×
20.04.2016
216.015.363e

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА НОРМАЛЬНОЙ ЖЕСТКОСТИ УПРУГОПЛАСТИЧЕСКОГО КОНТАКТА ДЕТАЛЕЙ ДВОЯКОЙ КРИВИЗНЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике для определения контактной жесткости. Сущность: поверхности контактирующих деталей с определенными упругими константами материалов прижимают к друг другу с заданной силой F, нормальной к плоскости стыка, определяют остаточную h и упругую α части полного сближения в контакте, по их сумме определяют величину полного сближения α в контакте, с последующим определением коэффициента j нормальной жесткости упругопластического контакта деталей двоякой кривизны. Предварительно измеряют пластическую твердость НД и НД каждой детали в зоне контакта, по которым определяют приведенную пластическую твердость НД контактирующих деталей, затем определяют суммарную остаточную часть сближения h в центре контакта деталей, с учетом которой определяют суммарное упругое сближение α в центре контакта деталей, с последующим определением суммарного полного сближения α и коэффициента j нормальной жесткости упругопластического контакта деталей двоякой кривизны. Технический результат: создание нового универсального способа определения коэффициента нормальной жесткости первоначально точечного упругопластического контакта деталей, который справедлив при произвольном сочетании твердостей материалов контактирующих деталей. 3 табл.
Основные результаты: Способ определения коэффициента нормальной жесткости упругопластического контакта деталей двоякой кривизны, заключающийся в том, что поверхности контактирующих деталей с определенными упругими константами материалов прижимают к друг другу с заданной силой F, нормальной к плоскости стыка, определяют остаточную h и упругую α части полного сближения в контакте, по их сумме определяют величину полного сближения α в контакте, с последующим определением коэффициента j нормальной жесткости упругопластического контакта деталей двоякой кривизны, отличающийся тем, что предварительно измеряют пластическую твердость НД и НД каждой детали в зоне контакта, по которым определяют приведенную пластическую твердость НД контактирующих деталей по формулеНД=1/0,66(1/НД+1/НД),определяют суммарную остаточную часть сближения h в центре контакта деталей по формуле с учетом которой определяют суммарное упругое сближение α в центре контакта деталей по формуле с последующим определением суммарного полного сближения α=h+α, а коэффициент j нормальной жесткости упругопластического контакта деталей двоякой кривизны определяют по формуле где НД - приведенная пластическая твердость контактирующих деталей;НД - пластическая твердость первой детали;НД - пластическая твердость второй детали;h - суммарная остаточная часть сближения в центре контакта;R - приведенный радиус кривизны контактирующих деталей;F - контактная нагрузка, соответствующая появлению остаточной деформации в центре контакта;F - рабочая контактная нагрузка;а и b - коэффициенты, зависящие от соотношения пластических твердостей материала деталей НД/НД в зоне контакта;α - суммарная упругая часть сближения в центре контакта;π=3,14;k и k - константы упругости материала первой и второй детали; µ и Е - соответственно коэффициент Пуассона и модуль нормальной упругости (индексы 1 и 2 относятся к материалам первой и второй детали);α - суммарное полное сближение в центре контакта.

Изобретение относится к измерительной технике для определения контактной жесткости.

Известен традиционный способ определения коэффициента нормальной контактной жесткости экспериментальным путем, заключающийся в том, что к стыку деталей с первоначально точечным контактом прикладывают нормальную силу F и измеряют возникающее при этом сближение в контакте α. Коэффициент нормальной жесткости контакта j определяют по формуле

Недостатком этого способа является то, что полученные значения j справедливы только для тех условий (размеры индентора, механические свойства и упругие константы материалов детали и индентора), для которых проводилось измерение. Следовательно при изменении этих условий необходимо вновь опытным путем определять соответствующие значения j.

