×
26.06.2019
219.017.92bd

ЭЛЕКТРОХИМИЧЕСКАЯ ЯЧЕЙКА ДЛЯ ИССЛЕДОВАНИЯ ЭЛЕКТРОДНЫХ МАТЕРИАЛОВ МЕТОДАМИ СПЕКТРОСКОПИИ ПОГЛОЩЕНИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002692407
Дата охранного документа
24.06.2019
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области создания электрохимических ячеек для исследований химического состава и структуры электродных материалов методами спектроскопии поглощения рентгеновского излучения. Электрохимическая ячейка для исследований электродных материалов методом спектроскопии поглощения рентгеновского излучения, включающая корпус, содержащий полость для электролита с размещенным в ней вспомогательным электродом; мембрану, выполняющую функцию окна для рентгеновского излучения, выполненную с возможностью нанесения слоя исследуемого электродного материала со стороны размещения электролита, отличается тем, что корпус снабжен входным и выходным каналами с размещенными в них клапанами, при этом клапан входного канала представляет собой обратный клапан, выходного - запорный, мембрана выполнена из газоплотного материала. Техническим результатом является повышение стабильности электрохимических измерений и их достоверность, при повышении удобства и производительности сборки ячейки, а также при расширении спектра исследуемых электрохимических систем. 12 з.п. ф-лы, 5 ил.
Реферат Свернуть Развернуть

Область техники

Настоящее изобретение относится к области создания электрохимических ячеек для исследований химического состава и структуры электродных материалов методами спектроскопии поглощения рентгеновского излучения.

Уровень техники

Из предшествующего уровня техники известна трехэлектродная электрохимическая ячейка для спектроэлектрохимических исследований топливных элементов, состоящая из катодного и анодного пространства, разделенных протонпроводящей мембраной, и имеющая окно, выполненное из материала, выбранного из группы: селенид цинка, фторид кальция, кремний, германий, бромид калия, хлорид натрия, оксид кремния, стекло, через которое осуществляется доступ в ячейку возбуждающего излучения и регистрация аналитического сигнала детектором спектрометра (CN 103175876 В, 12.22.2011), и катодного и анодного материалов, которые осаждаются на протонпроводящую мембрану с обеих сторон. Ячейка предназначена для проведения исследований методами спектроскопии поглощения в видимой и ультрафиолетовой области, ИК и КР спектроскопии, электронной и ионной спектроскопии, рентгеновской спектроскопии.

Наиболее близким к заявляемому техническому решению является герметичная электрохимическая ячейка для in situ спектроскопии с рабочим электродом из графена (RU 2620022 C1, 18.12.2015), лежащего на тонкой пористой подложке из нитрида кремния, которая одновременно является окном для спектроскопических измерений. В корпусе ячейки предусмотрено пространство для размещения вспомогательного электрода и электрода сравнения, жидкого электролита, а также пористого стекла для разделения электролитов рабочего и вспомогательного электродов.

Недостатком данного технического решения является образование пузырьков газа в процессе заполнения ячейки жидким электролитом, что приводит к нестабильности электрохимических измерений и снижает их достоверность.

Раскрытие изобретения

Задачей, на решение которой направлено заявляемое изобретение, является создание измерительной ячейки для проведения исследований электрохимических систем in situ методом рентгеновской спектроскопии поглощения, в которой реализована эффективная система заполнения ячейки жидким электролитом, исключающая образование пузырьков газа, что повышает стабильность электрохимических измерений и их достоверность, при повышении удобства и производительности сборки ячейки, а также при расширении спектра исследуемых электрохимических систем.

Поставленная задача решается тем, что герметичная электрохимическая ячейка, включает корпус, содержащий полость для жидкого электролита с размещенным в ней вспомогательным электродом, и сплошную тонкую мембрану, выполненную из газоплотного материала, выполняющую функцию окна для рентгеновского излучения, с нанесенным со стороны размещения жидкого электролита слоем исследуемого электродного материала, при этом корпус снабжен входным и выходным каналами с размещенными в них клапанами, где клапан входного канала представляет собой обратный клапан, выходного - запорный.

