×
20.04.2016
216.015.3340

ОПТИКО-ЭЛЕКТРОННОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ГАЗОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к аналитическому приборостроению и может быть использовано для систем автоматического измерения концентрации газов. Устройство для измерения концентрации газов содержит химический поглотительный патрон, оптическую систему, состоящую из конденсорной линзы, плоскопараллельной пластины (зеркала), подвижной газовоздушной камеры, имеющей три сквозные полости, ограниченные плоскопараллельными стеклянными пластинками, двух призм полного внутреннего отражения, зеркала, зрительной трубы с объективом, окуляра и щелевой диафрагмы с подвижной отчетной шкалой. Также устройство включает электрический насос засасывания измеряемого газа, блок управления насосом, соленоид перемещения газовоздушной камеры в положение контроля, блок управления соленоидом, светоизлучающий диод и блок управления диодом, два электромеханических клапана каналов измерения метана и углекислого газа и два блока управления электроклапанами, ПЗС-матрицу, АЦП, DSP-процессор, микроконтроллер, жидкокристаллический индикатор и интерфейс связи с внешними устройствами. Техническим результатом является повышение безопасности измерений, возможность осуществления непрерывного автоматизированного контроля и дистанционного снятия результатов измерения, повышение точности, оперативности и достоверности измерений. 3 ил.
Основные результаты: Оптико-электронное устройство для измерения концентрации газов, содержащее химический поглотительный патрон, оптическую систему, состоящую из конденсорной линзы, плоскопараллельной пластины (зеркала), подвижной газовоздушной камеры, имеющей три сквозные полости, ограниченные плоскопараллельными стеклянными пластинками, двух призм полного внутреннего отражения, зеркала, зрительной трубы с объективом, окуляра и щелевой диафрагмы с подвижной отчетной шкалой, отличающееся тем, что дополнительно содержит электрический насос засасывания измеряемого газа, блок управления электрическим насосом, соленоид перемещения газовоздушной камеры в положение контроля, блок управления соленоидом, светоизлучающий диод и блок управления светоизлучающим диодом, два электромеханических клапана, соответственно, каналов измерения метана и углекислого газа и два блока управления электроклапанами, ПЗС-матрицу, аналого-цифровой преобразователь, DSP-процессор, микроконтроллер, цифровой жидкокристаллический индикатор и интерфейс связи с внешними устройствами.
Реферат Свернуть Развернуть

Изобретение относится к аналитическому приборостроению, конкретно к оптико-электронным измерениям, и может быть использовано для систем автоматического измерения концентрации газов, например метана, углекислого газа и др. при экологических исследованиях, газовой защиты в горнодобывающей, нефтегазовой, химической и других отраслях промышленности.

Известен прибор для измерения концентрации горючих и токсичных газов. В конструкцию предлагаемого газоанализатора входят источник инфракрасного излучения со сферическим зеркальным отражателем, рабочая и опорные камеры, обтюратор с приводом, оптический фильтр, приемник инфракрасного (ИК) излучения с фокусирующим устройством и блок управления с мини-ЭВМ (патент РФ №2292039 Инфракрасный абсорбционный газоанализатор. Бондарчук Е.Н., Сорокин В.А.: заявл. 18.02.2005, опубл. Бюл. №2, 20.01.2007 - G01N 21/61).

Недостатком известного газоанализатора является сложность конструкции, включающей сферический зеркальный отражатель, обтюратор с приводом, оптический фильтр и фокусирующее устройство на приемнике излучения. Данное конструктивное выполнение малопригодно для измерения концентрации в местах с агрессивной средой и механическими воздействиями.

Известен шахтный интерферометр для определения содержания кислорода, углекислого газа и метана в воздухе, состоящий из газовоздушной камеры, патрона с химическим поглотителем и системы линз, в котором для повышения чувствительности дополнительно введены две газовоздушные камеры, одна из которых выполнена подвижной и может вводиться в поток интерферирующих лучей и выводиться из него (А.с. № SU 147021 Цейслер П.П., Жариков И.И. Шахтный интерферометр: заявл. 1.04.1961, опубл. БИ №9, 1962 г.).

