×
20.04.2016
216.015.36d4

Результат интеллектуальной деятельности: СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНЫХ ЛИСТОВ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ

Вид РИД

Изобретение

№ охранного документа
0002581696
Дата охранного документа
20.04.2016
Аннотация: Изобретение относится к области металлургии. Для получения проката толщиной до 21,0 мм класса прочности с гарантированным пределом прочности от 510 до 550 МПа для объектов ответственного назначения с повышенными показателями по коррозионной стойкости в водородных и сероводородных средах, сопротивляемости хрупкому разрушению при отрицательной температуре используют непрервынолитую заготовку толщиной не более 250 мм из стали, содержащей, мас.%: 0,04-0,070 С, 0,20-0,30 Si, 0,90-1,10 Мn, 0,20-0,30 Сr, Ni≤0,25, Сu≤0,25%, Мо≤0,35, 0,004-0,009 Ti, V≤0,06, 0,02-0,035 Nb, N≤0,007, 0,02-0,04 Al, S≤0,001, P≤0,010, Fe и примеси - остальное, при этом суммарное содержание Cr+Ni+Cu не превышает 0,70%, углеродный эквивалент С≤0,40%, параметр стойкости против растрескивания при сварке Р≤0,21%, аустенизацию непрерывнолитой заготовки производят до температуре 1190-1230°С. Черновую прокатку заготовки начинают при температуре не ниже 960°С и осуществляют ее на толщину, составляющую не менее 5,5 толщины готового листа с относительными обжатиями за проход не менее 10%. Чистовую прокатку начинают для листа конечной толщины до 16 мм включительно при температуре 900-930°С, а для листа конечной толщины более 16 мм - при температуре 870-900°С и завершают для листа конечной толщины до 16 мм включительно при температуре 880±10°С, а для листа конечной толщины более 16 мм - при температуре 850±10°С, после чего листы подвергают ускоренному охлаждению до температуры 430-470°С со скоростью не менее 20°С/с. 1 з.п. ф-лы, 3 табл.

Изобретение относится к производству проката толщиной до 21,0 мм с гарантированным пределом прочности от 510 до 550 МПа для изготовления сварных труб, стойких к коррозионному растрескиванию.

Известен способ производства листов из низколегированной трубной стали классов прочности К52-К60 толщиной 14÷21 мм, включающий нагрев до температуры выше Ас3 слябовой заготовки содержащей: 0,07-0,11% С, 1,20-1,65% Мn, 0,20-0,45% Si, 0,002-0,003% S, 0,002-0,013% Р, 0,08-0,10% Ni, 0,08-0,10% Сr, 0,08-0,10% Сu, 0,025-0,045% Аl, 0,03-0,08% Nb, 0,02-0,06% V, 0,015-0,025% Ti, Fe - остальное, черновую прокатку при температуре 1050±60°С, подстуживание, чистовую прокатку с температурой начала в диапазоне 830÷890°С и конца 800÷840°С, ускоренное охлаждение листов, которое заканчивают при температуре поверхности 520÷580°С (патент РФ 2458751, МПК В21В 1/26, 20.08.2012 г.).

Недостатком известного способа производства листов является отсутствие гарантии коррозионной стойкости их материала в водородных и сероводородных средах; отсутствие гарантий получения высоких результатов испытаний по Шарпи образцов с V-образным концентратором при отрицательных температурах.

Наиболее близким по своей сущности и достигаемому результату к предлагаемому изобретению является способ производства штрипсов из низколегированной стали, включающий отливку слябов из стали, содержащей: 0,003-0,14% С, 0,15-0,70% Si, 0,50-1,65% Мn, Сr≤0,3%, Ni≤0,3%, Cu≤0,3%, 0,02-0,05% Al, 0,005-0,03% Ti, 0,02-0,14% V, 0,015-0,060% Nb, Mo≤0,15%, 0,0003-0,05% Ca, Fe - остальное, нагрев слябов до температуры 1150-1200°С, многопроходную реверсивную прокатку в черновой клети с обжатием за проход не менее 8%, подстуживание раската до температуры 920-980°С и последующую прокатку в чистовой клети с суммарным обжатием не менее 70% и температуре конца прокатки не выше 820°С (патент РФ 2201972, МПК C21D 8/02, С22С 38/58, В21В 1/26, 10.04.2003 г.).