Наиболее близким по технической сущности является способ определения коэффициента нормальной жесткости упругопластического контакта детали и индентора двоякой кривизны (патент №2027984, МКл. G01N 3/00, заявл. 07.03.1991, опубл. 27.01.1995, бюл. №3), заключающийся в том, что поверхности детали и индентора с определенными геометрическими параметрами шероховатости и упругими константами материалов прижимают друг к другу с заданной силой F, нормальной к плоскости стыка, определяют остаточную и упругую части полного сближения и по их сумме - величину полного сближения α в контакте и коэффициент j нормальной контактной жесткости, при этом дополнительно определяют предел текучести σт, временное сопротивление σв и предельную равномерную деформацию εр материала детали при растяжении, с учетом которых определяют интенсивность εi,0 упругопластической деформации в центре упругопластического отпечатка по формуле

а остаточную часть сближения h в центре контакта определяют с учетом εi,0 по формуле

где µ1 и µ2 - соответственно коэффициент Пуассона для материала индентора и детали;

k1 и k2 - соответственно константа упругости для материала индентора и детали;

m - коэффициент, зависящий от механических характеристик детали;

Rпр - приведенный радиус кривизны детали и индентора.

Недостатком этого способа является то, что он полностью теряет свою достоверность в тех случаях, когда обе детали упругопластически деформируются в контакте, поскольку в указанном способе предусмотрено, что только одна из деталей может упругопластически деформироваться в контакте, а вторая деталь всегда деформируется только упруго (и поэтому называется - индентор), то есть индентор внедряется в поверхность детали.

Таким образом, известные способы имеют низкий технический уровень, поскольку не позволяют определять коэффициент нормальной жесткости, если обе детали упругопластически деформируются в зоне контакте. Необходимо отметить, что контактное взаимодействие деталей, твердости материалов которых отличаются менее чем в 2 раза (в таких условиях обе детали упругопластически деформируются в контакте), наиболее часто реализуется в современной технике.

В этой связи важнейшей задачей является создание нового универсального способа определения коэффициента нормальной жесткости первоначально точечного упругопластического контакта деталей, который был бы справедлив при произвольном сочетании твердостей материалов контактирующих деталей.

Техническим результатом заявленного способа является создание нового универсального способа определения коэффициента нормальной жесткости первоначально точечного упругопластического контакта деталей, который справедлив при произвольном сочетании твердостей материалов контактирующих деталей.

Указанный технический результат достигается тем, что в способе определения коэффициента нормальной жесткости упругопластического контакта деталей двоякой кривизны, заключающемся в том, что поверхности контактирующих деталей с определенными упругими константами материалов прижимают к друг другу с заданной силой F, нормальной к плоскости стыка, определяют остаточную h и упругую αy части полного сближения в контакте, по их сумме определяют величину полного сближения α в контакте, с последующим определением коэффициента нормальной жесткости упругопластического контакта деталей двоякой кривизны, при этом предварительно измеряют пластическую твердость НД1 и НД2 каждой детали в зоне контакта, по которым определяют приведенную пластическую твердость НДпр контактирующих деталей по формуле

определяют суммарную остаточную часть сближения hΣ в центре контакта деталей по формуле

с учетом которой определяют суммарное упругое сближение αу,Σ в центре контакта деталей по формуле

(6)

с последующим определением суммарного полного сближения αΣ=hΣу,Σ, a коэффициент j нормальной жесткости упругопластического контакта деталей двоякой кривизны определяют по формуле

где НДпр - приведенная пластическая твердость контактирующих деталей;

НД1 - пластическая твердость первой детали;

НД2 - пластическая твердость второй детали;

hΣ - суммарная остаточная часть сближения в центре контакта;

Rпр - приведенный радиус кривизны контактирующих деталей;

F0 - контактная нагрузка, соответствующая появлению остаточной деформации в центре контакта;

F - рабочая контактная нагрузка;

a и b - коэффициенты, зависящие от соотношения пластических твердостей материала деталей НД1/НД2 в зоне контакта;

αу,Σ - суммарная упругая часть сближения в центре контакта;

π=3,14;

k1 и k2 - константы упругости материала первой и второй детали;

;

µ и E - соответственно коэффициент Пуассона и модуль нормальной упругости (индексы 1 и 2 относятся к материалам первой и второй детали);

αΣ - суммарное полное сближение в центре контакта.

