×
27.05.2016
216.015.426a

СПОСОБ УВЕЛИЧЕНИЯ РАЗМЕРОВ АЛМАЗОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002585634
Дата охранного документа
27.05.2016
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области получения синтетических алмазов и может быть использовано в качестве детекторов ядерного излучения в счетчиках быстрых частиц, а также в ювелирном деле. Способ включает осаждение углерода на затравочные кристаллы алмазов при их нагреве в вакууме, при этом затравочные кристаллы предварительно фиксируют на поверхности полированной пластины монокристаллического кремния, покрытой слоем поливинилацетата, после чего нагревают пластины кремния при электрическом потенциале смещения 80 В в вакууме, затем напускают метан при давлении 10-30 Торр и проводят изотермическую выдержку при температуре 1170±20°С с циклической откачкой реакционных продуктов и напуском свежего метана. Технический результат заключается в существенном увеличении исходных кристаллов алмаза в групповом процессе за значительно более короткое время технологического цикла. 2 ил., 1 пр.
Основные результаты: Способ увеличения размеров алмазов, включающий осаждение углерода на затравочные кристаллы алмазов при их нагреве в вакууме, отличающийся тем, что затравочные кристаллы предварительно фиксируют на поверхности полированной пластины монокристаллического кремния, покрытой слоем поливинилацетата, после чего нагревают пластины кремния при электрическом потенциале смещения 80 В в вакууме, затем напускают метан при давлении 10-30 Торр и проводят изотермическую выдержку при температуре 1170±20°С с циклической откачкой реакционных продуктов и напуском свежего метана.
Реферат Свернуть Развернуть

Изобретение относится к области получения синтетических алмазов и может быть использовано для увеличения размеров исходных кристаллов алмаза с целью применения их для различных технических нужд, например, в качестве детекторов ядерного излучения в счетчиках быстрых частиц, а также в ювелирном деле.

В настоящее время для синтеза алмазов в промышленности используется метод детонации, что сопряжено с применением высокоактивных взрывчатых веществ (смесь тротила с гексогеном).

Известен способ получения наноалмазов (Патент РФ №2230702, МПК С01В 31/06, опубл. 20.06.2004 г.) [1], основанный на использовании детонации, что сопряжено с применением взрывчатых веществ. Заряд взрывчатого вещества помещают внутрь ледяной бронировки в герметичной взрывной камере и производят его подрыв, затем полученную суспензию наноалмазов в воде сливают в приемную емкость, отделяют наноалмазы и подвергают очистке. Недостатками известного метода являются использование взрывчатых веществ, низкая воспроизводимость и трудность очистки синтезированных алмазов от продуктов распада взрывчатой смеси. Кроме того, по способу [1] возможно получение лишь мелкодисперсных алмазов, непригодных для применения в ювелирных целях.

Известен способ пиролитического выращивания нанокристаллических слоев графита (Патент РФ №2429315, МПК С30В 30/02, B82B 3/00, C30B 29/02, C01B 31/04, опубл. 20.09.2011) [2], включающий нагрев пластин из углеродного материала в герметичной водоохлаждаемой камере прямым пропусканием электрического тока и термическое разложение метана в зазоре между пластинами с осаждением нанокристаллических слоев углерода на подложках из кремния, размещенных в зазоре, причем температуру подложки поддерживают в пределах 1200-1350°C, а давление метана - от 10 до 30 Торр.

Способ [2] позволяет получать алмазы лишь наноразмерного уровня в матрице пирографита, что делает невозможным применение их в ряде технических областей и в ювелирных целях.

Наиболее близким по технической сущности к заявляемому и принятым за прототип является способ эпитаксиального выращивания алмаза, включающий осаждение углерода на затравочный кристалл алмаза (Патент РФ №2008258, МПК С01В 31/06, С30В 23/02, С30В 29/04, опубл. 28.02.1994) [3]. При осуществлении способа на поверхность затравочного кристалла алмаза наносят слой металла-катализатора, помещают его в кварцевую ампулу, содержащую аморфный углерод в форме сажи, вакуумируют и запаивают ампулу, а затем выдерживают ее при температуре 700°С в течение 100 часов.

Недостатками способа [3] являются низкая производительность, а также длительное время изотермической выдержки. Кроме того, маловероятно, что при столь низкой температуре в среде вакуума аморфный углерод способен превращаться в алмаз, поскольку это противоречит данным диаграммы состояния графит-алмаз (возможно, такое превращение может быть объяснено предварительным нанесением на затравочный кристалл хрома в качестве металла-катализатора). Увеличение массы затравочного кристалла после цикла обработки в соответствии с формулой изобретения по данным приведенной в описании патента [3] таблицы крайне незначительно.

