×
10.06.2016
216.015.4979

Результат интеллектуальной деятельности: ЭНЕРГОЭФФЕКТИВНЫЙ СПОСОБ УПРАВЛЕНИЯ АСИНХРОННЫМИ ТЯГОВЫМИ ДВИГАТЕЛЯМИ, ПОДКЛЮЧЕННЫМИ ПАРАЛЛЕЛЬНО К ОДНОМУ ИНВЕРТОРУ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам для управления тяговой системой транспортных средств с электротягой. Способ управления асинхронными тяговыми двигателями включает вычисление текущих значений электромагнитного момента и потокосцепления статора в блоке DTC (Direct Torque Control) по двигателю первой оси тележки. При этом вычисление задания на момент, подаваемого в блок DTC, ведется регулятором скорости с использованием сигналов максимальной или минимальной скорости вращения параллельно включенных асинхронных двигателей. В режиме тяги управление ведется по максимальной, а в режиме торможения - по минимальной скорости вращения. Задание на потокосцепление статора , подаваемое в блок DTC, определяется по заданной зависимости потокосцепления от задания на электромагнитный момент двигателя , предварительно рассчитанной из условия минимума тока статора с учетом насыщения двигателя. При включении двигателей под напряжение в первые моменты времени задание на потокосцепление определяется в зависимости от времени. Технический результат заключается в обеспечении высокодинамичного регулирования момента тяговых двигателей и предупреждения буксования и юза. 1 ил.
Основные результаты: Способ управления асинхронными тяговыми двигателями, подключенными параллельно к одному инвертору, использующий прямое управление моментом (Direct Torque Control - DTC), в котором вычисление текущих значений электромагнитного момента и потокосцепления статора ведется в блоке DTC всегда только по двигателю первой оси тележки в соответствии с выражениями: . где и - потокосцепления первого двигателя по оси α и β соответственно; и - напряжения статора параллельно включенных двигателей по оси α и β соответственно; и - токи статора первого двигателя по оси α и β соответственно; - сопротивление фазы обмотки статора первого двигателя, корректируемое с учетом изменения температуры обмотки; - электромагнитный момент первого двигателя; - число пар полюсов; - модуль вектора потокосцепления статора первого двигателя; - фаза вектора потокосцепления статора первого двигателя;а вычисление задания на момент, подаваемого в блок DTC, ведется регулятором скорости с использованием сигналов максимальной или минимальной скорости вращения параллельно включенных асинхронных двигателей: в режиме тяги управление ведется по максимальной, а в режиме торможения - по минимальной скорости вращения при использовании пропорционально-интегрального регулятора скорости, задание на момент М, поступающее в блок DTC, вычисляется по формулам: - в режиме тяги - в режиме торможенияи ограничивается на величине , в случае ее превышения,где - коэффициент усиления пропорционального звена регулятора скорости; - постоянная времени интегрального звена регулятора скорости; - задание скорости вращения, поступающее из системы управления верхнего уровня и определяемое с учетом обеспечения оптимального проскальзывания колес; - максимальная скорость вращения параллельно включенных двигателей; - минимальная скорость вращения параллельно включенных двигателей; - ограничение по моменту, вырабатываемое в системе управления верхнего уровня, отличающийся тем, что задание на потокосцепление статора , подаваемое в блок DTC, определяется по заданной зависимости потокосцепления от задания на электромагнитный момент двигателя , предварительно рассчитанной из условия минимума тока статора с учетом насыщения двигателя, причем при включении двигателей под напряжение в первые моменты времени после включения задание на потокосцепление определяется в зависимости от времени для ускоренного в двигателе магнитного потока.

Изобретение относится к рельсовому транспорту и может быть использовано на подвижном составе с асинхронными тяговыми двигателями (АТД), подключенными параллельно к одному автономному инвертору напряжения (АИН). На локомотивах такое параллельное подключение к одному инвертору и совместное управление (регулирование) АТД осуществляется обычно в пределах каждой тележки, поэтому его часто называют «потележечным» регулированием АТД.

Известен способ управления асинхронными тяговыми двигателями, подключенными параллельно к одному инвертору (Патент РФ на изобретение RU 2428326 / Федяева Г.А., Федяев Н.А., Матюшков С.Ю., Роговцев Г.В. // Официальный бюллетень Российского агентства по патентам и товарным знакам. Изобретения. Полезные модели. Опубл. 10.09.2011. - Бюл. №25 - прототип) с использованием прямого управления моментом АТД (Direct Torque Control, сокращенно DTC). В данном способе задание на потокосцепление статора , подаваемое в блок DTC, определяется в системе управления верхнего уровня по заданной зависимости , где - средняя скорость вращения двигателей или скорость локомотива, приведенная к валу двигателя. Такой подход является традиционным, и к недостаткам данного способа относится то, что данный подход не использует энергетически эффективные (энергоэффективные) законы управления АТД.