Мембрана выполнена из материала с коэффициентом пропускания рентгеновского излучения не менее 80%., который может быть обеспечен такими материалами, как нитрид кремния, бериллий, алюминий, полиэтилентерефталат. Мембрана может иметь толщину 50-1000 нм. Слой исследуемого электрода выполняют толщиной не более 10 мкм.

В одном из вариантов осуществления изобретения мембрана может быть прикреплена к корпусу с помощью гайки через уплотнительное кольцо и металлическую прокладку. В корпусе может быть выполнено отверстие для электрода сравнения.

В частном варианте реализации входной клапан представляет собой обратный клапан, состоящий из цилиндрического корпуса, пружины и штока; выходной клапан выполнен запорным в виде винта, размещенного в корпусе ячейки перпендикулярно выходному каналу, а токосъемник, вспомогательного электрода выполнен в виде металлического цилиндра с резьбой на боковой поверхности. Клапаны в каналах герметизированы посредством уплотнительных элементов.

Корпус может быть выполнен из химически стойкого изолирующего материала, выбранного из группы: полиэфирэфиркетон, тефлон, полиэтилен, полипропилен.

Входной и выходной каналы выполнены с диаметром не менее 0.5 мм.

Заполнение ячейки жидким электролитом осуществляется путем прокачки жидкого электролита с помощью шприца через клапаны, что позволяет удалить образовавшиеся пузырьки газа из полости ячейки. В отличие от наиболее близкого аналога, где в качестве электрода сравнения использовалась металлическая проволока, токосъемник вспомогательного электрода размещен в корпусе ячейки и представляет собой металлический диск, на который может быть нанесен материал вспомогательного электрода. Это позволяет существенно расширить круг исследуемых электрохимических систем за счет возможности использования в качестве материала вспомогательного электрода порошков, фольгу и напыленных тонких слоев металла. В корпусе ячейки предусмотрено пространство для размещения электрода сравнения, представляющего собой металлическую проволоку.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является повышение достоверности электрохимических измерений, за счет повышения их стабильности путем исключения образования пузырьков газа в процессе заполнения ячейки жидким электролитом, при повышении удобства и производительности сборки ячейки, а также при расширении спектра исследуемых электрохимических систем.

Краткое описание чертежей

Изобретение поясняется следующими чертежами.

Фиг. 1 - схема электрохимической ячейки для in situ исследований методами рентгеновской спектроскопии поглощения.

Фиг. 2 - схема мембраны-окна для спектроскопических измерений.

Фиг. 3 - схема входного клапана.

Фиг. 4 - а) циклическая вольтамперограмма трехэлектродной ячейки с рабочим электродом, представляющим собой порошок пентаоксида ванадия V2O5, нанесенный на мембрану из нитрида кремния, вспомогательным электродом в форме литиевой фольги и платиновой проволокой в качестве электрода сравнения; б) циклическая вольтамперограмма трехэлектродной ячейки из наиболее близкого аналога с рабочим электродом, представляющим собой порошок пентаоксида ванадия V2O5, нанесенный на мембрану из нитрида кремния, вспомогательным электродом из платиновой проволоки и платиновой проволокой в качестве электрода сравнения.

Фиг. 5 - спектры краев поглощения ванадия и кислорода, зарегистрированные с рабочего электрода из пентаоксида ванадия до (серый) и после (черный) интеркаляции лития.