Существенным отличием предлагаемого способа является то, что предварительно измеряют пластическую твердость НД1 и НД2 каждой детали в зоне контакта. Это позволяет установить наличие или отсутствие упругопластической деформации в контакте на поверхности каждой из деталей. Необходимо подчеркнуть, что если значения пластической твердости НД1 и НД2 отличаются в 2 раза и более, то упругопластическая деформация в зоне контакта возникает на поверхности в зоне контакта той из деталей, твердость которой существенно меньше. Если же пластические твердости НД1 и НД2 соизмеримы, то есть отличаются менее чем в 2 раза, то упругопластическая деформация в зоне контакта одновременно возникает на поверхностях обеих деталей.

Существенным отличием является и то, что с учетом значений пластических твердостей НД1 и НД2 материалов деталей определяют предложенный авторами новый параметр - приведенную пластическую твердость НДпр контактирующих деталей в зоне контакта, что позволяет при определении коэффициента нормальной жесткости первоначально точечного упругопластического контакта деталей одновременно учесть упругопластические деформации обеих деталей в зоне контакта.

Совокупность отличительных признаков предлагаемого способа и новые взаимосвязи, установленные авторами между ними, позволили предложить новые зависимости для определения приведенной пластической твердости, суммарной остаточной части сближения hΣ в центре контакта. Это позволяет при определении коэффициента нормальной жесткости первоначально точечного упругопластического контакта деталей одновременно учитывать пластическую твердость материала обеих контактирующих деталей, а также суммарную остаточную часть сближения hΣ в центре контакта, которая в общем случае является суммой остаточных частей сближения на поверхности каждой из контактирующих деталей. Новой является также и зависимость для определения суммарного упругого сближения αу,Σ в центре контакта деталей. Таким образом, предложенные зависимости в новой форме устанавливают взаимосвязи между всеми указанными выше существенными факторами, определяющими основные параметры при определении коэффициента нормальной жесткости первоначально точечного упругопластического контакта деталей двоякой кривизны (приведенной пластической твердости контактирующих деталей, рабочей контактной нагрузки, приведенного радиуса кривизны контактирующих деталей, соотношения пластических твердостей материала деталей в зоне контакта, суммарной остаточной части сближения hΣ в центре контакта деталей и суммарного упругого сближения αу,Σ в центре контакта деталей). Это позволяет определять коэффициент нормальной жесткости упругопластического контакта деталей двоякой кривизны при произвольном сочетании значений пластических твердостей НД1 и НД2 в зоне контакта, что и делает предлагаемый способ универсальным.

Способ определения коэффициента нормальной жесткости упругопластического контакта деталей двоякой кривизны реализуется следующим образом.

Определяют упругие константы материала первой детали (E1, µ1) и второй детали (E2, µ2). Значения модулей нормальной упругости E1, E2 и коэффициент Пуассона µ1, µ2 можно определить экспериментально или по справочным данным (см., например, значения E в книге Крагельского И.В., Добычина М.Н.. Комбалова B.C. Основы расчетов на трение и износ. М.: Машиностроение, 1977. - 526 с., на стр. 467-470, а значения µ в книге Марковца М.П. Определение механических свойств металлов по твердости. М.: Машиностроение, 1979. - 191 с., на стр. 38).

Измеряют пластическую твердость НД1 и НД2 каждой детали в зоне контакта согласно ГОСТ 18835-73 "Металлы. Метод измерения пластической твердости".

По измеренным значениям НД1 и НД2 определяют приведенную пластическую твердость НДпр контактирующих деталей по формуле (4)

НДпр=1/0,66(1/НД1+1/НД2);

при этом, если НД1≥2НД2, то есть происходит внедрение первой детали во вторую, то принимают НД1=2НД2 и согласно формуле (4) приведенная твердость НДпр=НД2; если НД1≤0,5НД2, то есть происходит контактное сплющивание первой детали, то принимают НД1=0,5НД2 и согласно формуле (4) приведенная твердость НДпр=НД1; если пластическая твердость первой детали находится в диапазоне 0,5НД2>НД1<2НД2, то значение приведенной пластической твердости НДпр вычисляют по измеренным значениям НД1 и НД2 по формуле (4).