Целью изобретения является управление асинхронными тяговыми двигателями, подключенными параллельно к одному инвертору, обеспечивающее высокодинамичное регулирование момента двигателей и предупреждение буксования (и юза) при энергоэффективном управлении АТД по критерию минимума тока статора.

Технический результат достигается тем (рис. 1), что в данном способе, использующем прямое управление моментом, вычисление текущих значений электромагнитного момента и потокосцепления статора ведется в блоке DTC всегда только по двигателю первой оси тележки в соответствии с выражениями:

.

где и - потокосцепления первого двигателя по оси α и β соответственно;

и - напряжения статора параллельно включенных двигателей по оси α и β соответственно;

и - токи статора первого двигателя по оси α и β соответственно;

- сопротивление фазы обмотки статора первого двигателя, корректируемое с учетом изменения температуры обмотки;

- электромагнитный момент первого двигателя;

p - число пар полюсов;

- модуль вектора потокосцепления статора первого двигателя;

- фаза вектора потокосцепления статора первого двигателя;

а вычисление задания на момент, подаваемого в блок DTC, ведется регулятором скорости с использованием сигналов максимальной или минимальной скорости вращения параллельно включенных асинхронных двигателей: в режиме тяги управление ведется по максимальной, а в режиме торможения - по минимальной скорости вращения при использовании пропорционально-интегрального регулятора скорости, задание на момент Мз, поступающее в блок DTC, вычисляется по формулам:

- в режиме тяги

- в режиме торможения

и ограничивается на величине , в случае ее превышения,

где - коэффициент усиления пропорционального звена регулятора скорости;

- постоянная T ω времени интегрального звена регулятора скорости;

- задание скорости вращения, поступающее из системы управления верхнего уровня и определяемое с учетом обеспечения оптимального проскальзывания колес;

- максимальная скорость вращения параллельно включенных двигателей;

- минимальная скорость вращения параллельно включенных двигателей;

- ограничение по моменту, вырабатываемое в системе управления верхнего уровня, отличающийся тем, что задание на потокосцепление статора , подаваемое в блок DTC, определяется по заданной зависимости потокосцепления от задания на электромагнитный момент двигателя , предварительно рассчитанной из условия минимума тока статора с учетом насыщения двигателя, причем при включении двигателей под напряжение в первые моменты времени после включения задание на потокосцепление определяется в зависимости от времени для ускоренного в двигателе магнитного потока.

Использованная в данном способе система прямого управления моментом (Direct Torque Control, сокращенно DTC) (Козярук А.Е., Рудаков В.В. Системы прямого управления моментом в частотно-регулируемых электроприводах переменного тока/под ред. Народицкого А.Г. - СПб.: Санкт-Петербургская электротехническая компания, 2005. - 100 с.) обладает высоким быстродействием и весьма устойчива к возмущениям и неточности информации о переменных состояния объекта управления, что очень важно в тяговом электроприводе.

К отличительным особенностям DTC можно отнести наличие в системе (рис. 1):

- гистерезисных релейных регуляторов потокосцепления статора (РРп) и момента (РРм) асинхронного двигателя;

- электронной адаптивной модели двигателя (АМД) для вычисления текущих управляемых координат асинхронного двигателя (потокосцепления статора и электромагнитного момента) по значению фазных токов, напряжения в звене постоянного тока и коммутационной функции АИН;

- блока вычисления фазового сектора (БВФС), в котором в текущий момент времени находится вектор потокосцепления статора двигателя;

- табличного (матричного) вычислителя оптимального вектора напряжения двигателя, выполняемого в виде блока логического автомата (БЛА) и определяющего функцию переключения вентилей АИН.

Использование для вычисления фактических значений потокосцепления и момента только датчиков первого двигателя АТД_1 (рис. 1), а не двигателя с минимальной или максимальной скоростью вращения, по которой в данный момент ведется управление, позволяет избежать электромеханических колебаний, возникающих при переключении обратных связей из-за разброса параметров обмоток двигателей. При этом двигатель АТД_1 первой оси, имеющей наименьшую вертикальную нагрузку, наиболее склонен к буксованию и юзу, поэтому он наиболее часто имеет максимальную и минимальную скорость в режимах тяги и торможения соответственно, и именно его скорость используется для управления. Переключения на управление по скорости других двигателей, например двигателя второй оси АТД_2, происходят, например, при поочередном проезде осями масляного пятна, когда вторая ось наезжает на пятно, а первая уже выехала на чистые рельсы, в этом случае буксование и юз соответствующих осей также эффективно подавляются.