Недостатком данного устройства является невозможность проверки и установки нулевого положения интерференционной картины непосредственно на объекте измерения, отсутствие автоматизации контроля и необходимость присутствия людей при измерении содержания газов.

Известны различные варианты интерферометров, позволяющие определять концентрации атмосферных примесей путем измерения показателя преломления воздуха, например, шахтные интерферометры ШИ-3, ШИ-5, ШИ-6, ШИ-8, ШИ-10, ШИ-12, построенные по оптической схеме интерферометра Жамена, но отличающиеся друг от друга длиной камер, и, соответственно, точностью и пределами измеряемых концентраций газов (Коломийцов Ю.В. Интерферометры. Основы инженерной теории, применение. Л.: Машиностроение, Ленингр. отд-ние. 1976, 296 с. - C. 61-65, с. 251-253).

Недостатком данных устройств являются отсутствие автоматизации контроля и необходимость присутствия людей при измерении содержания газов.

Известен шахтный интерферометр ШИ-7. Интерферометр содержит металлический корпус прямоугольной формы, с наружной стороны на нем размещены: окуляр, штуцер для присоединения резиновой груши, распределительный кран со штуцером, патрон с лампой накаливания, кнопка для включения источника света и поводок для перемещения интерференционной картины. Внутри корпус прибора разделен перегородками на три отделения: в первом размещены все оптические детали, во втором находится поглотительный патрон, который крепится пружиной, и здесь же укладывается лабиринт, представляющий собой катушку с намотанной на ней трубкой из полихлорвинила. Между патроном и лабиринтом находится штуцер, закрытый резиновым колпачком. На этот штуцер надевается трубка резиновой груши при заполнении воздушной линии чистым атмосферным воздухом. Отделение с поглотительным патроном закрывается крышкой. В третьем отделении корпуса прибора помещается сухой элемент для питания лампочки. Один контакт сухого элемента замыкается на корпус прибора, а другой через изолированный контакт соединен проводами с кнопкой включения. Это отделение прибора закрывается выдвижной крышкой (Цейслер П.П., Жариков И.И. Руководство по ремонту шахтных интерферометров, М.: Недра, 1977, с. 49-50).

Недостатком данного устройства является периодичность контроля и необходимость присутствия людей при измерении содержания газов в шахтной атмосфере.

Известен шахтный интерферометр ШИ-11, принятый за прототип. Интерферометр содержит лампу накаливания, пучок света от которой, пройдя конденсорную линзу, параллельным пучком попадает на плоскопараллельную пластину и разлагается на два луча. Первый луч, отраженный верхней гранью пластины, проходит через полость газовоздушной камеры, заполненной рудничным воздухом, другой - через полость, заполненную чистым атмосферным воздухом. Оба отражаются призмой на плоскопараллельную пластину, где сходятся в световой пучок, который зеркалом отклоняется в объектив. Верхняя линза объектива подвижна, что дает возможность перемещать интерференционную картину вдоль отсчетной шкалы и устанавливать ее в нулевое положение. Пучок света, выйдя из объектива и пройдя щелевую диафрагму с отсчетной шкалой, попадает в окуляр. В результате прохождения двух интерферирующих лучей через разные газовоздушные среды происходит смещение интерференционной картины, величина которой пропорциональна концентрации газа (Иоффе Б.В. Рефрактометрические методы химии. 3-е изд., перераб., Л.: Химия, 1983. - 352 с. - С. 202-205).

К недостаткам описанного устройства следует отнести отсутствие возможности автоматизации измерения концентрации газа и дистанционной передачи результата измерения, а так же необходимость присутствия людей при измерении содержания газов в шахтной атмосфере. К тому же процесс измерения требует ручных операций и определенных навыков.

Задачей предлагаемого изобретения является повышение безопасности измерений, возможность осуществления непрерывного автоматизированного контроля, расширение области применения данного вида устройств за счет градуировки шкалы для измерения содержания других газов, повышение точности, оперативности и достоверности измерений, возможность дистанционного снятия результатов измерения.

