×
10.05.2016
216.015.3bf4

Результат интеллектуальной деятельности: СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНЫХ ЛИСТОВ ДЛЯ СТРОИТЕЛЬНЫХ СТАЛЬНЫХ КОНСТРУКЦИЙ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, преимущественно к производству горячекатаных листов для строительства металлических конструкций со сварными и другими соединениями. Cпособ производства горячекатаных листов для строительных стальных конструкций включает получение заготовки из стали, мас. %: 0,12-0,15 С, 0,15-0,30 Si, 1,55-1,70 Μn, не более 0,30 Cr, не более 0,30 Ni, не более 0,30 Cu, не более 0,003 Ti, не более 0,008 Ν, не более 0,05 Al, S не более 0,005, Ρ не более 0,015, Fe и примеси - остальное, при этом углеродный эквивалент С≤0,45%. Нагрев под прокатку непрерывнолитой заготовки производят до 1180-1200°C не более 9 ч. При этом листов конечной толщины до 20 мм черновую прокатку осуществляют до достижения раскатом толщины 90-95 мм, чистовую прокатку начинают при температуре 840-860°С и завершают при температуре 770±10 до конечной толщины до 20 мм, после чего листы подвергают ускоренному охлаждению от температуры не менее 750°С до температуры 655±5°С. Для листов конечной толщины свыше 20 мм до 30 мм черновую прокатку осуществляют до достижения раскатом толщины 115-120 мм, чистовую прокатку начинают при температуре 810-830°С и завершают при температуре 780±10°С до конечной толщины свыше 20 мм до 30 мм, после чего листы подвергают ускоренному охлаждению от температуры не менее 760°С до температуры 600±20°С. Технический результат заключается в получении проката толщиной до 30,0 мм с гарантированным пределом текучести не менее 345 МПа, а также улучшенным комплексом вязкостных и пластических свойств. 2 н.п. ф-лы, 3 табл.

Изобретение относится к металлургии, преимущественно к производству горячекатаных листов для строительства металлических конструкций со сварными и другими соединениями.

Известен способ производства толстолистового низколегированного стального штрипса, включающий нагрев до температуры 1170-1200°С непрерывнолитой заготовки, содержащей 0,03-0,08% С, 1,6-2,2% Mn, 0,12-0,40% Si, 0,28-0,55% Ni, 0,20-0,45% Mo, 0,01-0,1% Cr, 0,1-0,4% Cu, 0,03-0,07% Nb, 0,01-0,04% Ti, 0,01-0,06% V, 0,01-0,05% Al, Fe и примеси с содержанием каждого элемента примеси менее 0,05 - остальное, при этом количество сульфидных неметаллических включений не превышает 1,5 балла, а количество остальных неметаллических включений не превышает 3 балла, черновую прокатку, последующее охлаждение промежуточной заготовки до температуры 820-850°С, чистовую прокатку с температурой конца 770-820°С, ускоренное охлаждение полученного штрипса до заданной температуры, определяемой в зависимости от толщины готового штрипса, его правку на роликоправильной машине и последующее замедленное охлаждение (патент РФ 2463360, МПК C21D 8/02, С22С 38/58, 10.10.2012 г.).

Наиболее близким по своей технической сущности и достигаемым результатам к предлагаемому изобретению является способ производства толстолистового низколегированного штрипса, включающий аустенизацию непрерывнолитой заготовки, содержащей 0,03-0,10% С, 1,6-2,0% Mn, 0,15-0,35% Si, 0,30-0,60% Ni, 0,25-0,45% Ni, Cr≤0,15%, 0,1-0,4% Cu, 0,03-0,07% Nb, Ti≤0,03%, V≤0,035%, Fe и примеси с содержанием каждого элемента примеси менее 0,05% - остальное, при этом коэффициент трещиностойкости готового штрипса PCM составляет менее 0,25%, а размер действительного зерна феррита не превышает 15 мкм, черновую прокатку при температуре не ниже 950°С со степенью обжатия за проход не менее 10%, за исключением последнего прохода, до толщины промежуточной заготовки 80-140 мм, последующее охлаждение промежуточной заготовки до температуры 820-850°С, чистовую прокатку, ускоренное охлаждение полученного штрипса до заданной температуры завершают при температуре 560-640°С, правку штрипса при температуре не менее 350°С и замедленное охлаждение штрипса (патент РФ 2463359, МПК C21D 8/02, С22С 38/58, 10.10.2012 г.).

