×
27.05.2016
216.015.43b1

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ КАТОДНОГО МАТЕРИАЛА, КАТОДНЫЙ МАТЕРИАЛ И ЛИТИЙ-ИОННЫЙ АККУМУЛЯТОР

Вид РИД

Изобретение

№ охранного документа
0002585176
Дата охранного документа
27.05.2016
Аннотация: Изобретение относится к способу изготовления композитного катодного материала. Способ включает следующие стадии: получение гидрогеля или ксерогеля VO; выдержка в герметичном тефлоновом автоклаве при температуре 130-200°C и давлении 100-600 МПа в течение суток смеси, содержащей гидрогель или ксерогель VO, и углеродного материала с получением композиционного материала, содержащего наностержни VO в оболочке из графена; центрифугирование полученного композиционного материала; промывка композиционного материала; сушка композиционного материала при температуре 50°C. Также предложены композитный катодный материал и литиевый аккумулятор. Изобретение позволяет увеличить емкость и количество циклов перезарядки аккумулятора. 3 н. и 9 з.п. ф-лы, 4 ил., 3 пр.

Область техники

Изобретение относится к способу изготовления катодного материала, катодному материалу и к литий-ионному аккумулятору.

Уровень техники

Из уровня техники известен электродный материал для положительных электродов Li-батарей формулы MxV2O5, где М=Н+, Li+, х=0.05±0.05 для H+ и 0.8±0.01 для Li+ (RU 2009/138900 А, опубл. 27.04.2011). Недостатком известного решения является низкая удельная емкость аккумулятора.

Наиболее близким аналогом заявленной группы изобретений является катодный материал для литий-ионного аккумулятора, раскрытый в US 2012/0321953, опубл. 20.12.2012. В наиболее близком аналоге, в качестве катодного материала для литий-ионного аккумулятора используют композитный материал на основе наночастиц оксида ванадия и графена. Метод изготовления композита представляет собой формирование суспензии наночастиц оксида ванадия и графена в летучем органическом растворителе и последующее выпаривание растворителя с образованием композитного материала. Недостатком данного решения является то, что данный метод изготовления композита не может обеспечить эффективный контакт между слоями графена и частицами оксида ванадия, в связи с чем удельная емкость аккумулятора оказывается ниже ожидаемой (до 400 мАч/г), а потеря емкости составляет до 90% за 100 циклов перезарядки. Кроме того, в композите, изготовленном данным методом, в ходе цитирования наблюдается потеря контакта между частицами оксида ванадия и графеном, что приводит к существенному снижению емкости аккумулятора при перезаряде.

Раскрытие изобретения

Задача предлагаемого технического решения состоит в разработке катодного материала для вторичных аккумуляторов, позволяющего повысить удельную емкость при перезаряде аккумулятора.

Техническим результатом заявленной группы изобретения является увеличение удельной емкости и количества циклов перезарядки аккумулятора.

Указанный технический результат достигается за счет того, что способ изготовления композитного катодного материала включает следующие стадии:

- получение гидрогеля или ксерогеля V2O5;

- выдержка в герметичном тефлоновом автоклаве при температуре 130-200°С и давлении 100-600 МПа в течение суток смеси, содержащей гидрогель или ксерогель V2O5 и углеродный материал с получением композиционного материала, содержащего наностержни V2O5 в оболочке из графена;

- центрифугирование полученного композиционного материала;

- промывка композиционного материала;

- сушка композиционного материала при температуре 50°С.

Смесь содержит компоненты, при следующем соотношении, мас. %:

гидрогель или ксерогель V2O5 - 60-95;

углеродный материал - 5-40.

Гидрогель или ксерогель получают в результате гидролиза органических производных ванадиевой кислоты или поликонденсацией ванадатов в водном растворе в кислой среде, или путем разложения пероксованадиевых соединений, образованных при растворении кристаллического V2O5 в растворе пероксида водорода.

Углеродный материал предварительно обработан раствором пероксида водорода в кислой среде.

В качестве углеродного материала применен материал, выбранный из группы: оксид графита, восстановленный оксид графита, ацетиленовая сажа, активированный уголь.