Определяют (согласно, например, книге М.С. Дрозда, М.М. Матлина, Ю.И. Сидякина. Инженерные расчеты упругопластической контактной деформации. - М.: Машиностроение, 1986. - 221 с. на стр. 41 приведенный радиус кривизны Rпр в зоне контакта двух деталей

где А и В соответственно меньшая и большая из следующих двух сумм (см. книгу М.С. Дрозда, М.М. Матлина, Ю.И. Сидякина «Инженерные расчеты упругопластической контактной деформации». - М: Машиностроение, 1986. - 221 с. на стр. 32)

знаки "+" и "-" относятся соответственно к случаям контакта первой детали, ограниченной выпуклым контуром, со второй деталью, сечение которой в данной плоскости кривизны ограничено выпуклым или вогнутым контуром;

R1,1, R2,1 - радиусы кривизны первой детали, a R1,2, R2,2 - радиусы кривизны второй детали в сечениях двумя главными плоскостями кривизны;

nр, nσ - коэффициенты, зависящие от соотношения главных кривизн А/В и приведены в указанной выше книге М.С. Дрозда, М.М. Матлина, Ю.И. Сидякина «Инженерные расчеты упругопластической контактной деформации». - М.: Машиностроение, 1986. - 221 с. на стр. 213-214.

Суммарную остаточную часть сближения hΣ в центре контакта деталей определяют с учетом НДпр при заданной рабочей контактной нагрузке F по формуле (5)

,

при этом значения F0 можно определить (см., например, книгу М.С. Дрозда, М.М. Матлина, Ю.И. Сидякина «Инженерные расчеты упругопластической контактной деформации». - М.: Машиностроение, 1986. - 221 с. на стр. 19) по формулам

Коэффициенты а и b, зависящие от соотношения пластических твердостей материала деталей НД1/НД2 в зоне контакта, определяют по предложенным авторами новым формулам (13)

Необходимо подчеркнуть, что формула (5), определяющая суммарную остаточную часть сближения hΣ в центре контакта деталей, является универсальной и справедлива для всех явлений (одновременная упругопластическая в зоне контакта первой и второй детали, упругопластическое внедрение в одну из деталей в зоне контакта, упругопластическое сплющивание одной из деталей в зоне контакта), которые могут иметь место в зоне контакте деталей:

1. Случай упругопластического внедрения, например, первой, гораздо более твердой (НД1≥2НД2) детали во вторую; при этом для крайнего значения НД1=2НД2 коэффициенты согласно формул (13) будут соответственно a=0,159, b=1, а формула (5) преобразуется к известному (см., например, книгу М.С. Дрозда, М.М. Матлина, Ю.И. Сидякина «Инженерные расчеты упругопластической контактной деформации». - М.: Машиностроение, 1986. - 221 с. на стр. 53, а также описание прототипа по патенту 2027984, МКл. G01N 3/00, заявл. 07.03.1991, опубл. 27.01.1995, бюл. №3) виду (при НДпр=НД2)

2. Случай упругопластического сплющивания первой гораздо менее твердой (НД1≤0,5НД2) детали второй деталью; при этом для крайнего значения НД1=0,5НД2 коэффициенты согласно формул (13) будут соответственно a=0,33, b=1,23, а формула (5) преобразуется к известному (см., например, книгу Матлина, М.М., С.Л. Лебского, А.И. Мозгуновой "Закономерности упругопластического контакта в задачах поверхностного пластического упрочнения" / М.: Машиностроение-1, 2007. - 219 с., на стр. 43) виду (при НДпр=НД1)

3. Случай упругопластического контакта деталей, материалы которых имеют близкие твердости (0,5НД2>НД1<2НД2), то есть отличаются менее чем в 2 раза. При этом коэффициенты a и b определяют по формулам (13) по измеренному соотношению пластических твердостей НД1/НД2 материалов первой и второй деталей в зоне контакта

Определяют суммарное упругое сближение αу,Σ из уравнения (6)

и суммарное полное сближение в контакте

а затем по формуле (7) определяют коэффициент нормальной жесткости упругопластического контакта деталей двоякой кривизны.