Указанные способы рассчитаны на производство горячекатаных листов толщиной не более 20 мм, что является их основным недостатком. Также при аналогичных требованиях по механическим свойствам в известных способах производства требуется дополнительное легирование, что увеличивает себестоимость готового листа.

Технический результат - получение проката толщиной до 30,0 мм с гарантированным пределом текучести не менее 345 МПа, а также улучшенным комплексом вязкостных и пластических свойств.

Технический результат достигается тем, что в способе производства горячекатаных листов для строительных стальных конструкций толщиной до 20 мм, включающем нагрев под прокатку непрерывнолитой заготовки, черновую прокатку при температуре не ниже 950°С, подстуживание раската, чистовую прокатку, ускоренное охлаждение готового листа до заданной температуры и последующее замедленное охлаждение на воздухе, согласно изобретению заготовку получают из стали со следующим соотношением элементов, мас. %:

углерод 0,12-0,15
кремний 0,15-0,30
марганец 1,55-1,70
хром не более 0,30
никель не более 0,30
медь не более 0,30
титан не более 0,003
азот не более 0,008
алюминий не более 0,05
сера не более 0,005
фосфор не более 0,015
железо и примеси остальное

при этом углеродный эквивалент Сэ≤0,45%, нагрев под прокатку непрерывнолитой заготовки производят до температуры 1180-1200°С не более 9 ч, черновую прокатку осуществляют до достижения раскатом толщины 90-95 мм, чистовую прокатку начинают при температуре 840-860°С и завершают при температуре 770±10°С, после чего листы подвергают ускоренному охлаждению от температуры не менее 750°С до температуры 655±15°С.

Также технический результат достигается тем, что в способе производства горячекатаных листов для строительных стальных конструкций толщиной свыше 20 мм до 30 мм, включающий нагрев под прокатку непрерывнолитой заготовки, черновую прокатку при температуре не ниже 950°С, подстуживание раската, чистовую прокатку, ускоренное охлаждение готового листа до заданной температуры и последующее замедленное охлаждение на воздухе, согласно изобретению заготовку получают из стали со следующим соотношением элементов, мас. %:

углерод 0,12-0,15
кремний 0,15-0,30
марганец 1,55-1,70
хром не более 0,30
никель не более 0,30
медь не более 0,30
титан не более 0,003
азот не более 0,008
алюминий не более 0,05
сера не более 0,005
фосфор не более 0,015
железо и примеси остальное

при этом углеродный эквивалент Сэ≤0,45%, нагрев под прокатку непрерывнолитой заготовки производят до температуры 1180-1200°С не более 9 ч, черновую прокатку осуществляют до достижения раскатом толщины 115-120 мм, чистовую прокатку начинают при температуре 810-830°С и завершают при температуре 780±10°С, после чего листы подвергают ускоренному охлаждению от температуры не менее 760°С до температуры 600±20°С.

Сущность изобретения состоит в том, что заданный химический состав стали обеспечивает необходимый фазовый состав, определяющий технический результат при реализации предлагаемых технологических режимов.

Углерод в стали определяет ее прочностные свойства. Снижение содержания углерода менее 0,12% приводит к падению прочностных свойств ниже допустимого уровня, увеличение содержания более 0,15% приводит к снижению пластичности и вязкости стали.

При содержании кремния менее 0,15% повышается загрязненность стали оксидными включениями, увеличение содержания более 0,30% приводит к загрязненности силикатами - все это негативно отражается на механических свойствах стали.

Марганец, так же как и углерод, повышает прочностные характеристики стали. При увеличении содержания марганца более 1,70% наблюдается понижение ударной вязкости стали и ухудшение свариваемости. Однако введение марганца в сталь является необходимым для раскисления стали и удаления серы, поэтому снижение содержания марганца менее 1,55% нежелательно.