Главными отличительными признаками заявляемого способа увеличения размеров алмазов являются использование большого количества затравочных кристаллов алмаза, метана в качестве поставщика углерода и электрического поля, способного ускорять ионы углерода и создавать большое локальное давление при их соударении с затравочными кристаллами, а также поливинилацетата в качестве исходной матрицы для затравочных кристаллов.

Технический результат, на достижение которого направлено заявляемое изобретение, состоит в существенном увеличении размеров исходных кристаллов алмаза в групповом процессе за значительно более короткое время технологического цикла.

Для достижения названного технического результата в известном способе, включающем осаждение углерода на затравочные кристаллы алмазов при их нагреве, при этом затравочные кристаллы предварительно фиксируют на поверхности полированной пластины монокристаллического кремния, покрытой слоем поливинилацетата, нагревают пластины кремния при электрическом потенциале смещения 80 В в вакууме, затем напускают метан при низком давлении 10-30 Торр и проводят изотермическую выдержку при температуре 1170±20°С с циклической откачкой реакционных продуктов и напуском свежего метана.

Термическое разложение метана в зазоре между углеродными плоскими электродами с осаждением атомов углерода на затравочных кристаллах алмаза, приводит к увеличению их размеров и объединению в крупные агрегаты. При термическом разложении метана в возникшем электрическом поле ионы углерода приобретают кинетическую энергию, позволяющую им создавать при контакте с растущим слоем давление до 20 ГПа, что сопоставимо, а по некоторым данным и превышает давление, достигаемое при подрыве тротила. Температуру подложек поддерживают в пределах 1170±20°С, а давление метана - от 10 до 30 Торр.

Атомарный водород эффективно травит растущий пиролитический углерод с образованием в газовой фазе комплексов C2H2 и CH3, но практически не взаимодействует с алмазом, что обеспечивает преимущество росту именно алмазов. Поливинилацетат [-СН2-СН(ОСОСН3)-]n, окружающий затравочные кристаллы алмаза, при указанной выше температуре также является источником углерода.

В реакционной камере в зазоре между двумя плоскими электродами расположена пластина кремния с нанесенными на ее поверхность с помощью поливинилацетата кристаллами (порошком синтетических алмазов). После герметизации и откачки реакционной камеры, включили нагрев нижнего плоского электрода до получения температуры кремниевой пластины 1170±20°С, напустили метан квалификации ВЧ до давления 25 Торр. Затем подали напряжение 80 В между плоскими электродами. Периодически с частотой 30 минут проводили откачку реакционных продуктов и напуск свежего метана. Общая длительность операционного цикла составила 3,5 часа. После извлечения кремниевой пластины на ее верхней плоскости обнаружен светлый слой пирографита толщиной 400±50 мкм с характерным металлическим блеском, содержащий большое количество выступающих над его поверхностью блестящих включений размерами от 1,5 до 3,5 мм.

Микрофотография исходных алмазов, полученная с помощью оптического микроскопа, приведена на Фиг. 1.

Оптическая микрофотография поверхности материала приведена на Фиг. 2.

Пример использования способа

В зазоре между двумя лентами: нижней (выполненной из 2-х слоев гибкой углеродной фольги и подключенной к выходным шинам силового трансформатора) и верхней (выполненной из 1-го слоя гибкой углеродной фольги, изолированной от нижней ленты и соединенной с регулируемым источником электрического напряжения) шириной 120 мм и длиной 230 мм каждая, установили пластину из монокристаллического кремния диаметром 100 мм. Предварительно полированная верхняя плоскость пластины была покрыта слоем поливинилацетата, на который нанесли порошок синтетических алмазов АСМ 28/20. После герметизации и откачки реакционной камеры включили нагрев путем пропускания тока через нижнюю ленту, затем в нее напустили метан квалификации ВЧ до давления 25 Торр. Температура пластины кремния достигла значения 1170±20°C. Затем подали напряжение 80 В между верхней и нижней лентами. Общая длительность операционного цикла составила 3,5 часа. При этом циклически проводили откачку реакционных продуктов и напуск свежего метана. После извлечения кремниевой пластины на ее верхней плоскости обнаружен светлый слой пирографита толщиной 400±50 мкм с характерным металлическим блеском, содержащий большое количество выступающих над его поверхностью блестящих включений размерами от 1,5 до 3,5 мм. При микроскопическом исследовании выявлены агрегаты увеличенных в размере исходных затравочных алмазов, соединенных слоями синтезированной в ходе проведения термообработки в среде метана и использовании электрического поля алмазоподобной фазы. Размеры исходных затравочных алмазов (в среднем 20 мкм) увеличились после проведенных обработок в 2-3 раза.