Осуществление изобретения

Электрохимическая ячейка состоит из корпуса 1, содержащего полость 2 для жидкого электролита (фиг. 1). С одной из сторон корпуса 1 полость 2 отделена от окружающей среды мембраной 3, которая является окном для рентгеновского излучения и представляет собой тонкую газоплотную пластину За, расположенную на рамке 36 (фиг. 2). Мембрана 3 содержит слой исследуемого электродного материала Зв, нанесенного на нее со стороны пластины За. Мембрана 3 присоединяется к корпусу 1 с помощью гайки 4 через металлическую прокладку 5, которая служит токосъемником рабочего электрода, таким образом, что слой Зв располагается со стороны полости 2. С противоположной стороны полость 2 отделена от окружающей среды токосъемником вспомогательного электрода 6, представляющим собой металлический цилиндр с резьбой на боковой поверхности, который вкручивается в корпус 1. На основание цилиндра, располагающегося со стороны полости 2, нанесен слой вспомогательного электрода 7. Полость 2 содержит входной 8 и выходной 9 каналы, в которых размещены входной 10 и выходной 11 клапаны. Входной клапан 10 представляет собой обратный клапан (фиг. 3), где внутри цилиндрического корпуса 10а клапана расположен шток 106. Пружина 10в прижимает шток 106 через уплотнительный элемент Юг к выступу на внутренней поверхности корпуса 10а, перекрывая отток электролита. Выходной клапан 11 является запорным и может быть выполнен в виде винта, который вкручивается в корпус 1 перпендикулярно выходному каналу 9, перекрывая таким образом выходной канал. Входной и выходной клапаны 10 и 11, токосъемник вспомогательного электрода 6 и мембрана 3 снабжены уплотнительными элементами 12 для обеспечения герметичности ячейки. В корпусе 1 дополнительно может быть выполнено отверстие 13 для ввода электрода сравнения в виде металлической проволоки, с обеспечивающим герметичность элементом. Входной и выходной каналы могут быть выполнены диаметром не менее 0.5 мм, так как при меньшем диаметре каналов сопротивление потоку жидкости при заполнении окажется слишком велико.

Корпус 1 может быть выполнен в форме параллелепипеда с линейным размером до 10 см из химически стойкого изолирующего материала, выбранного из группы: полиэфирэфиркетон, тефлон, полиэтилен, полипропилен. Клапаны 10 и 11, металлическая прокладка 5, гайка 4 и токосъемник вспомогательного электрода 6 могут быть выполнены из нержавеющей стали. В качестве электрода сравнения могут быть использованы металлические проволоки, выполненные из платины, серебра, золота. Материал вспомогательного электрода 7 может представлять собой порошок, фольгу или тонкий слой металла. Толщина слоя может составлять до 10 мкм для обеспечения его полного смачивания жидким электролитом. Мембрана 3 может быть выполнена из материала, имеющего коэффициент пропускания рентгеновского излучения не менее 80%, выбранного из группы: нитрид кремния, бериллий, алюминий, полиэтилентерефталат. Толщина мембраны зависит от выбранного материала и энергии рентгеновского излучения, и может варьироваться в диапазоне от 50 до 1000 нм, что позволит регистрировать аналитический сигнал приемлемого качества при сохранении механической прочности мембраны.

Техническое решение поясняется чертежами, которые не охватывают и, тем более не ограничивают весь объем притязаний данного технического решения, а являются лишь иллюстрирующими материалами частного случая выполнения.

Работает устройство следующим образом.

На мембрану 3 со стороны пластины 3а наносят слой 3в исследуемого электродного материала. Слой 3в может быть нанесен на мембрану 3 различными методами: нанесением суспензии на вращающуюся подложку, накалыванием, магнетронным или термическим напылением. Затем мембрану 3 прижимают к корпусу 1 через металлическую прокладку 5 с помощью гайки 4 таким образом, что слой нанесенного материала 3в располагается со стороны полости 2. На токосъемник вспомогательного электрода 6 наносят материал вспомогательного электрода 7, и вкручивают токосъемник 6 в корпус 1. Слой материала вспомогательного электрода 7 может быть нанесен на токосъемник 6 различными методами: нанесением суспензии на вращающуюся подложку, накалыванием, магнетронным или термическим напылением, прикатыванием. В отверстие 13 помещают вспомогательный электрод. Во входной клапан 10 вставляют шприц с жидким электролитом. При приложении давления к поршню шприца, достаточного для сжатия пружины 10в, пружина сжимается, шток 86 смещается, открывая проток для электролита. Жидкий электролит прокачивается через полость и выходит через выходной канал 9. При снятии давления после прокачивания электролита шток 86 прижимается к выступам на внутренней поверхности корпуса клапана 10а, перекрывая, таким образом, клапан 10. Клапан 11 вкручивают в корпус, блокируя выходной канал 9. Собранная ячейка закрепляется на держателе для образцов и помещается в камеру спектрометра, электрод сравнения, а также рабочий и вспомогательный электроды через токосъемники 5 и 6 подключаются к потенциостату, и проводятся электрохимические измерения. Источник излучения и детектор спектрометра фокусируются на мембране 3, и таким образом регистрируют аналитический сигнал со слоя исследуемого электродного материала Зв, нанесенного на мембрану 3.