Заявленный технический результат достигается за счет того, что композитный материал содержит ядро из наностержней V2O5 и оболочку из графена.

Кроме того, технический результат достигается за счет того, что литиевый аккумулятор, содержащий анод из металлического Li, электролит и катод в виде металлического токосъемника, выполненного с возможностью покрытия суспензией концентрацией 0,1-1 г/мл, содержащей композитный катодный материал, растворенный в ацетоне.

Токосъемник выполнен в виде фольги или сетки.

Покрытие токосъемника выполнено с возможностью дополнительного содержания в суспензии гидрофобной полимерной связки в количестве 0-20 мас. %.

В качестве гидрофобной полимерной связки применены поливинилидендифторид или тетрафторэтилен.

В качестве электролита применена соль, растворенная в растворителе и выбранная из группы: перхлорат лития, гексафторфосфат лития, тетрафторборат лития.

Растворитель выбран из группы: пропиленкарбонат, этиленкарбонат, бутиленкарбонат, диметилкарбонат, этилметилкарбонат, диэтилкарбонат, 1,2-диметоксиэтан, 1,3-диоксолан, тетрагидрофуран, диметиловый эфир диэтиленгликоля, диметиловый эфир триэтиленгликоля, дибутиловый эфир диэтиленгликоля, диметилсульфоксид, гексафторфосфат 1-этил-3-метилимидазолия, тетрафторборат 1-этил-3-метилимидазолия, бис-трифторметилсульфонилимид 1-этил-3-метилимидазолия, гексафторфосфат 1-бутил-3-метилимидазолия, бис-трифторметилсульфонилимид 1-бутил-3-метилимидазолия, гексафторфосфат 1-метил-1-пропил пиперидиния, бис-трифторметилсульфонилимид 1-метил-1-пропилпиперидиния или их различные смеси.

Краткое описание чертежей

Фиг. 1 - Гальваностатическая разрядно-зарядная кривая литиевого аккумулятора с катодным материалом, раскрытого в наиболее близком аналоге.

Фиг. 2 - Гальваностатическая разрядно-зарядная кривая литиевого аккумулятора с катодным материалом, содержащего наностержни V2O5 в оболочке из графена.

Фиг. 3 - Гальваностатическая кривая литиевого аккумулятора с катодным материалом, содержащего наностержни V2O5 в оболочке из графена при его разряде при токе 0,1С за 30 циклов перезаряда. Черная кривая относится к 1-му циклу перезарядки; серая - к 30-му.

Фиг. 4 - Гальваностатическая кривая литиевого аккумулятора с катодным материалом, содержащего наностержни V2O5 в оболочке из графена при его заряде при токе 0,1С за 30 циклов перезаряда. Черная кривая относится к 1-му циклу перезарядки; серая - к 30-му.

Осуществление изобретения

Способ изготовления композитного катодного материала включает следующие стадии:

- получение гидрогеля или ксерогеля V2O5;

- выдержка в герметичном тефлоновом автоклаве при температуре 130-200°С и давлении 100-600 МПа в течение суток смеси, содержащей гидрогель или ксерогель V2O5, и углеродного материала с получением композиционного материала, содержащего наностержни V2O5 в оболочке из графена;

- центрифугирование полученного композиционного материала;

- промывка композиционного материала;

- сушка композиционного материала при температуре 50°С.

Смесь содержит компоненты, при следующем соотношении, мас. %:

гидрогель или ксерогель V2O5 - 60-95;

углеродный материал - 5-40.

При содержании в смеси углеродного материала менее 5 мас. % приводит к недостаточной электронной проводимости катодного материала, следовательно к снижению характеристик аккумулятора. При содержании в смеси углеродного материала более 40 мас. % приводит к снижению удельной емкости катодного материала из-за большого количества неактивного углеродного материала в нем.

Гидрогель или ксерогель получают в результате гидролиза органических производных ванадиевой кислоты или пол и конденсацией ванадатов в водном растворе в кислой среде, или путем разложения пероксованадиевых соединений, образованных при растворении кристаллического V2O5 в растворе пероксида водорода.

Углеродный материал предварительно обработан раствором пероксида водорода в кислой среде.