Способ увеличения размеров алмазов, включающий осаждение углерода на затравочные кристаллы алмазов при их нагреве в вакууме, отличающийся тем, что затравочные кристаллы предварительно фиксируют на поверхности полированной пластины монокристаллического кремния, покрытой слоем поливинилацетата, после чего нагревают пластины кремния при электрическом потенциале смещения 80 В в вакууме, затем напускают метан при давлении 10-30 Торр и проводят изотермическую выдержку при температуре 1170±20°С с циклической откачкой реакционных продуктов и напуском свежего метана.
СПОСОБ УВЕЛИЧЕНИЯ РАЗМЕРОВ АЛМАЗОВ
СПОСОБ УВЕЛИЧЕНИЯ РАЗМЕРОВ АЛМАЗОВ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 92.
21.03.2019
№219.016.eb97

Электрод для дуговой плавки металлов

Изобретение относится к электроду для дуговой плавки металлов и может быть использовано для плавления металлических порошков, прецизионной сварки тонколистовых металлов и изготовления деталей сложной геометрической формы в среде защитных газов. Электрод для дуговой плавки металлов содержит...
Тип: Изобретение
Номер охранного документа: 0002682553
Дата охранного документа: 19.03.2019
04.04.2019
№219.016.fc6b

Способ обнаружения шумящих в море объектов

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Достигаемым техническим результатом изобретения является повышение достоверности обнаружения и длительного поддержания контакта с шумящей движущейся в море целью. Способ включает прием шумовых...
Тип: Изобретение
Номер охранного документа: 0002339050
Дата охранного документа: 20.11.2008
19.04.2019
№219.017.344b

Способ автоматической классификации

Изобретение относится к области гидроакустики и может быть использовано для построения систем классификации объектов, обнаруженных гидролокаторами ближнего действия. Техническим результатом изобретения является обеспечение автоматической классификации объекта. Для этого осуществляют излучение...
Тип: Изобретение
Номер охранного документа: 0002461020
Дата охранного документа: 10.09.2012
18.05.2019
№219.017.57cb

Ключевое устройство (варианты)

Изобретение относится к области усилительной и генераторной техники и может быть использовано в гидротехнических и гидроакустических передающих трактах. Техническим результатом от использования обоих вариантов изобретения является обеспечение номинальной амплитуды импульсных сигналов управления...
Тип: Изобретение
Номер охранного документа: 0002372710
Дата охранного документа: 10.11.2009
24.05.2019
№219.017.5fd8

Способ получения информации о шумящих в море объектах

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Способ содержит следующие операции. Принимают шумовые сигналы в горизонтальной и вертикальной плоскостях, осуществляют частотно-временную обработку в каждом пространственном канале наблюдения,...
Тип: Изобретение
Номер охранного документа: 0002353946
Дата охранного документа: 27.04.2009
29.05.2019
№219.017.6829

Способ производства литой мишени для магнетронного распыления из сплава на основе молибдена

Изобретение относится к области металлургии цветных металлов и может быть использовано при производстве распыляемых металлических мишеней для нанесения тонкопленочной металлизации различного назначения в микроэлектронике и других высоких технологиях. Заявлены способ производства литой мишени...
Тип: Изобретение
Номер охранного документа: 0002454484
Дата охранного документа: 27.06.2012
29.05.2019
№219.017.682a

Способ производства литой мишени из сплава на основе тантала для магнетронного распыления

Изобретение относится к области металлургического производства распыляемых металлических мишеней для микроэлектроники, а также к изготовлению интегральных схем и тонкопленочных конденсаторов на основе тантала и его сплавов. Заявлены способ производства литой мишени для магнетронного распыления...
Тип: Изобретение
Номер охранного документа: 0002454483
Дата охранного документа: 27.06.2012
04.06.2019
№219.017.7349

Способ внутриволноводной терагерцовой интерферометрии и сапфировая ячейка для его реализации

Группа изобретений относится к интерферометрии. При осуществлении способа излучение вводят в двухмодовый волновод, часть которого занимает анализируемое вещество, и выводят через фигурную диафрагму, где на расстоянии, превышающем на порядок среднюю длину волны используемого излучения (>10λ),...
Тип: Изобретение
Номер охранного документа: 0002690319
Дата охранного документа: 31.05.2019
09.06.2019
№219.017.7db1

Способ получения составной мишени для распыления из сплава вольфрам-титан-кремний

Изобретение относится к области металлургии, в частности к способам производства распыляемых мишеней. Заявлены способ производства составной мишени для получения пленок магнетронным распылением и мишень, полученная этим способом. Способ включает изготовление диска из слитка поликристаллического...
Тип: Изобретение
Номер охранного документа: 0002454481
Дата охранного документа: 27.06.2012
09.06.2019
№219.017.7db3

Способ получения составной мишени для распыления из сплава вольфрам-титан-рений

Изобретение относится к области металлургии, в частности к способам производства распыляемых мишеней. Заявлены способ производства составной мишени для получения пленок магнетронным распылением и мишень, полученная этим способом. Способ включает изготовление диска из слитка поликристаллического...
Тип: Изобретение
Номер охранного документа: 0002454482
Дата охранного документа: 27.06.2012
Показаны записи 41-50 из 65.
20.03.2019
№219.016.e7b4