Пример. Проведена экспериментальная проверка предложенного способа.

Определение коэффициента нормальной жесткости упругопластического контакта деталей двоякой кривизны провели на деталях, изготовленных их сталей различного уровня пластической твердости НД. Упругие константы материалов деталей µ1=µ2=0,28, E1=E2=2·105 МПа.

В таблице 1 представлены геометрические параметры, пластическая твердость испытанных деталей и приведенная твердость контактирующих деталей, а также указаны явления, протекающие в зоне силового контакта деталей.

Результаты сравнительных испытаний приведены в таблицах 2 и 3. Как видно из таблицы 2, при использовании предлагаемого способа определения коэффициента нормальной жесткости упругопластического контакта деталей двоякой кривизны, который предусматривает предварительное измерение пластической твердости НД1 и НД2 каждой детали в зоне контакта, по которым определяют приведенную пластическую твердость НДпр контактирующих деталей, обеспечивается определение суммарной остаточной части сближения hΣ в центре контакта деталей с погрешностью, не превышающей 5% по сравнению с данными эксперимента при любом соотношении пластических твердостей контактирующих деталей, в то время как по способу-прототипу погрешность достигает 39%.

Из таблицы 3 видно, что аналогичные результаты получены и для коэффициента нормальной жесткости упругопластического контакта деталей двоякой кривизны: у предлагаемого способа погрешность не превышает 5%, а у способа-прототипа может достигать 45%. При этом с ростом рабочей контактной нагрузки (то есть с увеличением упругопластической деформации в зоне контакта) погрешность определения коэффициента нормальной жесткости упругопластического контакта деталей двоякой кривизны по способу-прототипу возрастает.

Таким образом, результаты экспериментальной проверки свидетельствуют о пригодности предлагаемого способа для практического использования.

Использование предлагаемого способа по сравнению с известными обеспечивает следующие преимущества.

Способ обладает достаточно высокой точностью: погрешность определения коэффициента нормальной жесткости упругопластического контакта деталей двоякой кривизны не превышает 5%. При этом способ является универсальным и сохраняет свою достоверность при любом сочетании пластических твердостей контактирующих деталей двоякой кривизны, то есть пригоден для использования при всех возможных явлениях, протекающих в зоне упругопластического контакта (упругопластическое внедрение или сплющивание, а также одновременная упругопластическая деформация деталей в контакте).

В связи с этим предлагаемый способ позволяет повысить точность определения коэффициента нормальной жесткости упругопластического контакта как единичного контакта деталей двоякой кривизны (например, в контакте тяжело нагруженных деталей фрикционных передач, шариковых подшипников качения, опорных катков и т.п., то есть в тех случаях, когда в зоне контакта может возникнуть упругопластическая деформация), так и сопряжения шероховатых поверхностей деталей (в тех случаях, когда микровыступы описываются поверхностями двоякой кривизны), и тем самым повысить точность, надежность, а значит и качество машины (или ее узла) в целом.

Кроме того, предлагаемый способ может быть использован для определения режимов поверхностного пластического деформирования, например, при упрочнении дробеобработкой поверхностей деталей, пластическая твердость материала которых соизмерима с пластической твердостью инструмента (дроби): при этом дробинки не только образуют остаточные отпечатки на упрочняемой поверхности, но и сами частично сплющиваются; такие явления возникают при дробеобработке цементованных поверхностей зубьев зубчатых передач.