Поставленная задача достигается тем, что оптико-электронное устройство для измерения концентрации газов, содержащее химический поглотительный патрон, оптическую систему, состоящую из конденсорной линзы, плоскопараллельной пластины (зеркала), подвижной газовоздушной камеры, имеющей три сквозные полости, ограниченные плоскопараллельными стеклянными пластинками, двух призм полного внутреннего отражения, зеркала, зрительной трубы с объективом, окуляра и щелевой диафрагмы с подвижной отчетной шкалой, также содержит электрический насос засасывания измеряемого газа, блок управления электрическим насосом, соленоид перемещения газовоздушной камеры в положение контроля, блок управления соленоидом, светоизлучающий диод, блок управления светоизлучающим диодом, два электромеханических клапана, соответственно, каналов измерения метана и углекислого газа и два блока управления электроклапанами, ПЗС-матрицу, аналого-цифровой преобразователь, DSP-процессор, микроконтроллер, цифровой жидкокристаллический индикатор и интерфейс связи с внешними устройствами.

Устройство для измерения концентрации газов поясняется чертежами (фиг. 1 - фиг. 3).

На фиг. 1 изображена оптическая схема: а) ход лучей при определении концентрации газа, б) ход лучей при установке и проверке нулевого положения интерференционной картины (положение контроля). На фиг. 2 приведена функциональная схема устройства. На фиг. 3 изображен кадр изображения интерференционной картины, получаемый ПЗС для дальнейшей цифровой обработки.

На чертежах (фиг. 1, 2) представлены: светоизлучающий диод СИД; конденсорная линза К; плоскопараллельная пластина (зеркало) З; подвижная газовоздушная камера А, имеющая три сквозные полости - 1, 2, 3, ограниченные плоскопараллельными стеклянными пластинами 4; призма полного внутреннего отражения П; призма полного внутреннего отражения П1; зеркало З1; зрительная труба с объективом ОБ, окуляром ОК, щелевой диафрагмой F и отсчетной шкалой Ш; поглотительный патрон 5; штуцер 6; лабиринт 7; соединительные резиновые трубки 8; светоизлучающий диод 9; блок управления светоизлучающим диодом 10; электромеханический клапан канала измерения СН4 (метана) 11; блок управления электромеханическим клапаном канала измерения СН4 (метана) 12; электромеханический клапан канала измерения CO2 (углекислого газа) 13; блок управления электромеханическим клапаном канала измерения CO2 (углекислого газа) 14; ПЗС-матрица 15; аналого-цифровой преобразователь 16; DSP-процессор 17; электрический насос 18 закачки измеряемого газа в полость 2 газовоздушной камеры А; блок управления электрическим насосом 19; соленоид перемещения 20 газовоздушной камеры А в положение контроля; блок управления соленоидом перемещения 21 газовоздушной камеры А; микроконтроллер 22; цифровой индикатор 23; интерфейс связи с внешними устройствами 24.

Действие оптико-электронного устройства основано на измерении смещения интерференционной картины, происходящего вследствие изменения состава исследуемой газовой среды, которая находится на пути одного из лучей, способных интерферировать. Величина смещения пропорциональна разности между показателями преломления света исследуемой газовой смеси и атмосферного воздуха.

Рассмотрим работу оптической части оптико-электронного устройства для измерения концентрации газов.

На фиг. 1, а показан ход лучей при определении содержания метана или углекислого газа. В этом случае свет от светоизлучающего диода СИД проходит через конденсорную линзу К и параллельным пучком падает на зеркало З, где пучок света разлагается на два интерферирующих луча. Первый луч света отражается верхней гранью зеркала З, проходит по полостям 1 и 3 газовоздушной камеры, которые заполнены чистым атмосферным воздухом, отражается призмами Π, Π1 и после двукратного прохождения по полостям 1 и 3 выходит из камеры.

Второй луч света, отразившись от нижней посеребренной грани зеркала З и преломившись на его верхней грани, проходит через полость 2 газовоздушной камеры, заполненной рудничным воздухом, после отражения призмами Π, П1 и четырехкратного прохождения полости 2 выходит из нее.

Оба луча света, выйдя из камеры, попадают на зеркало З и отраженные его верхней и нижней гранями сходятся в один световой пучок, который зеркалом З1 отклоняется под прямым углом и направляется в объектив ОБ.