Повышение содержания хрома, никеля и меди более 0,30% для каждого экономически нецелесообразно и приводит к повышению стоимости без улучшения свойств.

Содержание титана (0,003%), алюминия (0,005%) и азота (0,008%) является достаточным для обеспечения требуемого уровня механических свойств. Их содержание выше указанных максимальных значений также экономически нецелесообразно и приводит к повышению стоимости без улучшения свойств.

Заявленные пределы содержания серы (не более 0,005%) и фосфора (не более 0,015%) обеспечивают получение высоких значений ударной вязкости при отрицательных температурах.

Для предложенного химического состава при значениях углеродного эквивалента Сэ более 0,45% возможно ухудшение свариваемости стали.

Углеродный эквивалент Сэ определяется по результатам плавочного анализа по формуле:

Сэ=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15.

Рациональные параметры реализации способа были определены эмпирически.

Для достижения указанного технического результата получения проката толщиной до 30,0 мм с гарантированным пределом текучести не менее 345 МПа, а также улучшенным комплексом вязкостных и пластических свойств необходимо получение равномерной и мелкодисперсной структуры горячекатаных листов.

Экспериментально установлено, что нагрев непрерывнолитой заготовки до температуры ниже 1180°С не достаточен для прогрева заготовки по сечению. Увеличение температуры нагрева выше 1200°С сопровождается интенсивным ростом зерен аустенита и огрублением границ. Нагрев свыше 9 ч приводит к чрезмерному укрупнению аустенитного зерна с последующим образованием кристаллического излома.

Черновую прокатку начинают при температуре не ниже 950°С. При температуре начала черновой прокатки менее 950°С металл попадает в неблагоприятную для деформации температурную область, что может привести к повышенным нагрузкам на оборудование и невозможности обеспечить требуемую величину обжатия.

В результате проведения опытных прокаток определена оптимальная толщина раската после черновой прокатки для различных толщин готового листа.

Установлено, что увеличение толщины раската после черновой прокатки более 90-95 мм для листа конечной толщины до 20 мм включительно и более 115-120 мм для листа конечной толщины более 20 мм существенно снижается проработка структуры по толщине раската.

Экспериментально определено, что начало чистовой прокатки ниже 840°С для листа конечной толщины до 20 мм включительно и ниже 810°С для листа конечной толщины более 20 мм не позволяет подготовить аустенит к последующему превращению, создав высокую плотность несовершенств кристаллической решетки гамма-железа. При температуре конца прокатки выше 860°С для листа конечной толщины до 20 мм включительно и ниже 830°С для листа конечной толщины более 20 мм не обеспечивается оптимальное соотношение структурных составляющих (феррит, бейнит, игольчатый феррит), что приводит к необеспечению комплекса механических свойств.

Чистовую прокатку завершают для листа конечной толщины до 20,0 мм включительно при температуре 770±10°С, для листа конечной толщины более 20 мм - при температуре 780±10°С. При нарушении указанных диапазонов температур конца чистовой прокатки появляется риск необеспечения механических свойств.

Ускоренное охлаждение листов после чистовой прокатки начинают от температуры не менее 750°С до температуры 655±15°С для листов конечной толщины до 20,0 мм включительно и от температуры не менее 760°С до температуры 600±20°С для листов конечной толщины более 20,0 мм. Ускоренное охлаждение до температуры ниже указанных диапазонов сопровождается чрезмерным развитием процесса промежуточного превращения переохлажденного аустенита с выделением соответствующих продуктов, резко ухудшающих вязкостные свойства материала. Ускоренное охлаждение листов до температур, превышающих заявленные диапазоны, обеспечивает низкую скорость охлаждения центральных слоев листа с выделением неблагоприятных структурных составляющих.

Из приведенного анализа следует, что реализация предложенного технического решения позволяет получить требуемое качество горячекатаных листов для строительства металлических конструкций со сварными и другими соединениями. Это достигается за счет выбора рациональных температурно-деформационньгх режимов для данного химического состава стали. Однако в случае выхода варьируемых технологических параметров за предлагаемые границы возникают трудности с получением стабильных и удовлетворительных механических свойств. Таким образом, полученные данные подтверждают правильность рекомендаций по выбору допустимых значений технологических параметров предложенного способа производства горячекатаных листов для строительных стальных конструкций.

