.
Выплавка сплава производится с помощью высокочастотной установки типа ВУ-2М в алундовых тиглях при следующей последовательности введения шихтовых компонентов:
Ni→Cr→Mo→(Al+Zn)→Si→TiC
Карбид титана вводится в расплав в виде наноразмерных частиц фракции 60-80 нм. Выплавляется слиток весом 1 кг. Затем с помощью двухэтапной обработки на щековой дробилке и дезинтеграторе типа ДЕЗИ-15 производится дробление слитка на порошок фракции 50-80 мкм, оптимальной для получения покрытий методом микроплазменного напыления.
Химический состав сплава определяется с помощью установки Niton 7000 и составляет (мас.%) Cr - 10; Mo - 25; Si - 6; Al - 7,5; Zn -1,5; TiC - 2,0; Ni - остальное.
Нанесение покрытий толщиной 100±10 мкм производится на установке типа УГПН-3/3350. Технологичность сплава удовлетворительная, адгезия к подложке из стали Х18Н9Т составляет 20 МПа, микротвердость - 32 ГПа, а пористость не превышает 2%.
Пример 2.
Выплавка сплава производится с помощью высокочастотной установки типа ВУ-2М в алундовых тиглях при следующей последовательности введения шихтовых компонентов:
Ni→Cr→Mo→(Al+Zn)→Si→TiC
Карбид титана вводится в расплав в виде наноразмерных частиц фракции 60-80 нм. Выплавляется слиток весом 1 кг. Затем с помощью двухэтапной обработки на щековой дробилке и дезинтеграторе типа ДЕЗИ-15 производится дробление слитка на порошок фракции 60-70 мкм, оптимальной для получения покрытий методом сверхзвукового холодного газодинамического напыления.
Химический состав сплава определяется с помощью установки Niton 7000 и составляет (мас.%) Cr-20; Мо-45; Si-9; Al-10; Zn-2; TiC-4; Ni - остальное.
Нанесение покрытий толщиной 150±10 мкм производится на установке типа УГПН-3/3350. Технологичность сплава удовлетворительная, адгезия к подложке из титанового сплава ВТ-6 составляет 32 МПа, микротвердость - 34 ГПа, а пористость не превышает 1,5%.