Недостатком известного способа производства листов является отсутствие гарантии коррозионной стойкости их материала в водородных и сероводородных средах; относительно низкие результаты (порядка нескольких десятков Дж/см2) испытаний по Шарпи образцов даже с U-образным концентратором.

Технический результат - получение проката толщиной до 21,0 мм с гарантированным пределом прочности от 510 до 550 МПа для объектов ответственного назначения с повышенными показателями по коррозионной стойкости в водородных и сероводородных средах, сопротивляемости хрупкому разрушению при отрицательных температурах.

Технический результат достигается тем, что в способе производства горячекатаных листов толщиной 12-21 мм из низколегированной стали с гарантированным пределом прочности от 510 до 550 МПа коррозионно-стойкого исполнения, включающем аустенизацию непрерывнолитой заготовки, черновую прокатку с регламентированными обжатиями за проход, подстуживание раската, чистовую прокатку, ускоренное охлаждение готового листа до заданной температуры и последующее замедленное охлаждение в стопе, согласно изобретению заготовку получают из стали со следующим соотношением элементов: 0,04-0,070% С, 0,20-0,30% Si, 0,90-1,10% Мn, 0,20-0,30% Сr, Ni≤0,25%, Cu≤0,25%, Мо≤0,35%, 0,004-0,009% Ti, V≤0,06%, 0,02-0,035% Nb, N≤0,007%, 0,02-0,04% Al, S≤0,001%, P≤0,010%, Fe и примеси - остальное, при этом суммарное содержание Cr+Ni+Cu не превышает 0,70%, углеродный эквивалент Сэ≤0,40%, параметр стойкости против растрескивания при сварке Рcm≤0,21%, аустенизацию непрерывнолитой заготовки производят при температуре 1190-1230°С, черновую прокатку начинают при температуре не ниже 960°С и осуществляют ее на толщину, составляющую не менее 5,5 толщины готового листа с относительными обжатиями за проход не менее 10%, чистовую прокатку начинают для листа конечной толщины до 16 мм включительно при температуре 900-930°С, а для листа конечной толщины более 16 мм - при температуре 870-900°С и завершают для листа конечной толщины до 16 мм включительно при температуре 880±10°С, а для листа конечной толщины более 16 мм - при температуре 850±10°С, после чего листы подвергают ускоренному охлаждению до температуры 430-470°С со скоростью не менее 20°С/с.

Технический результат достигается также тем, что используют непрерывнолитую заготовку толщиной не более 250 мм.

Сущность изобретения состоит в следующем. В заявленной химической композиции стали за основу принято пониженное содержание углерода (0,04-0,07%). Ограничение по содержанию углерода сверху (0,07%) выбрано из условия максимального снижения уровня осевой ликвации в стали, наличие которой неблагоприятно сказывается на стойкости против водородного и сероводородного растрескивания. Ограничение по содержанию углерода снизу (0,04%) обусловлено необходимостью обеспечить уровень прочности не менее 510 МПа.

Содержание кремния 0,20-0,30% выбрано из условия обеспечения требуемого уровня прочности от 510 до 550 МПа. Содержание кремния свыше 0,30% способствует образованию перлита, неблагоприятной структуры с точки зрения стойкости стали против водородного и сероводородного растрескивания.

Марганец является склонным к ликвации элементом. Допустимое содержание марганца в стали, стойкой к водородному и сероводородному растрескиванию, (1,10%) определяется необходимостью снижения уровня осевой ликвации в непрерывнолитой заготовке. Пониженное содержание марганца (0,90%) вызвано необходимостью снижения количества вредных с точки зрения сопротивления стресс-коррозии и водородному растрескиванию неметаллических включений MnS. В то же время марганец упрочняет твердый раствор и способствует повышению устойчивости аустенита, что необходимо для получения целевой феррито-бейнитной микроструктуры и требуемого уровня прочностных свойств (предел прочности от 510 до 550 МПа).

Добавки хрома в количестве 0,20-0,30% вводятся для снижения уровня ликвации при затвердевании расплава за счет расширения области δ-феррита. Также добавка хрома необходима для компенсации пониженного содержания марганца и обеспечения прочностных свойств стали не менее 510 МПа.