Примененная система DTC позволяет отдельно регулировать электромагнитный момент и поток двигателя с высоким быстродействием, что открывает возможность высокодинамичного регулирования двигателей, подключенных параллельно к одному инвертору, по одному из известных энергосберегающих законов: условию минимума тока статора. Для этого предварительно рассчитывается зависимость потокосцепления статора от электромагнитного момента двигателя с учетом насыщения, определяемая из условия получения заданных значений электромагнитного момента при минимальном токе статора. Рассчитанная зависимость реализуется в блоке задания потокосцепления , размещенном непосредственно в системе управления двигателем (в системе управления нижнего уровня), и имеет вид кривой с насыщением (рис. 1). На вход блока задания потокосцепления подается задание на электромагнитный момент двигателя Мз, а с выхода снимается задание на потокосцепление статора, подаваемое в блок DTC.

Так как при включении тяговых двигателей под напряжение после остановки или режима выбега задание на момент нарастает постепенно от нуля, то и задание на потокосцепление статора будет нарастать постепенно в соответствии с зависимостью, приведенной в блоке задания потокосцепления (рис. 1). Это затягивает нарастание в двигателе магнитного потока и затрудняет регулирование. Поэтому в начальные моменты времени следует с целью форсирования создания в двигателе магнитного потока использовать формирование задания на потокосцепление в зависимости от времени , где - время, а затем переключаться на формирование задания на потокосцепление в зависимости от задания момента двигателя .

Предлагаемый способ позволяет осуществить высокодинамичное регулирование момента тяговых двигателей, подключенных параллельно к одному инвертору, и предупреждение буксования (и юза) при энергоэффективном управлении АТД по критерию минимума тока статора, позволяющем уменьшить потребляемый ток в среднем на 7% и тем самым снизить потери энергии в двигателе и статическом преобразователе.

Способ управления асинхронными тяговыми двигателями, подключенными параллельно к одному инвертору, использующий прямое управление моментом (Direct Torque Control - DTC), в котором вычисление текущих значений электромагнитного момента и потокосцепления статора ведется в блоке DTC всегда только по двигателю первой оси тележки в соответствии с выражениями: . где и - потокосцепления первого двигателя по оси α и β соответственно; и - напряжения статора параллельно включенных двигателей по оси α и β соответственно; и - токи статора первого двигателя по оси α и β соответственно; - сопротивление фазы обмотки статора первого двигателя, корректируемое с учетом изменения температуры обмотки; - электромагнитный момент первого двигателя; - число пар полюсов; - модуль вектора потокосцепления статора первого двигателя; - фаза вектора потокосцепления статора первого двигателя;а вычисление задания на момент, подаваемого в блок DTC, ведется регулятором скорости с использованием сигналов максимальной или минимальной скорости вращения параллельно включенных асинхронных двигателей: в режиме тяги управление ведется по максимальной, а в режиме торможения - по минимальной скорости вращения при использовании пропорционально-интегрального регулятора скорости, задание на момент М, поступающее в блок DTC, вычисляется по формулам: - в режиме тяги - в режиме торможенияи ограничивается на величине , в случае ее превышения,где - коэффициент усиления пропорционального звена регулятора скорости; - постоянная времени интегрального звена регулятора скорости; - задание скорости вращения, поступающее из системы управления верхнего уровня и определяемое с учетом обеспечения оптимального проскальзывания колес; - максимальная скорость вращения параллельно включенных двигателей; - минимальная скорость вращения параллельно включенных двигателей; - ограничение по моменту, вырабатываемое в системе управления верхнего уровня, отличающийся тем, что задание на потокосцепление статора , подаваемое в блок DTC, определяется по заданной зависимости потокосцепления от задания на электромагнитный момент двигателя , предварительно рассчитанной из условия минимума тока статора с учетом насыщения двигателя, причем при включении двигателей под напряжение в первые моменты времени после включения задание на потокосцепление определяется в зависимости от времени для ускоренного в двигателе магнитного потока.
ЭНЕРГОЭФФЕКТИВНЫЙ СПОСОБ УПРАВЛЕНИЯ АСИНХРОННЫМИ ТЯГОВЫМИ ДВИГАТЕЛЯМИ, ПОДКЛЮЧЕННЫМИ ПАРАЛЛЕЛЬНО К ОДНОМУ ИНВЕРТОРУ
ЭНЕРГОЭФФЕКТИВНЫЙ СПОСОБ УПРАВЛЕНИЯ АСИНХРОННЫМИ ТЯГОВЫМИ ДВИГАТЕЛЯМИ, ПОДКЛЮЧЕННЫМИ ПАРАЛЛЕЛЬНО К ОДНОМУ ИНВЕРТОРУ
ЭНЕРГОЭФФЕКТИВНЫЙ СПОСОБ УПРАВЛЕНИЯ АСИНХРОННЫМИ ТЯГОВЫМИ ДВИГАТЕЛЯМИ, ПОДКЛЮЧЕННЫМИ ПАРАЛЛЕЛЬНО К ОДНОМУ ИНВЕРТОРУ
ЭНЕРГОЭФФЕКТИВНЫЙ СПОСОБ УПРАВЛЕНИЯ АСИНХРОННЫМИ ТЯГОВЫМИ ДВИГАТЕЛЯМИ, ПОДКЛЮЧЕННЫМИ ПАРАЛЛЕЛЬНО К ОДНОМУ ИНВЕРТОРУ
Источник поступления информации: Роспатент