Пример 1

Ячейка была использована для анализа процессов интеркаляции/деинтеркаляции лития в оксидные материалы методом рентгеновской спектроскопии поглощения. Для этого в ячейку помещали мембрану из нитрида кремния (производства компании Norcada) толщиной 100 нм, расположенную на кремниевой рамке толщиной 0.5 мм, с нанесенным на нее слоем пентаоксида ванадия V2O5. В качестве материала вспомогательного электрода использовали литиевую фольгу толщиной 100 мкм, которую прикатывали на токосъемник вспомогательного электрода. В качестве электрода сравнения использовали платиновую проволоку, жидкий электролит представлял собой 1 М раствор перхлората лития (LiClO4) в пропиленкарбонате. Диаметры входного и выходного каналов составляли 3 мм, в качестве входного клапана использовали клапан диаметром 3 мм производства фирмы Cambridge Reactor Design. Циклическая вольтамперограмма интеркаляции/деинтеркаляции лития в такой ячейке представлена на Фиг. 4а. Для сравнения на Фиг. 4б представлена циклическая вольтамперограмма электрохимической ячейки из наиболее близкого аналога, прямоугольником отмечена область искажений вольтамперограммы вследствие наличия пузырьков газа. Видно, что в описанной ячейке на вольамперограмме не наблюдается шумов. Спектр края рентгеновского поглощения ванадия для электрода до и после разряда ячейки представлен на Фиг. 5. Видно, что удается регистрировать спектры рентгеновского поглощения электродов внутри ячейки (in situ) с высоким соотношением сигнал-шум, что важно для дальнейшего анализа химического состояния элементов в электроде.


ЭЛЕКТРОХИМИЧЕСКАЯ ЯЧЕЙКА ДЛЯ ИССЛЕДОВАНИЯ ЭЛЕКТРОДНЫХ МАТЕРИАЛОВ МЕТОДАМИ СПЕКТРОСКОПИИ ПОГЛОЩЕНИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ
ЭЛЕКТРОХИМИЧЕСКАЯ ЯЧЕЙКА ДЛЯ ИССЛЕДОВАНИЯ ЭЛЕКТРОДНЫХ МАТЕРИАЛОВ МЕТОДАМИ СПЕКТРОСКОПИИ ПОГЛОЩЕНИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ
ЭЛЕКТРОХИМИЧЕСКАЯ ЯЧЕЙКА ДЛЯ ИССЛЕДОВАНИЯ ЭЛЕКТРОДНЫХ МАТЕРИАЛОВ МЕТОДАМИ СПЕКТРОСКОПИИ ПОГЛОЩЕНИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 16.
20.02.2014
№216.012.a265

Способ получения чернил на основе наночастиц диоксида олова легированного сурьмой для микропечати

Изобретение относится к области неорганической химии, а именно к композиции для получения сенсорных покрытий на основе водных суспензий наночастиц диоксида олова. Согласно изобретению композиция для получения сенсорных покрытий содержит диоксид олова, легированный сурьмой, состава SbSnO, где...
Тип: Изобретение
Номер охранного документа: 0002507288
Дата охранного документа: 20.02.2014
10.01.2015
№216.013.1c09

Способ получения нитевидных кристаллов активного материала положительного электрода литий-воздушного аккумулятора