Обработка углеродного материала пероксидом водорода обеспечивает улучшение адгезии углеродного материала к поверхности V2O5.

В качестве углеродного материала применен материал, выбранный из группы: оксид графита, восстановленный оксид графита, ацетиленовая сажа, активированный уголь.

Композитный материал содержит ядро из наностержней V2O5 и оболочку из графена.

Литиевый аккумулятор содержит корпус, выполненный с возможностью размещения в нем катода и анода из металлического Li, находящиеся на расстоянии друг от друга и помещенные в электролит, которым заполняют корпус аккумулятора, причем катод выполнен в виде металлического токосъемника, выполненного с возможностью покрытия суспензией концентрацией 0,1-1 г/мл, содержащей катодный материал, растворенный в ацетоне.

При концентрации суспензии менее 0,1 г/мл она получается густой, а при концентрации суспензии более 1 г/мл - жидкой, что не обеспечивает возможность ее нанесения и закрепления на токосъемнике.

Токосъемник выполнен в виде фольги или сетки.

Покрытие токосъемника выполнено с возможностью дополнительного содержания в суспензии гидрофобной полимерной связки в количестве 0-20 мас. %. При содержании гидрофобной связки в суспензии более 20 мас. % приводит к снижению электронной проводимости катодного материала.

В качестве гидрофобной полимерной связки применены поливинилидендифторид или тетрафторэтилен.

В качестве электролита применена соль, растворенная в растворителе и выбранная из группы: перхлорат лития, гексафторфосфат лития, тетрафторборат лития.

Растворитель выбран из группы: пропиленкарбонат, этиленкарбонат, бутилен карбонат, диметилкарбонат, этил метил карбонат, диэтилкарбонат, 1,2-диметоксиэтан, 1,3-диоксолан, тетрагидрофуран, диметиловый эфир диэтиленгликоля, диметиловый эфир триэтиленгликоля, дибутиловый эфир диэтиленгликоля, диметилсульфоксид, гексафторфосфат 1-этил-3-метилимидазолия, тетрафторборат 1-этил-3-метилимидазолия, бис-трифторметилсульфонилимид 1-этил-3-метилимидазолия, гексафторфосфат 1-бутил-3-метилимидазолия, бис-трифторметилсульфонилимид 1-бутил-3-метилимидазолия, гексафторфосфат 1-метил-1-пропилпиперидиния, бис-трифторметилсульфонилимид 1-метил-1-пропилпиперидиния или их различные смеси.

Пример 1

Получают гидрогель V2O5 путем гидролиза органических производных ванадиевой кислоты. Затем гидрогель в количестве 60 мас. % смешивают с углеродным материалом в количестве 40 мас. %, выбранным из группы: оксид графита, восстановленный оксид графита, ацетиленовая сажа, активированный уголь. Смесь гидрогеля и углеродного материала помещают и выдерживают в герметичном тефлоновом автоклаве при температуре 200°С и давлении 100 МПа в течение суток смеси, с целью получения композиционного материала, содержащего наностержни V2O5 в оболочке из графена. После чего осуществляют центрифугирование полученного композиционного материала с целью удаления влаги. Затем осуществляют промывку в дистилированной воде композитного материала с целью удаления примесей, содержащих ионы водорода, ванадат ионы и сушку композиционного материала при температуре 50°С.

Пример 2

Получают гидрогель V2O5 путем поликонденсацией ванадатов в водном растворе в кислой среде. Затем гидрогель в количестве 95 мас. % смешивают с углеродным материалом в количестве 5 мас. %, выбранным из группы: оксид графита, восстановленный оксид графита, ацетиленовая сажа, активированный уголь. Смесь гидрогеля и углеродного материала помещают и выдерживают в герметичном тефлоновом автоклаве при температуре 130°С и давлении 600 МПа в течение суток смеси, с целью получения композиционного материала, содержащего наностержни V2O5 в оболочке из графена. После чего осуществляют центрифугирование полученного композиционного материала с целью удаления влаги. Затем осуществляют промывку в дистилированной воде композитного материала с целью удаления примесей, содержащих ионы водорода, ванадат ионы и сушку композиционного материала при температуре 50°С.