Дополнительные добавки Ni, Сu не более 0,25% каждого, Мо не более 0,35% вводятся в сталь для повышения устойчивости аустенита и получения целевой феррито-бейнитной структуры. Кроме того, добавки меди улучшает стойкость к коррозии в слабокислых средах.

Содержание титана ограничивается 0,004-0,009% для предотвращения формирования при кристаллизации крупных частиц TiN и/или комплексных глобулярные частиц на их основе, содержащих Nb, Са, Mg, S, О. Такие частицы являются местами зарождения водородных трещин и концентраторами напряжения при стресс-коррозии.

Содержание ванадия ограничивается 0,06%, т.к. данная добавка не эффективна при ускоренном охлаждении листов. После прокатки ванадий остается в твердом растворе и не вносит значительного вклада в формирование свойств.

Содержание ниобия ограничивается до минимально допустимого уровня 0,035% для снижения ликвационной неоднородности, предотвращения образования крупных конгломератов комплексных частиц Ti, Nb (С, N), однако в количестве не менее 0,020% ниобий необходим для торможения роста зерна при прокатке.

Азот является вредной примесью, его минимальное содержание 0,007% определяется текущим уровнем развития технологии сталеплавильного производства.

Алюминий в количестве 0,02-0,04% необходим для раскисления стали.

Содержание серы не более 0,001% ограничивается минимальным количеством в стали неметаллических включений типа MnS, являющихся водородными «ловушками», способствующими зарождению микротрещин и низкой стойкости стали к стресс-коррозии и водородному растрескиванию.

Содержание фосфора не более 0,010% ограничивается с целью уменьшения сегрегационной неоднородности и повышения чистоты межзеренных границ.

Суммарное содержание Cr, Ni и Сu не должно превышать 0,70%. Содержание элементов несколько завышено по сравнению со стандартным значением 0,60% для того, чтобы полнее использовать их положительный эффект.

Углеродный эквивалент Сэ и параметр стойкости против растрескивания при сварке Рcm принято ограничить величиной 0,40% и 0,21% соответственно для получения стали хорошо сваривающейся.

При нагреве непрерывнолитой заготовки до температуры не менее 1190°С происходит полное растворение в стальной матрице микролегирующих добавок, далее, при прокатке они выделяются в виде дисперсных фаз. При нагреве свыше 1230°С наблюдается аномальный рост зерна аустенита.

Температура деформации на черновой стадии прокатки не менее 960°С принята исходя из необходимости максимального измельчения зерна аустенита за счет многократной рекристаллизации. Для обеспечения удовлетворительных результатов испытания падающим грузом с учетом высокой температуры конца прокатки необходимо обеспечить толщину промежуточного подстуживания не менее 5,5 толщин готового листа. При обжатии за проход на черновой стадии прокатки менее 10% вследствие неравномерности деформации по толщине листа формируется неоднородная зеренная структура и наблюдается плохая проработка центральных слоев раската.

Температурный интервал начала и окончания деформации на чистовой стадии прокатки выбирается исходя из необходимости подготовки аустенита к последующему превращению, путем создания деформированных зерен аустенита, содержащих полосы деформации и имеющих высокую плотность дислокаций. Температура начала деформации должна быть ниже температуры остановки рекристаллизации аустенита, а температура окончания - выше температуры γ→α превращения. Для листов толщиной до 16 мм включительно из стали с заявленным составом рациональным температурным интервалом начала чистовой прокатки является 900-930°С, конца - 880±10°С. Для листов толщиной более 16 мм из стали с заявленным составом рациональным температурным интервалом начала чистовой прокатки является 870-900°С, конца - 850±10°С.

Температурный интервал окончания ускоренного охлаждения 430-470°С и скорость охлаждения не менее 20°С/с выбирается исходя из условия получения целевой ферритобейнитной структуры. Более высокая температура конца ускоренного охлаждения, как и меньшая скорость охлаждения, приводит к формированию структуры полигонального феррита, что неблагоприятно с точки зрения стойкости против стресс-коррозии.

Толщина непрерывнолитой заготовки ограничена 250 мм из-за необходимости снижения осевой химической неоднородности. За счет более высокой скорости охлаждения, чем у непрерывнолитой заготовки толщиной 315 мм, в условии отсутствия мягкого обжатия степень развития ликвации снижается, что положительно сказывается на стойкости против водородного растрескивания и стресс-коррозии.