Показаны записи 41-43 из 43.
19.01.2018
№218.015.ff16

Электрический генератор с двигателем стирлинга

Изобретение относится к электротехнике, а именно к системам двигатель-генератор. Предложен электрический линейный генератор с двигателем Стирлинга типа Флюидайн. В качестве рабочей жидкости вытеснительного поршня 3 используется вода, а в качестве рабочей жидкости рабочего поршня 2 используется...
Тип: Изобретение
Номер охранного документа: 0002629588
Дата охранного документа: 30.08.2017
17.02.2018
№218.016.2b0f

Способ определения тактики лечения больных с риском кровотечения из варикозно расширенных вен пищевода и использования эндоскопического лигирования для профилактики и остановки кровотечения из варикозно расширенных вен пищевода при портальной гипертензии

Изобретение относится к медицине, в частности к хирургии, гепатологии и гастроэнтерологии. Проводят измерение показателей кровяного давления в варикозно расширенных венах пищевода с помощью эндоскопического ультразвукового датчика и аппарата Вальдмана. При значении венозного давления 300-450 мм...
Тип: Изобретение
Номер охранного документа: 0002642965
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.31a0

Двухтактный двигатель внутреннего сгорания с электрическим генератором

Изобретение относится к двигателям внутреннего сгорания с электрическим генератором и может использоваться для выработки электроэнергии и перекачки жидкости. Двигатель содержит цилиндр 1 с поршнями 2 объемного насоса, соединенными между собой штоком 3. На концах цилиндра 1 расположены...
Тип: Изобретение
Номер охранного документа: 0002645191
Дата охранного документа: 16.02.2018
Показаны записи 51-54 из 54.
17.02.2018
№218.016.2b0f

Способ определения тактики лечения больных с риском кровотечения из варикозно расширенных вен пищевода и использования эндоскопического лигирования для профилактики и остановки кровотечения из варикозно расширенных вен пищевода при портальной гипертензии

Изобретение относится к медицине, в частности к хирургии, гепатологии и гастроэнтерологии. Проводят измерение показателей кровяного давления в варикозно расширенных венах пищевода с помощью эндоскопического ультразвукового датчика и аппарата Вальдмана. При значении венозного давления 300-450 мм...
Тип: Изобретение
Номер охранного документа: 0002642965
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.31a0

Двухтактный двигатель внутреннего сгорания с электрическим генератором

Изобретение относится к двигателям внутреннего сгорания с электрическим генератором и может использоваться для выработки электроэнергии и перекачки жидкости. Двигатель содержит цилиндр 1 с поршнями 2 объемного насоса, соединенными между собой штоком 3. На концах цилиндра 1 расположены...
Тип: Изобретение
Номер охранного документа: 0002645191
Дата охранного документа: 16.02.2018
29.05.2018
№218.016.57ed

Способ снижения давления в вариксах при портальной гипертензии во время эндолигирования под наркозом

Изобретение относится к медицине, точнее к хирургии и анестезиологии, и реаниматологии, и может быть использовано для управляемого опосредованного снижения венозного давления в варикозных расширенных венах пищевода через уменьшение артериального давления во время проведения эндоскопического...
Тип: Изобретение
Номер охранного документа: 0002654778
Дата охранного документа: 22.05.2018
09.06.2018
№218.016.5f52

Способ диагностики внутренних структур коленного сустава при магнитно-резонансной томографии

Изобретение относится к медицине, травматологии и ортопедии, может быть использовано для диагностики дегенеративных и травматических поражений внутренних структур коленного сустава (крестообразных связок, менисков) у детей и взрослых с помощью магнитно-резонансной томографии. При этом...
Тип: Изобретение
Номер охранного документа: 0002656562
Дата охранного документа: 05.06.2018
+ добавить свой РИД