Применение способа поясняется примером его реализации при производстве листов С345 на стане 5000.

Выплавка стали осуществлялась в кислородном конвертере вместимостью 370 т с проведением процесса десульфурации магнием в заливочном ковше. На выпуске проводилось первичное легирование, предварительное раскисление и обработка металла твердошлаковыми смесями с продувкой металла аргоном в сталеразливочном ковше. Окончательное легирование, микролегирование, обработка металла кальцием и перегрев металла для проведения вакуумирования проводилось на агрегате комплексной доводки стали. Дегазация металла осуществлялась путем его вакуумирования. Разливка производилась на машине непрерывного литья заготовок с защитой металла аргоном от вторичного окисления в заготовки сечением 315×1715-2003 мм.

Химический состав сталей приведен в таблице 1.

Сталь получена со следующим составом химических элементов: С=0,15%; Si=0,22%; Mn=1,62%; Cr=0,03%; Ni=0,02%; Cu=0,10%; Ti=0,002%; N=0,005%; Al=0,05%; S=0,005%; Р=0,012%; железо и примеси - остальное. Углеродный эквивалент составил 0,44%.

Непрерывнолитые заготовки нагревали до температуры 1186°С в течение 8 ч 20 мин и прокатывали в черновой стадии при температуре начала прокатки 1011°С до толщины раската 95,0 мм, охлаждали на воздухе до температуры 860°С, прокатывали на чистовой стадии до конечной толщины 20,0 мм с окончанием процесса деформации при 780°С. после этого листы ускоренно охлаждены от температуры 760°С до 670°С.

Испытания на статическое растяжение проводили на цилиндрических образцах по ГОСТ 1497. Испытания на ударную вязкость проводили по ГОСТ 9454, испытания на ударную вязкость после механического старения проводили по ГОСТ 7268.

Варианты реализации предложенного способа и показатели их эффективности приведены в таблицах 2 и 3 соответственно.

Из таблиц 2 и 3 следует, что при реализации заявленного способа производства (режимы №2-5) достигается получение горячекатаных листов для строительства металлических конструкций со сварными и другими соединениями с уровнем механических свойств, соответствующим категории прочности 345.

При запредельных значениях предложенных режимов (режимы №1 и №6) не обеспечивается получение готового листа с требуемым пределом текучести, при этом значительно снижаются относительное удлинение и ударная вязкость.

Технико-экономические преимущества рассматриваемого изобретения состоят в том, что использование предложенного способа обеспечивает производство толстых листов из низколегированной стали толщиной до 30 мм для строительства металлических конструкций со сварными и другими соединениями.

Источник поступления информации: Роспатент

Показаны записи 81-90 из 140.
20.01.2018
№218.016.1020

Способ производства горячекатаных листов из низколегированной стали

Изобретение относится к области металлургии и может быть использовано при производстве горячекатаного листа толщиной 48-100 мм из низколегированной стали для изготовления конструкций ответственного назначения, работающих под давлением при температуре до -70°C. Для обеспечения механических...
Тип: Изобретение
Номер охранного документа: 0002633684
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1852

Способ производства низкоуглеродистой стали

Изобретение относится к области черной металлургии, в частности к производству низкоуглеродистых демпфирующих сталей с внепечной обработкой и разливкой на установках непрерывной разливки стали. Способ включает выплавку металла в сталеплавильном агрегате, выпуск металла в сталь-ковш, внепечную...
Тип: Изобретение
Номер охранного документа: 0002635493
Дата охранного документа: 13.11.2017
20.01.2018
№218.016.1ca2

Способ выработки электроэнергии с использованием тепла отходящих конвертерных газов

Изобретение относится к черной металлургии, а именно к использованию энергии газа кислородно-конвертерного производства для выработки электроэнергии. Способ включает отвод газов из конвертера через газоотводящий тракт, нагнетатель и станцию переключения потока, посредством которой конвертерный...
Тип: Изобретение
Номер охранного документа: 0002640514
Дата охранного документа: 09.01.2018
04.04.2018
№218.016.3361