Способ пиролитического выращивания нанокристаллических слоев графита

Изобретение относится к области получения монокристаллических слоистых пленок графита на полупроводниковых подложках, представляющих интерес для использования в производстве приборов оптоэлектроники. Сущность способа состоит в том, что проводят термическое разложение метана на полированной...
Тип: Изобретение
Номер охранного документа: 0002429315
Дата охранного документа: 20.09.2011
21.03.2019
№219.016.eb97

Электрод для дуговой плавки металлов

Изобретение относится к электроду для дуговой плавки металлов и может быть использовано для плавления металлических порошков, прецизионной сварки тонколистовых металлов и изготовления деталей сложной геометрической формы в среде защитных газов. Электрод для дуговой плавки металлов содержит...
Тип: Изобретение
Номер охранного документа: 0002682553
Дата охранного документа: 19.03.2019
02.10.2019
№219.017.cd28

Шнековый дозатор порошков тугоплавких металлов

Изобретение относится к устройствам для подачи порошков тугоплавких металлов и может быть использовано в различных отраслях промышленности, где требуется прецизионная подача порошков. Задачей настоящего изобретения является разработка шнекового дозатора порошков тугоплавких металлов для...
Тип: Изобретение
Номер охранного документа: 0002701277
Дата охранного документа: 25.09.2019
04.10.2019
№219.017.d219

Тигель для выращивания кристаллов халькогенидов металлов вертикальной зонной плавкой

Изобретение относится к устройствам для выращивания кристаллов халькогенидов металлов: ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, вертикальной зонной плавкой, осуществляемой путем перемещения тигля через неподвижно закрепленный нагреватель. Графитовый тигель состоит из корпуса и крышки 1, имеющей...
Тип: Изобретение
Номер охранного документа: 0002701832
Дата охранного документа: 01.10.2019
19.12.2019
№219.017.ef3e

Устройство для измерения поверхностного натяжения расплавов сталагмометрическим методом

Устройство относится к измерительной технике для физических исследований свойств жидкостей. Устройство позволяет измерять поверхностное натяжение химически агрессивных расплавов тугоплавких веществ с высокими (больше 0,1 МПа) давлениями собственных паров над жидкой фазой, находящихся в инертной...
Тип: Изобретение
Номер охранного документа: 0002709422
Дата охранного документа: 17.12.2019
21.12.2019
№219.017.f00f

Способ электроэрозионной обработки поверхности молибдена

Изобретение относится к электроэрозионной обработке поверхности металлов и сплавов, используемой для повышения твердости, жаропрочности и коррозионной стойкости деталей машин. Предложен способ получения покрытия из карбида молибдена на детали из молибдена, включающий электроэрозионную обработку...
Тип: Изобретение
Номер охранного документа: 0002709548
Дата охранного документа: 18.12.2019
06.02.2020
№220.017.ff42

Способ пространственной стабилизации дуги

Изобретение относится к области электрометаллургии и может быть использовано для прецизионной сварки, наплавки и изготовления деталей способом 3D-печати. Техническим результатом явяляется повышение эффективности способа пространственной стабилизации дуги. Способ пространственной стабилизации...
Тип: Изобретение
Номер охранного документа: 0002713186
Дата охранного документа: 04.02.2020
17.02.2020
№220.018.0385

Способ получения нанокристаллического муассанита

Изобретение относится к области выращивания слоев нанокристаллического гексагонального карбида кремния (муассанита) и может быть использовано в электронной промышленности. Способ включает перемещение ленты углеродной фольги в горизонтальной плоскости с подачей к ее поверхности расплавленного...
Тип: Изобретение
Номер охранного документа: 0002714344
Дата охранного документа: 14.02.2020
13.03.2020
№220.018.0b07

Тигель для выращивания кристаллов на затравку

Изобретение относится к устройствам для выращивания кристаллов на затравку методами Бриджмена, вертикальной зонной плавки, температурного градиента, а также их модификациями. Тигель состоит из корпуса 1 и хвостовика 2 с затравочной камерой 3, выполненной в виде сквозного отверстия в...
Тип: Изобретение
Номер охранного документа: 0002716447
Дата охранного документа: 11.03.2020
25.03.2020
№220.018.0f34

Способ изготовления холодного катода

Изобретение относится к нанотехнологии и может быть использовано при изготовлении электронных приборов, а также для инжекции зарядов в объём конденсированных сред при криогенных температурах. Слой углеродных нанотрубок наносят на металлическую подложку осаждением в дуговом разряде. После этого...
Тип: Изобретение
Номер охранного документа: 0002717526
Дата охранного документа: 23.03.2020
+ добавить свой РИД