Реализация предложенного технического решения позволяет получить требуемое качество листового проката для сварных труб, стойких к коррозионному растрескиванию, что достигается за счет выбора рациональных температурно-деформационных режимов для определенного химического состава стали. При выходе варьируемых параметров за указанные границы имеют место случаи неполучения стабильно удовлетворительных результатов механических и коррозионных испытаний. В итоге полученные данные подтверждают правильность выбранных значений технологических параметров в рамках предложенного способа производства горячекатаных листов из низколегированной стали для изготовления сварных труб, стойких к коррозионному растрескиванию.

Применение способа поясняется примером его реализации при производстве листов категории прочности от К52 до К56 на толстолистовом стане 5000.

Выплавка стали осуществлялась в кислородном конвертере вместимостью 370 т с проведением процесса десульфурации магнием в заливочном ковше. На выпуске проводилось первичное легирование, предварительное раскисление и обработка металла твердошлаковыми смесями с продувкой металла аргоном в сталеразливочном ковше. Окончательное легирование, микролегирование, обработка металла кальцием и перегрев металла для проведения вакуумирования проводилось на агрегате комплексной доводки стали. Дегазация металла осуществлялась путем его вакуумирования. Разливка производилась на МНЛЗ с защитой металла аргоном от вторичного окисления в слябы сечением 250×1625 мм.

Химический состав стали приведен в таблице 1.

Сталь получена со следующим составом химических элементов, мас.%: С=0,05; Si=0,23; Mn=0,94; Cr=0,30; Ni=0,02; Cu=0,03; Мо=0,002; Ti=0,008; V=0,003; Nb=0,026; N=0,005; Al=0,027; S=0,001; P=0,008; железо и примеси - остальное. Углеродный эквивалент составил Сэ=0,27%, коэффициент трещиностойкости Рcm=0,12%.

Непрерывнолитые заготовки толщиной 250 мм нагревали до температуры 1190°С в течение 10,5 ч и прокатывали на черновой стадии до толщины подстуживания 115,5 мм, охлаждали на воздухе до температуры 870°С, прокатывали на чистовой стадии до конечной толщины 21,0 мм с окончанием процесса деформации при 840°С. Далее листы охлаждали до температуры 430°С со скоростью 20°С/с. Предварительную деформацию на черновой стадии прокатки начинали при температуре 960°С и проводили с регламентированными обжатиями 12,9-15,0-17,5-20,4%.

Испытания на статическое растяжение проводили на плоских пятикратных образцах по ГОСТ 1497, изготовленных из проб, отобранных в поперечном направлении относительно направления прокатки. Динамические испытания вертикально падающим грузом проводили на образцах с шевронным надрезом при температуре -20°С по API RP 5L3. Коррозионные испытания на водородную и сероводородную стойкость проводили в соответствии с требованиями NACE ТМ 0284 (раствор А) и NACE ТМ 0177 (метод А).

Варианты реализации предложенного способа и результаты испытаний приведены в таблицах 2 и 3 соответственно.

Результаты испытаний показали, что предлагаемый способ производства стали выбранного химического состава (варианты №1, 5, 8, 9, 12, 13) обеспечивает удовлетворительный уровень механических свойств, определяемых при статических испытаниях образцов на растяжение, повышенную сопротивляемость хрупкому разрушению при отрицательных температурах, а также повышенные показатели стойкости стали в водородных и сероводородных средах. При запредельных значениях предложенных режимов (режимы №№3, 4, 6, 7, 10, 11, 14 и 15) и способе-прототипе (вариант №16) не удается достигнуть требуемого уровня отношения предела текучести к пределу прочности, повышенного уровня хладостойкости и коррозионной стойкости стали.

Таким образом, применение описанного способа прокатки обеспечивает достижение требуемых результатов, а именно получение проката толщиной до 21,0 мм с гарантированным пределом прочности от 510 до 550 МПа для объектов ответственного назначения с повышенными показателями по коррозионной стойкости в водородных и сероводородных средах, а также сопротивляемости хрупкому разрушению при отрицательных температурах.