Способ производства горячеоцинкованного проката для холодной штамповки

Изобретение относится к области металлургии. Техническим результатом изобретения является получение прочностных характеристик стали, склонности к ВН-эффекту при отсутствии площадки текучести. Технический результат достигается тем, что в способе производства горячеоцинкованного проката для...
Тип: Изобретение
Номер охранного документа: 0002645622
Дата охранного документа: 26.02.2018
10.05.2018
№218.016.4283

Способ производства холоднокатаного горячеоцинкованного проката с полиуретановым покрытием

Изобретение относится к области черной металлургии. Для увеличения прочности проката с полиуретановым покрытием при испытании на изгиб с 3Т до менее 1Т способ включает горячую прокатку стальной полосы из низкоуглеродистой микролегированной стали, содержащей, мас. %: углерод не более 0,005,...
Тип: Изобретение
Номер охранного документа: 0002649486
Дата охранного документа: 03.04.2018
10.05.2018
№218.016.4a42

Способ термической обработки горячекатаного рулонного проката из легированных доэвтектоидных сталей

Изобретение относится к области металлургии, конкретно к термической обработке горячекатаного рулонного проката из легированных доэвтектоидных сталей типа 50ХГФА, предназначенного для изготовления нажимных пружин сцепления. Для обеспечения требуемых механических свойств и микроструктурных...
Тип: Изобретение
Номер охранного документа: 0002651553
Дата охранного документа: 20.04.2018
29.05.2018
№218.016.53a1

Способ перемешивания стали в металлургическом агрегате

Изобретение относится к металлургии, в частности к обработке стали газом в металлургических агрегатах в процессе выплавки стали, ее выпуска из сталеплавильной печи и на внепечных установках в сталеразливочных и промежуточных ковшах. Способ включает продувку стали газом непрерывно с различной...
Тип: Изобретение
Номер охранного документа: 0002653743
Дата охранного документа: 14.05.2018
09.06.2018
№218.016.5d7a

Маломагнитная сталь и изделие, выполненное из нее

Изобретение относится к сталям, используемым в качестве конструкционных материалов в судостроении, энергетике, машиностроении. Сталь содержит 0,1-0,8 мас.% углерода, 0,001-0,9 мас.% кремния, 10,0-22,0 мас.% марганца, 1,5-4,5 мас.% алюминия, не более 0,8 мас.% хрома, не более 0,8 мас.% никеля,...
Тип: Изобретение
Номер охранного документа: 0002656323
Дата охранного документа: 04.06.2018
02.12.2018
№218.016.a26f

Способ переработки огненно-жидкого доменного шлака

Изобретение относится к черной металлургии и может быть использовано при переработке огненно-жидких доменных шлаков. Огненно-жидкий доменный шлак послойно сливают в траншею, осуществляют охлаждение массива шлака, выемку шлакового массива, укладку в штабель и перелопачивание. При этом слив шлака...
Тип: Изобретение
Номер охранного документа: 0002673688
Дата охранного документа: 29.11.2018
05.12.2018
№218.016.a37a

Способ загрузки доменной печи

Изобретение относится к черной металлургии, в частности к доменному производству. Способ загрузки доменной печи, оснащенной лотковым бесконусным загрузочным устройством, включает грохочение шихтовых материалов, их дозирование, формирование железорудных и коксовых порций, в головную часть...
Тип: Изобретение
Номер охранного документа: 0002673898
Дата охранного документа: 03.12.2018
Показаны записи 81-90 из 104.
20.01.2018
№218.016.1020

Способ производства горячекатаных листов из низколегированной стали

Изобретение относится к области металлургии и может быть использовано при производстве горячекатаного листа толщиной 48-100 мм из низколегированной стали для изготовления конструкций ответственного назначения, работающих под давлением при температуре до -70°C. Для обеспечения механических...
Тип: Изобретение
Номер охранного документа: 0002633684
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1852