Таким образом, способ, воплощающий заявленное изобретение, предусматривает, что поверхности контактирующих деталей с определенными упругими константами материалов прижимают к друг другу с заданной силой F, нормальной к плоскости стыка, определяют остаточную h и упругую αy части полного сближения в контакте, по их сумме определяют величину полного сближения α в контакте, с последующим определением коэффициента нормальной жесткости упругопластического контакта деталей двоякой кривизны, при этом предварительно измеряют пластическую твердость НД1 и НД2 каждой детали в зоне контакта, по которым определяют приведенную пластическую твердость НДпр контактирующих деталей, определяют суммарную остаточную часть сближения hΣ в центре контакта деталей, с учетом которой определяют суммарное упругое сближение αу,Σ в центре контакта деталей, с последующим определением суммарного полного сближения αΣ и коэффициента нормальной жесткости упругопластического контакта деталей двоякой кривизны.

Способ предназначен для использования в промышленности для определения коэффициента нормальной жесткости упругопластического контакта деталей двоякой кривизны.

Способ определения коэффициента нормальной жесткости упругопластического контакта деталей двоякой кривизны, заключающийся в том, что поверхности контактирующих деталей с определенными упругими константами материалов прижимают к друг другу с заданной силой F, нормальной к плоскости стыка, определяют остаточную h и упругую α части полного сближения в контакте, по их сумме определяют величину полного сближения α в контакте, с последующим определением коэффициента j нормальной жесткости упругопластического контакта деталей двоякой кривизны, отличающийся тем, что предварительно измеряют пластическую твердость НД и НД каждой детали в зоне контакта, по которым определяют приведенную пластическую твердость НД контактирующих деталей по формулеНД=1/0,66(1/НД+1/НД),определяют суммарную остаточную часть сближения h в центре контакта деталей по формуле с учетом которой определяют суммарное упругое сближение α в центре контакта деталей по формуле с последующим определением суммарного полного сближения α=h+α, а коэффициент j нормальной жесткости упругопластического контакта деталей двоякой кривизны определяют по формуле где НД - приведенная пластическая твердость контактирующих деталей;НД - пластическая твердость первой детали;НД - пластическая твердость второй детали;h - суммарная остаточная часть сближения в центре контакта;R - приведенный радиус кривизны контактирующих деталей;F - контактная нагрузка, соответствующая появлению остаточной деформации в центре контакта;F - рабочая контактная нагрузка;а и b - коэффициенты, зависящие от соотношения пластических твердостей материала деталей НД/НД в зоне контакта;α - суммарная упругая часть сближения в центре контакта;π=3,14;k и k - константы упругости материала первой и второй детали; µ и Е - соответственно коэффициент Пуассона и модуль нормальной упругости (индексы 1 и 2 относятся к материалам первой и второй детали);α - суммарное полное сближение в центре контакта.
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА НОРМАЛЬНОЙ ЖЕСТКОСТИ УПРУГОПЛАСТИЧЕСКОГО КОНТАКТА ДЕТАЛЕЙ ДВОЯКОЙ КРИВИЗНЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА НОРМАЛЬНОЙ ЖЕСТКОСТИ УПРУГОПЛАСТИЧЕСКОГО КОНТАКТА ДЕТАЛЕЙ ДВОЯКОЙ КРИВИЗНЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА НОРМАЛЬНОЙ ЖЕСТКОСТИ УПРУГОПЛАСТИЧЕСКОГО КОНТАКТА ДЕТАЛЕЙ ДВОЯКОЙ КРИВИЗНЫ
Источник поступления информации: Роспатент

Показаны записи 131-140 из 213.
10.09.2015
№216.013.7ac3

Способ приготовления резиновой смеси на основе этиленпропилендиенового каучука

Изобретение относится к способу приготовления резиновой смеси на основе этиленпропилендиенового каучука, изделия из которой могут использоваться в шинной и резинотехнической промышленности. Способ получения резиновой смеси на основе этиленпропилендиенового каучука включает введение в каучук...
Тип: Изобретение
Номер охранного документа: 0002563016
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7ac4