Технико-экономические преимущества изобретения состоят в том, что использование предложенного способа обеспечивает производство горячекатаных листов из низколегированной стали толщиной до 21,0 мм для электросварных труб с повышенной коррозионной и хладостойкостью, предназначенных для транспортировки природного газа с высоким содержанием кислых газов и возможностью безаварийной эксплуатации при отрицательных температурах.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 134.
10.12.2015
№216.013.96fc

Способ прокатки низколегированного штрипса для магистральных труб на толстолистовом реверсивном стане

Изобретение относится к области обработки металлов давлением, в частности к технологии листовой прокатки на реверсивном толстолистовом стане. Способ включает нагрев непрерывнолитой заготовки, ее черновую продольную прокатку до заданной толщины, черновую поперечную прокатку с разбивкой...
Тип: Изобретение
Номер охранного документа: 0002570272
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.98b4

Способ горячей прокатки полос из низколегированной стали

Изобретение относится к технологии производства горячекатаного проката из низколегированной стали, предназначенного для изготовления деталей методом штамповки и профилирования. Способ включает нагрев слябов и их прокатку на непрерывном широкополосном стане в черновой и чистовой группах клетей с...
Тип: Изобретение
Номер охранного документа: 0002570712
Дата охранного документа: 10.12.2015
10.02.2016
№216.014.c41b

Способ производства низколегированной трубной стали

Изобретение относится к области черной металлургии, а именно к производству качественных сталей с внепечной обработкой. В способе осуществляют выпуск металла в сталь-ковш при температуре металла не менее 1680°C в течение не менее 4 мин, во время выпуска присаживают кальцийсодержащие...
Тип: Изобретение
Номер охранного документа: 0002574529
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c484

Сталь низколегированная жаропрочная

Изобретение относится к области черной металлургии, а именно к низколегированным сталям повышенной жаропрочности и хладостойкости, применяемым при производстве корпусов и внутренних элементов аппаратуры нефтеперерабатывающих заводов и крекинговых труб, задвижек, деталей насосов, спецкрепежа...
Тип: Изобретение
Номер охранного документа: 0002574184
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c73f

Способ горячей прокатки на непрерывном широкополосном стане

Изобретение относится к прокатному производству и может быть использовано при производстве широких полос на непрерывных станах горячей прокатки. Повышение точности геометрических размеров по толщине полос обеспечивается за счет того, что прокатка на непрерывном широкополосном стане полос...
Тип: Изобретение
Номер охранного документа: 0002578334
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c7cb

Способ производства полос из низколегированной свариваемой стали

Изобретение относится к металлургии, а именно к низколегированным сталям, используемым для изготовления сварных нефте- и газопроводов, металлоконструкций, пригодных к эксплуатации в условиях Крайнего Севера, для строительства морских сооружений и конструкций, работающих в агрессивных средах....
Тип: Изобретение
Номер охранного документа: 0002578618
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c871

Способ горячей прокатки тонких полос на широкополосном стане

Изобретение относится к технологии прокатного производства, конкретно к технологии непрерывной прокатки тонких полос, и может быть использовано на многоклетевых широкополосных станах горячей прокатки. Сущность изобретения состоит в том, что заранее, на стадии настройки стана, задают в...
Тип: Изобретение
Номер охранного документа: 0002578328
Дата охранного документа: 27.03.2016
20.04.2016
№216.015.36d1

Способ правки толстолистового проката

Изобретение относится к области металлургии, в частности к производству листового проката на реверсивном толстолистовом стане, и может быть использовано для обеспечения плоскостности толстолистового проката низколегированных штрипсовых сталей. Правку осуществляют с максимальным изгибом на...
Тип: Изобретение
Номер охранного документа: 0002581697
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3a53

Способ выплавки стали в конвертере

Изобретение относится к области черной металлургии, в частности к производству стали в кислородных конвертерах. Способ включает загрузку в конвертер шихты, содержащей жидкий чугун и лом, продувку металла кислородом через фурму, изменение интенсивности подачи кислорода по ходу продувки,...
Тип: Изобретение
Номер охранного документа: 0002583216
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3bf4

Способ производства горячекатаных листов для строительных стальных конструкций (варианты)

Изобретение относится к металлургии, преимущественно к производству горячекатаных листов для строительства металлических конструкций со сварными и другими соединениями. Cпособ производства горячекатаных листов для строительных стальных конструкций включает получение заготовки из стали, мас. %:...
Тип: Изобретение
Номер охранного документа: 0002583536
Дата охранного документа: 10.05.2016
Показаны записи 31-40 из 97.
10.12.2015
№216.013.96fc