Способ производства низкоуглеродистой стали

Изобретение относится к области черной металлургии, в частности к производству низкоуглеродистых демпфирующих сталей с внепечной обработкой и разливкой на установках непрерывной разливки стали. Способ включает выплавку металла в сталеплавильном агрегате, выпуск металла в сталь-ковш, внепечную...
Тип: Изобретение
Номер охранного документа: 0002635493
Дата охранного документа: 13.11.2017
20.01.2018
№218.016.1ca2

Способ выработки электроэнергии с использованием тепла отходящих конвертерных газов

Изобретение относится к черной металлургии, а именно к использованию энергии газа кислородно-конвертерного производства для выработки электроэнергии. Способ включает отвод газов из конвертера через газоотводящий тракт, нагнетатель и станцию переключения потока, посредством которой конвертерный...
Тип: Изобретение
Номер охранного документа: 0002640514
Дата охранного документа: 09.01.2018
04.04.2018
№218.016.3361

Способ производства горячеоцинкованного проката для холодной штамповки

Изобретение относится к области металлургии. Техническим результатом изобретения является получение прочностных характеристик стали, склонности к ВН-эффекту при отсутствии площадки текучести. Технический результат достигается тем, что в способе производства горячеоцинкованного проката для...
Тип: Изобретение
Номер охранного документа: 0002645622
Дата охранного документа: 26.02.2018
10.05.2018
№218.016.4186

Толстый лист из дисперсионно-твердеющей стали для горячей штамповки и способ его получения

Изобретение относится к области металлургии, в частности к производству толстого листа из низколегированной дисперсионно-твердеющей стали. Для обеспечения комплекса свойств, соответствующих классам прочности К60-К65, получают лист толщиной до 52 мм с уровнем прочности не менее 590 МПа,...
Тип: Изобретение
Номер охранного документа: 0002649110
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.4d11

Способ производства горячекатаных листов из высокопрочной стали

Изобретение относится к области металлургии, а именно к производству толстых стальных листов, используемых для элементов конструкций, эксплуатируемых в арктических условиях, например для производства корпусов ледоколов и крупнотоннажных судов. Для получения листа толщиной до 70 мм с пределом...
Тип: Изобретение
Номер охранного документа: 0002652281
Дата охранного документа: 25.04.2018
29.05.2018
№218.016.53d7

Хладостойкая свариваемая сталь и изделие, выполненное из нее (варианты)

Изобретение относится к области металлургии, а именно к производству толстолистового проката толщиной до 100 мм из хладостойкой свариваемой стали для изготовления строительных конструкций, судостроения и других отраслей, в том числе для изготовления стационарных морских сооружений,...
Тип: Изобретение
Номер охранного документа: 0002653748
Дата охранного документа: 14.05.2018
26.12.2018
№218.016.ab74

Способ производства горячекатаных листов из низколегированной стали класса прочности к60 толщиной до 40 мм

Изобретение относится к металлургии, в частности к производству на реверсивном толстолистовом стане горячекатаного проката толщиной до 40 мм для магистральных труб. Cпособ включает нагрев непрерывнолитых заготовок, черновую прокатку в раскат промежуточной толщины, его подстуживание, чистовую...
Тип: Изобретение
Номер охранного документа: 0002675891
Дата охранного документа: 25.12.2018
01.03.2019
№219.016.cb3a

Способ производства толстолистового низколегированного штрипса

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении толстых листов и штрипсов из низколегированных сталей. Для повышения прочностных свойств при сохранении достаточной пластичности и увеличении хладостойкости штрипса...
Тип: Изобретение
Номер охранного документа: 0002390568
Дата охранного документа: 27.05.2010
01.03.2019
№219.016.cb56

Способ производства штрипсов из низколегированной стали

Изобретение относится к области обработки металлов давлением, в частности к технологии прокатки на реверсивном толстолистовом стане. Для повышения производительности процесса прокатки штрипса для труб большого диаметра при обеспечении стабильного уровня механических свойств получают...
Тип: Изобретение
Номер охранного документа: 0002391415
Дата охранного документа: 10.06.2010
+ добавить свой РИД