Способ приготовления резиновой смеси на основе хлоропренового каучука

Изобретение относится к резиновой промышленности, в частности к разработке способа приготовления резиновой смеси на основе хлоропренового каучука, изделия из которой могут быть использованы в качестве уплотнителей в строительстве, покрытий в шинной и резинотехнической промышленности. Способ...
Тип: Изобретение
Номер охранного документа: 0002563017
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7ac5

Способ приготовления резиновой смеси на основе хлоропренового каучука

Изобретение относится к резиновой промышленности, в частности к разработке способа приготовления резиновой смеси на основе хлоропренового каучука, изделия из которой характеризуются улучшенными деформационно-прочностными свойствами и могут быть использованы в качестве уплотнителей в...
Тип: Изобретение
Номер охранного документа: 0002563018
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7acf

Теплозащитный материал

Изобретение относится к теплозащитным материалам на основе этиленпропилендиеновых каучуков, которые могут использоваться в авиа- и ракетостроении. Теплозащитный материал на основе этиленпропилендиенового каучука содержит вулканизующие агенты, ускоритель вулканизации - производное бензотиазола,...
Тип: Изобретение
Номер охранного документа: 0002563036
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7c3c

Способ механической обработки глубокого отверстия в трубной заготовке

Изобретение относится к машиностроению и может быть использовано при механической обработке глубоких отверстий в трубных заготовках. Для осуществления способа используют борштангу с режущим инструментом, расположенную на эксцентричных подшипниках в пиноли, выполненной с режущими и дорнующими...
Тип: Изобретение
Номер охранного документа: 0002563401
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7c42

Способ получения композиционных изделий с внутренними полостями сваркой взрывом

Изобретение относится к технологии получения изделий с внутренними полостями с помощью энергии взрыва и может быть использовано при изготовлении, например, деталей термического и химического оборудования и т.п. Составляют трехслойный пакет с размещением между пластинами из титана медной...
Тип: Изобретение
Номер охранного документа: 0002563407
Дата охранного документа: 20.09.2015
10.10.2015
№216.013.81ce

Установка для испытания материалов на абразивное изнашивание

Изобретение относится к испытательной технике, в частности к устройствам для испытания металлов и сплавов, а также композиционных материалов и покрытий на стойкость к абразивному изнашиванию при нормальной и повышенных температурах. Установка содержит основание, на котором установлены привод...
Тип: Изобретение
Номер охранного документа: 0002564827
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.82b0

Способ получения амидов карбоновых кислот

Изобретение относится к способу получения производных карбоновых кислот, которые находят применение в качестве полупродуктов в синтезе аминов, нитрилов и гетероциклических соединений, в качестве растворителей. Способ получения амидов карбоновых кислот заключается во взаимодействии карбоновой...
Тип: Изобретение
Номер охранного документа: 0002565059
Дата охранного документа: 20.10.2015
20.12.2015
№216.013.9974

Способ получения 4-(1-адамантил)анилина

Изобретение относится к способу получения 4-(1-адамантил)анилина, который является исходным соединением для получения производных адамантана, обладающих различными видами биологической активности, а также являющиеся мономерами при синтезе полимеров с улучшенными эксплуатационными...
Тип: Изобретение
Номер охранного документа: 0002570909
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9ac7

Матричный сплав на основе меди для получения композиционных материалов пропиткой углеграфитового каркаса

Изобретение относится к области получения литых композиционных материалов и может быть использовано для получения пропиткой композиционных материалов с углеграфитовым каркасом, которые работают в условиях трения в качестве электротехнических изделий, таких как токосъемники, вставки пантографов,...
Тип: Изобретение
Номер охранного документа: 0002571248
Дата охранного документа: 20.12.2015
Показаны записи 131-140 из 289.
10.11.2014
№216.013.0366

Способ получения 1-(1-адамантил)-3,4-динитро-5(n-нитропиразолил)-1h-пиразолов

Изобретение относится к химии производных адамантана, а именно к новому способу получения 1-(1-адамантил)-3,4-динитро-5-(N-нитропиразолил)-1H-пиразолов нуклеофильным замещением с нитропиразолами, которые могут являться исходными соединениями для синтеза терапевтически активных веществ....
Тип: Изобретение
Номер охранного документа: 0002532268
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04c1