Пример 3

Аккумулятор, содержащий анод из металлического Li, катод в виде металлического токосъемника, выполненного с возможностью покрытия суспензией концентрацией 0,5 г/мл, содержащей композитный катодный материал, представляющий собой ядро из наностержней V2O5 и оболочку из графена, растворенный в ацетоне и электролит, содержащий 1 M LiClO4 в смеси пропиленкарбоната и диметоксиэтана в соотношении 7:3 по объему, работает следующим образом. При разряде аккумулятора литиевый анод растворяется с образованием ионов Li+, которые переходят в электролит, содержащий 1 M LiClO4 в смеси пропиленкарбоната и диметоксиэтана в соотношении 7:3. За счет наличия в электролите соли LiClO4 ионы Li+ внедряются в структуру катодного материала с образованием литий-содержащих фаз. При заряде ионы Li+ выходят из структуры катодного материала, поступают в электролит и затем равномерно осаждаются в виде металла на поверхность анода.

Как показали эксперименты, в отличие от аккумулятора, раскрытого в наиболее близком аналоге, у аккумулятора по заявленному изобретению, содержащего катод в виде металлического токосъемника, на поверхность которого нанесено покрытие в виде суспензии концентрацией 0,1-1 г/мл, включающей композитный материал, полученный согласно заявленному способу и представляющий собой ядро из наностержней V2O5 и оболочку из графена, повышается удельная емкость на 150 мАч/г (см. фиг. 1, 2), а также падение емкости после 30 циклов не превышает 3% (см. фиг. 3, 4).

Таким образом, предлагаемое изобретение позволяет получить аккумулятор, имеющий более высокую емкость и количество циклов перезарядки аккумулятора.

Изобретение было раскрыто выше со ссылкой на конкретный вариант его осуществления. Для специалистов могут быть очевидны и иные варианты осуществления изобретения, не меняющие его сущности, как она раскрыта в настоящем описании. Соответственно, изобретение следует считать ограниченным по объему только нижеследующей формулой изобретения.


СПОСОБ ИЗГОТОВЛЕНИЯ КАТОДНОГО МАТЕРИАЛА, КАТОДНЫЙ МАТЕРИАЛ И ЛИТИЙ-ИОННЫЙ АККУМУЛЯТОР
СПОСОБ ИЗГОТОВЛЕНИЯ КАТОДНОГО МАТЕРИАЛА, КАТОДНЫЙ МАТЕРИАЛ И ЛИТИЙ-ИОННЫЙ АККУМУЛЯТОР
СПОСОБ ИЗГОТОВЛЕНИЯ КАТОДНОГО МАТЕРИАЛА, КАТОДНЫЙ МАТЕРИАЛ И ЛИТИЙ-ИОННЫЙ АККУМУЛЯТОР
СПОСОБ ИЗГОТОВЛЕНИЯ КАТОДНОГО МАТЕРИАЛА, КАТОДНЫЙ МАТЕРИАЛ И ЛИТИЙ-ИОННЫЙ АККУМУЛЯТОР
Источник поступления информации: Роспатент

Показаны записи 11-13 из 13.
13.01.2017
№217.015.67d2

Однокамерная ячейка для электрохимических систем

Изобретение относится к однокамерной ячейке для электрохимических систем, содержащей корпус, крышку, герметизирующее кольцо, металлический поршень с металлической пружиной, разнополярные электроды с выводами для подключения к электрическим приборам и средства крепления. Ячейка характеризуется...
Тип: Изобретение
Номер охранного документа: 0002591204
Дата охранного документа: 20.07.2016
25.08.2017
№217.015.caec

Электрохимическая ячейка для in situ спектроскопии

Изобретение относится к конструкции электрохимических ячеек для исследований электрохимических систем методами in situ спектроскопии и микроскопии. Герметичная электрохимическая ячейка состоит из содержащего сквозную полость для размещения электролита корпуса, рабочего электрода, по крайней...
Тип: Изобретение
Номер охранного документа: 0002620022
Дата охранного документа: 22.05.2017
26.08.2017
№217.015.e4da