Выйдя из объектива ОБ, пучок света проходит через щелевую диафрагму F с отсчетной шкалой Ш в окуляр ОК, через который наблюдается интерференционная картина. При этом интерферирующие лучи проходят через разные газовоздушные среды, в результате чего происходит смещение интерференционной картины относительно нулевой отметки шкалы. По величине смещения интерференционной картины, которая пропорциональна концентрации газа, производится определение процентного содержания метана или углекислого газа. Величину смещения определяют, используя цифровую обработку изображений.

На фиг. 1, б показан ход лучей при установке и проверке нулевого положения интерференционной картины (положение контроля). В этом случае свет от свтоизлучающего диода СИД проходит через конденсорную линзу К и параллельным пучком падает на зеркало З, где пучок света разделяется на два интерферирующих луча.

Оба луча света, отразившись от верхней и нижней граней зеркала, дважды проходят через полости 1 и 2 газовоздушной камеры в результате отражения катетными гранями призм Π и П1.

Затем оба луча света попадают на зеркало З, отражаются его нижней и верхней гранями и сходятся в один световой пучок, который зеркалом З1 отклоняется под прямым углом и направляется в объектив ОБ. Верхняя линза объектива выполнена подвижной, что дает возможность перемешать интерференционную картину вдоль отсчетной шкалы и устанавливать ее в нулевое положение.

Выйдя из объектива ОБ, пучок света проходят через щелевую диафрагму F с отсчетной шкалой Ш и попадает в окуляр ОК. В этом случае на пути интерферирующих лучей находятся полости 1 и 2 газовоздушной камеры. Так как оптическая длина пути обоих интерферирующих лучей света одинакова, независимо от того, будет ли в газовой полости 2 газовоздушной камеры воздух или газ, интерференционная картина смещаться не будет, т.е. останется в исходном нулевом положении. Данное изображение используется в качестве эталонного для дальнейшей обработки цифровых изображений.

Поглотительный патрон 5 (фиг. 2) разделен на две части. Одна часть патрона заполняется химическим поглотителем известковым (ХПИ) для поглощения углекислого газа из газовой смеси, другая часть - гранулированным силикагелем марок КСК, КСМ для поглощения паров воды. Обе части поглотительного патрона имеют фильтры для улавливания пыли. Лабиринт 7 представляет собой катушку с намотанной на ней трубкой из полихлорвинила и предназначен для поддерживания воздушной линии прибора давления, равного атмосферному давлению, и сохранения чистого атмосферного воздуха. Штуцер 6 необходим для заполнении воздушной линии чистым атмосферным воздухом в начале эксплуатации устройства. Все газовоздушные соединения обеспечивают соединительные резиновые трубки 8. Направление движения атмосферного воздуха и измеряемого газа при засасывании их в устройство показано на фиг. 2 стрелками.

Рассмотрим работу устройства. Светоизлучающим диодом 9, формирующим световой поток в оптической схеме, управляет микроконтроллер 22 через блок управления светоизлучающим диодом 10. При определении метана измеряемый газ с помощью электрического насоса 18, включаемого микроконтроллером 22 через блок управления электрическим насосом 19, всасывается через открываемый микроконтроллером 22 электромагнитный клапан 11 при помощи блока управления электромагнитным клапаном 12 и попадает в отделение поглотительного патрона 5, заполненного химическим поглотителем известковым (ХПИ). Затем измеряемый газ, очищенный от углекислого газа, по соединительной трубке попадает в отделение поглотительного патрона, заполненное силикагелем. Далее измеряемый газ, очищенный от углекислого газа, паров воды и пыли, попадает в полость 2 газовоздушной камеры, откуда с помощью электрического насоса 18 выводится в атмосферу.