Состав для пропитки абразивного инструмента

Изобретение относится к области абразивной обработки и может быть использовано при изготовлении и эксплуатации абразивных инструментов. Состав для пропитки абразивного инструмента содержит в качестве органического вещества газообразователь - гексахлорпараксилол (1,4-бис-трихлорметилбензол), а в...
Тип: Изобретение
Номер охранного документа: 0002532615
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.07dd

Трансмисионное масло

Настоящее изобретение относится к трансмиссионному маслу, содержащему диалкилдитиофосфат цинка, полиметакрилат, кремнийорганическую присадку, серусодержащую присадку - продукт взаимодействия фракции α-олефинов с серой при нагревании в присутствии катализатора, нефтяное масло, при этом...
Тип: Изобретение
Номер охранного документа: 0002533414
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07de

Трансмиссионное масло

Настоящее изобретение относится к трансмиссионному маслу, содержащему, мас.%: серусодержащая присадка - 3,8; диалкилдитиофосфат цинка - 0,5; полиметакрилат - 1,5; кремнийорганическая присадка - 0,003; нефтяное масло до 100. Серусодержащая присадка представляет собой продукт, полученный в...
Тип: Изобретение
Номер охранного документа: 0002533415
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07df

Трансмиссионное масло

Настоящее изобретение относится к трансмиссионному маслу, содержащему, % масс.: серусодержащая присадка - 3,8; диалкилдитиофосфат цинка - 0,5; полиметакрилат - 1,5; кремнийорганическая присадка - 0,003; нефтяное масло - до 100. Серусодержащая присадка представляет собой продукт взаимодействия...
Тип: Изобретение
Номер охранного документа: 0002533416
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07e0

Трансмиссионное масло

Настоящее изобретение относится к трансмиссионному маслу, содержащему, мас.%: серусодержащая присадка - 3,8; диалкилдитиофосфат цинка - 0,5; полиметакрилат - 1,5; кремнийорганическая присадка - 0,003; нефтяное масло до 100. Серусодержащая присадка представляет собой продукт, полученный в...
Тип: Изобретение
Номер охранного документа: 0002533417
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07e3

Способ совместного получения 1,2-эпоксидодекана и 1,2-додекандиола

Изобретение относится к способу эпоксидирования малоактивных длинноцепочных олефинов, при котором получаются эпоксиды и диолы. Додекандиол обеспечивает эластичность полиэфирных смол (покрытий, высококачественных полиуретановых покрытий), его используют в качестве полупродукта в синтезе...
Тип: Изобретение
Номер охранного документа: 0002533420
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07e5

Трансмиссионное масло

Настоящее изобретение относится к трансмиссионному маслу, содержащему, % масс.: серусодержащая присадка - 3,8; диалкилдитиофосфат цинка - 0,5; полиметакрилат - 1,5; кремнийорганическая присадка - 0,003; нефтяное масло до 100, при этом серусодержащая присадка представляет собой продукт...
Тип: Изобретение
Номер охранного документа: 0002533422
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.083b

Способ получения композиционного материала медь-титан

Изобретение может быть использовано при изготовлении сваркой взрывом деталей термического, химического оборудования, теплорегуляторов. Составляют трехслойный пакет с симметричным расположением титановой пластины относительно медных с заданным соотношением толщин слоев. Сваривают пакет взрывом и...
Тип: Изобретение
Номер охранного документа: 0002533508
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0857

Тензорезисторный датчик силы

Изобретение относится к весовой технике, в частности к тензорезисторным датчикам силы, предназначенным для точного измерения сил, в том числе в агрессивных средах. Тензорезисторный датчик силы содержит жесткий центр, силовводяшую оболочку, кольцевой силопреобразователь, ограниченный изнутри...
Тип: Изобретение
Номер охранного документа: 0002533536
Дата охранного документа: 20.11.2014
+ добавить свой РИД