Способ прокатки низколегированного штрипса для магистральных труб на толстолистовом реверсивном стане

Изобретение относится к области обработки металлов давлением, в частности к технологии листовой прокатки на реверсивном толстолистовом стане. Способ включает нагрев непрерывнолитой заготовки, ее черновую продольную прокатку до заданной толщины, черновую поперечную прокатку с разбивкой...
Тип: Изобретение
Номер охранного документа: 0002570272
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.98b4

Способ горячей прокатки полос из низколегированной стали

Изобретение относится к технологии производства горячекатаного проката из низколегированной стали, предназначенного для изготовления деталей методом штамповки и профилирования. Способ включает нагрев слябов и их прокатку на непрерывном широкополосном стане в черновой и чистовой группах клетей с...
Тип: Изобретение
Номер охранного документа: 0002570712
Дата охранного документа: 10.12.2015
10.02.2016
№216.014.c41b

Способ производства низколегированной трубной стали

Изобретение относится к области черной металлургии, а именно к производству качественных сталей с внепечной обработкой. В способе осуществляют выпуск металла в сталь-ковш при температуре металла не менее 1680°C в течение не менее 4 мин, во время выпуска присаживают кальцийсодержащие...
Тип: Изобретение
Номер охранного документа: 0002574529
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c484

Сталь низколегированная жаропрочная

Изобретение относится к области черной металлургии, а именно к низколегированным сталям повышенной жаропрочности и хладостойкости, применяемым при производстве корпусов и внутренних элементов аппаратуры нефтеперерабатывающих заводов и крекинговых труб, задвижек, деталей насосов, спецкрепежа...
Тип: Изобретение
Номер охранного документа: 0002574184
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c73f

Способ горячей прокатки на непрерывном широкополосном стане

Изобретение относится к прокатному производству и может быть использовано при производстве широких полос на непрерывных станах горячей прокатки. Повышение точности геометрических размеров по толщине полос обеспечивается за счет того, что прокатка на непрерывном широкополосном стане полос...
Тип: Изобретение
Номер охранного документа: 0002578334
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c7cb

Способ производства полос из низколегированной свариваемой стали

Изобретение относится к металлургии, а именно к низколегированным сталям, используемым для изготовления сварных нефте- и газопроводов, металлоконструкций, пригодных к эксплуатации в условиях Крайнего Севера, для строительства морских сооружений и конструкций, работающих в агрессивных средах....
Тип: Изобретение
Номер охранного документа: 0002578618
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c871

Способ горячей прокатки тонких полос на широкополосном стане

Изобретение относится к технологии прокатного производства, конкретно к технологии непрерывной прокатки тонких полос, и может быть использовано на многоклетевых широкополосных станах горячей прокатки. Сущность изобретения состоит в том, что заранее, на стадии настройки стана, задают в...
Тип: Изобретение
Номер охранного документа: 0002578328
Дата охранного документа: 27.03.2016
20.04.2016
№216.015.36d1

Способ правки толстолистового проката

Изобретение относится к области металлургии, в частности к производству листового проката на реверсивном толстолистовом стане, и может быть использовано для обеспечения плоскостности толстолистового проката низколегированных штрипсовых сталей. Правку осуществляют с максимальным изгибом на...
Тип: Изобретение
Номер охранного документа: 0002581697
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3a53

Способ выплавки стали в конвертере

Изобретение относится к области черной металлургии, в частности к производству стали в кислородных конвертерах. Способ включает загрузку в конвертер шихты, содержащей жидкий чугун и лом, продувку металла кислородом через фурму, изменение интенсивности подачи кислорода по ходу продувки,...
Тип: Изобретение
Номер охранного документа: 0002583216
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3bf4

Способ производства горячекатаных листов для строительных стальных конструкций (варианты)

Изобретение относится к металлургии, преимущественно к производству горячекатаных листов для строительства металлических конструкций со сварными и другими соединениями. Cпособ производства горячекатаных листов для строительных стальных конструкций включает получение заготовки из стали, мас. %:...
Тип: Изобретение
Номер охранного документа: 0002583536
Дата охранного документа: 10.05.2016
+ добавить свой РИД