Изобретение относится к активному материалу положительного электрода литий-воздушного аккумулятора в виде нитевидных кристаллов состава KMnO(x=0,1-0,15) длиной от 0,1 мкм до 2 мм и диаметром от 20 до 30 нм для обратимого восстановления кислорода на положительном электроде. А также относится к...
Тип: Изобретение
Номер охранного документа: 0002538605
Дата охранного документа: 10.01.2015
10.07.2015
№216.013.5b67

Способ получения гибридного материала (варианты) для перезаряжаемых химических источников тока

Изобретение относится к катодному органо-неорганическому гибридному материалу для вторичных литий-ионных источников тока состава (CHN)*xVO*yHO, где х=0.10-0.12, y=0.7-0.9 в виде наносвитков длиной от 100 до 500 нм и диаметром от 10 до 20 нм с площадью поверхности 60 м/г и диаметром пор 20-30...
Тип: Изобретение
Номер охранного документа: 0002554940
Дата охранного документа: 10.07.2015
27.03.2016
№216.014.c859

Литий-воздушный аккумулятор и способ его изготовления

Изобретение относится к области электротехники, а именно к литий-воздушному аккумулятору и способу его изготовления, и может быть использовано для электропитания различного оборудования. Сущность изобретения заключается в том, что литий-воздушный аккумулятор заполнен неводным литий-проводящим...
Тип: Изобретение
Номер охранного документа: 0002578196
Дата охранного документа: 27.03.2016
10.04.2016
№216.015.2c3b

Электрод для источника электрического тока и способ его получения

Изобретение относится к области производства литий-ионных источников тока, в частности к способу с получения стержневидных кристаллов оксида ванадия, способу получения из них электрода, а также к электроду, содержащему в своем составе стержневидные кристаллы оксида длиной 1-1000 мкм и...
Тип: Изобретение
Номер охранного документа: 0002579445
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cc7

Анодный материал с покрытием и аккумулятор с металлическим анодом

Изобретение относится к анодному материалу с покрытием и к аккумулятору с металлическим анодом с покрытием. Техническим результатом изобретения является увеличение емкости и количества циклов перезарядки аккумулятора. Анодный материал содержит металлический литий, на поверхность которого...
Тип: Изобретение
Номер охранного документа: 0002579357
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2dd1

Электролит для вторичного аккумулятора и аккумулятор с металлическим анодом

Изобретение относится к жидкому электролиту для вторичного аккумулятора, включающему смесь двух солей, растворенных в органическом растворителе. При этом первая соль содержит катион металла, совпадающий с материалом анода, и анион, выбранный из группы: , TFSI, BOB, , I, Br, , , а вторая...
Тип: Изобретение
Номер охранного документа: 0002579145
Дата охранного документа: 10.04.2016
27.05.2016
№216.015.43b1

Способ изготовления катодного материала, катодный материал и литий-ионный аккумулятор

Изобретение относится к способу изготовления композитного катодного материала. Способ включает следующие стадии: получение гидрогеля или ксерогеля VO; выдержка в герметичном тефлоновом автоклаве при температуре 130-200°C и давлении 100-600 МПа в течение суток смеси, содержащей гидрогель или...
Тип: Изобретение
Номер охранного документа: 0002585176
Дата охранного документа: 27.05.2016
27.08.2016
№216.015.51bc

Анодный материал

Изобретение относится к анодному материалу с покрытием и к аккумулятору с металлическим анодом с покрытием. Техническим результатом изобретения является повышение прочности литиевого слоя анодного материала и снижение электрохимически неактивной массы. Анодный материал выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002596023
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.67bb

Литий-воздушный аккумулятор и способ его получения

Изобретение относится к литий-воздушному аккумулятору, состоящему из металлического литиевого анода, находящегося в герметичной камере, заполненной неводным литий-проводящим электролитом, катода, находящегося в катодной камере, имеющей доступ к кислороду и заполненной неводным литий-проводящим...
Тип: Изобретение
Номер охранного документа: 0002591203
Дата охранного документа: 20.07.2016
+ добавить свой РИД