Пористый литиевый анод

Изобретение относится к области создания отрицательных электродов (анодов) для литиевых вторичных химических источников тока (аккумуляторов). Пористый литиевый анод содержит токосъемник из металла, на поверхность которого нанесено многослойное покрытие, содержащее три слоя. Внутренний слой,...
Тип: Изобретение
Номер охранного документа: 0002626457
Дата охранного документа: 28.07.2017
Показаны записи 11-18 из 18.
13.01.2017
№217.015.67d2

Однокамерная ячейка для электрохимических систем

Изобретение относится к однокамерной ячейке для электрохимических систем, содержащей корпус, крышку, герметизирующее кольцо, металлический поршень с металлической пружиной, разнополярные электроды с выводами для подключения к электрическим приборам и средства крепления. Ячейка характеризуется...
Тип: Изобретение
Номер охранного документа: 0002591204
Дата охранного документа: 20.07.2016
25.08.2017
№217.015.caec

Электрохимическая ячейка для in situ спектроскопии

Изобретение относится к конструкции электрохимических ячеек для исследований электрохимических систем методами in situ спектроскопии и микроскопии. Герметичная электрохимическая ячейка состоит из содержащего сквозную полость для размещения электролита корпуса, рабочего электрода, по крайней...
Тип: Изобретение
Номер охранного документа: 0002620022
Дата охранного документа: 22.05.2017
26.08.2017
№217.015.e4da

Пористый литиевый анод

Изобретение относится к области создания отрицательных электродов (анодов) для литиевых вторичных химических источников тока (аккумуляторов). Пористый литиевый анод содержит токосъемник из металла, на поверхность которого нанесено многослойное покрытие, содержащее три слоя. Внутренний слой,...
Тип: Изобретение
Номер охранного документа: 0002626457
Дата охранного документа: 28.07.2017
29.05.2018
№218.016.5517

Электрохимическая ячейка для рефлектометрических исследований

Использование: для исследования электрохимических систем методом нейтронного и рентгеновского рассеяния. Сущность изобретения заключается в том, что электрохимическая ячейка для исследований методами нейтронного и рентгеновского рассеяния содержит корпус, состоящий из двух частей, выполненных с...
Тип: Изобретение
Номер охранного документа: 0002654317
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.5572

Электрохимическая ячейка с графеновым электродом для проведения in situ исследований электродных материалов и твердых или гелеобразных электролитов

Изобретение представляет собой электрохимическую ячейку для исследований электрохимических систем методами in situ спектроскопии и микроскопии. Электрохимическая ячейка для исследования твердых или гелеобразных диэлектрических материалов, обладающих ионной проводимостью, содержит токосъемники,...
Тип: Изобретение
Номер охранного документа: 0002654314
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.5723

Способ получения наноструктурированного композитного материала для положительного электрода литий-серного аккумулятора, положительный электрод и литий-серная аккумуляторная батарея

Изобретение относится к химической и электротехнической промышленности и может быть использовано при изготовлении положительных электродов литий-серных аккумуляторов. Способ получения композиционного материала для формирования положительного электрода литий-серного аккумулятора, содержащего...
Тип: Изобретение
Номер охранного документа: 0002654856
Дата охранного документа: 23.05.2018
26.06.2019
№219.017.92bd

Электрохимическая ячейка для исследования электродных материалов методами спектроскопии поглощения рентгеновского излучения

Изобретение относится к области создания электрохимических ячеек для исследований химического состава и структуры электродных материалов методами спектроскопии поглощения рентгеновского излучения. Электрохимическая ячейка для исследований электродных материалов методом спектроскопии поглощения...
Тип: Изобретение
Номер охранного документа: 0002692407
Дата охранного документа: 24.06.2019
10.07.2019
№219.017.af20

Способ получения электропроводящей бумаги на основе нитевидных кристаллов ванадиевых бронз

Изобретение касается электропроводящей бумаги и способа ее получения (его варианта). Электропроводящая бумага состоит из нитевидных кристаллов состава BaVO длиной 0,5-3 мм и толщиной 0,1-10 мкм, переплетенных между собой в электропроводящую массу. Один из способов получения электропроводящей...
Тип: Изобретение
Номер охранного документа: 0002411319
Дата охранного документа: 10.02.2011
+ добавить свой РИД