Если набранная в устройство измеряемая проба содержит метан, то интерференционная картина сместится вправо вдоль шкалы. При наблюдении в окуляр по смещенному положению полос интерференционной картины производится отсчет делений шкалы. Для автоматизации процесса наблюдения устройство содержит ПЗС-матрицу 15, аналого-цифровой преобразователь (АЦП) 16, DSP-процессор 17. ПЗС-матрица 15 фиксирует полученное изображение на окуляре (фиг. 3), затем происходит его оцифровка при помощи АЦП 16. DSP-процессор 17 выделяет из полученного изображения интерференционной картины одну строку и сохраняет ее в виде массива (матрицы) по каждому пикселю трех RGB цветовых составляющих. Затем происходит сравнение полученного массива той же строки изображения эталонного массива, которое получается смещением подвижной газовоздушной камеры (фиг. 1, б) при помощи соленоида перемещения 20 газовоздушной камеры в положение контроля (фиг. 2). Соленоид управляется микроконтроллером 22 через блок управления соленоидом 21. Момент совпадения интенсивности по всем пикселям для всех цветовых составляющих фиксируется DSP-процессором 17, и полученное среднее значение разности (смещения) характеризует концентрацию измеряемого газа. Микроконтроллер 22 вычисляет полученную концентрацию в процентах и далее результат выводится на цифровой индикатор 23, а также может быть передан через интерфейс соединения с внешними устройствами 24.

При определении процентного содержания углекислого газа измеряемый газ с помощью электрического насоса 18, включаемого микроконтроллером 22, через блок управления электрическим насосом 19 всасывается через открываемый микроконтроллером 22 электромагнитный клапан 13 при помощи блока управления электромагнитным клапаном 14 и попадает в отделение поглотительного патрона 5, заполненное силикагелем. Очищенный от влаги и пыли измеряемый газ попадает в полость 2 газовоздушной камеры, откуда с помощью электрического насоса 17 выводится в атмосферу.

ПЗС-матрица 15 фиксирует полученное изображение на окуляре (фиг. 3), затем происходит его оцифровка при помощи АЦП 16. DSP-процессор 17 выделяет из полученного изображения интерференционной картины одну строку и сохраняет ее в виде массива (матрицы) по каждому пикселю трех RGB цветовых составляющих. Затем происходит сравнение полученного массива той же строки изображения эталонного массива, которое получается смещением подвижной газовоздушной камеры (фиг. 1, б) при помощи соленоида перемещения 20 газовоздушной камеры в положение контроля (фиг. 2). Соленоид управляется микроконтроллером 22 через блок управления соленоидом 21. Момент совпадения интенсивности по всем пикселям для всех цветовых составляющих фиксируется DSP-процессором 17, и полученное среднее значение разности (смещения) характеризует концентрацию суммарного содержания в воздухе метана и углекислого газа. Далее микроконтроллер 22 вычисляет процентное содержание углекислого газа, вычитая из суммарного содержания газа процентное содержание метана, полученное на предыдущем этапе измерения, и выводит полученный результат на экран цифрового индикатора 23. Полученные результаты измерения могут быть переданы через интерфейс соединения с внешними устройствами 24.

Для измерения содержания других газов предусматривается градуировка шкалы, которая, по необходимости, настраивается на нужный газ путем загрузки градуировочного массива в память микроконтроллера 22.

Таким образом, применение оптико-электронного устройства для измерения концентрации газов обеспечивает следующие преимущества: повышение безопасности измерений, возможность осуществления непрерывного автоматизированного контроля, расширение области применения данного вида устройств за счет измерения содержания других газов, повышение точности, оперативности и достоверности измерений, дистанционное снятие результатов измерения.

Оптико-электронное устройство для измерения концентрации газов, содержащее химический поглотительный патрон, оптическую систему, состоящую из конденсорной линзы, плоскопараллельной пластины (зеркала), подвижной газовоздушной камеры, имеющей три сквозные полости, ограниченные плоскопараллельными стеклянными пластинками, двух призм полного внутреннего отражения, зеркала, зрительной трубы с объективом, окуляра и щелевой диафрагмы с подвижной отчетной шкалой, отличающееся тем, что дополнительно содержит электрический насос засасывания измеряемого газа, блок управления электрическим насосом, соленоид перемещения газовоздушной камеры в положение контроля, блок управления соленоидом, светоизлучающий диод и блок управления светоизлучающим диодом, два электромеханических клапана, соответственно, каналов измерения метана и углекислого газа и два блока управления электроклапанами, ПЗС-матрицу, аналого-цифровой преобразователь, DSP-процессор, микроконтроллер, цифровой жидкокристаллический индикатор и интерфейс связи с внешними устройствами.
ОПТИКО-ЭЛЕКТРОННОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ГАЗОВ
ОПТИКО-ЭЛЕКТРОННОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ГАЗОВ
ОПТИКО-ЭЛЕКТРОННОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ГАЗОВ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 115.
10.04.2013
№216.012.31c5

Способ стимуляции половой охоты и синхронизации овуляции у свиноматок

Изобретение относится к области животноводства. Свиноматкам на 35-42 день после опороса, в день отъема поросят, утром, однократно вводят фоллимаг в дозе 1000 И.Е./ голову. Через 70-72 часа проводят выборку свиноматок в охоте. Свиноматкам, проявившим рефлекс неподвижности дополнительно вводят...
Тип: Изобретение
Номер охранного документа: 0002478284
Дата охранного документа: 10.04.2013
20.06.2013
№216.012.4dbb

Способ анализа взвешенных частиц

Изобретение относится к технике измерений, может использоваться в электронной промышленности, медицине, биологии, экологии, химической промышленности, порошковой металлургии и других областях пауки и техники, связанных с анализом взвешенных частиц. Способ состоит в том, что поток частиц...
Тип: Изобретение
Номер охранного документа: 0002485481
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.51d1

Устройство искажения радиолокационного изображения объекта

Изобретение относится к области радиоподавления радиолокационных станций (РЛС), в частности, может быть использовано при разработке станций помех РЛС с синтезированной апертурой антенны (PCА). Достигаемый технический результат - снижение вероятности правильного обнаружения объекта до заданной...
Тип: Изобретение
Номер охранного документа: 0002486538
Дата охранного документа: 27.06.2013
10.11.2013
№216.012.7f54

Способ анализа загрязненности моторного масла двигателя внутреннего сгорания дисперсными частицами

Изобретение относится к технике измерений, может использоваться в автомобильной, сельскохозяйственной, авиационной, нефтеперерабатывающей и других отраслях промышленности, где необходимо проводить оперативный анализ качества моторного масла. Способ анализа загрязненности моторного масла...
Тип: Изобретение
Номер охранного документа: 0002498269
Дата охранного документа: 10.11.2013
10.01.2014
№216.012.956d

Способ анализа взвешенных частиц

Изобретение относится к технике измерений, может использоваться в электронной промышленности, медицине, биологии, экологии, химической промышленности, порошковой металлургии и других областях науки и техники, связанных с анализом взвешенных частиц. Способ состоит в том, что поток частиц...
Тип: Изобретение
Номер охранного документа: 0002503947
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.9571

Способ обнаружения пылеотложения на печатных платах радиоэлектронной аппаратуры

Изобретение относится к способам обнаружения пылеотложения с учетом уровня влажности на печатных платах радиоэлектронной аппаратуры, к устройствам обнаружения пылеотложения с учетом уровня влажности на печатных платах, при возникновении которого возникают токи утечки. Способ обнаружения...
Тип: Изобретение
Номер охранного документа: 0002503951
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.9572

Устройство обнаружения пылеотложения на печатных платах радиоэлектронной аппаратуры

Изобретение относится к устройствам обнаружения пылеотложения с учетом влажности на печатных платах радиоэлектронной аппаратуры, при возникновении которого возникают токи утечки. Периодически излучаются световые импульсы двумя светодиодами с длиной волны λ=565 нм и двумя светодиодами с длиной...
Тип: Изобретение
Номер охранного документа: 0002503952
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.988e

Фотоэлектрический способ определения размеров и концентрации взвешенных частиц

Изобретение относится к контрольно-измерительной технике, в частности к оптическим методам контроля параметров дисперсных сред, и может найти применение при контроле запыленности газов и загрязнения жидкостей. Способ определения размеров и концентрации взвешенных частиц включает зондирование...
Тип: Изобретение
Номер охранного документа: 0002504753
Дата охранного документа: 20.01.2014
27.02.2014
№216.012.a742

Фотоэлектрическое устройство определения размеров и концентрации взвешенных частиц

Изобретение относится к контрольно-измерительной технике, в частности к оптическим устройствам контроля параметров дисперсных сред, и может найти применение при контроле запыленности газов и загрязнения жидкостей. Сущность изобретения: поток частиц освещают световым пучком и регистрируют...
Тип: Изобретение
Номер охранного документа: 0002508533
Дата охранного документа: 27.02.2014
27.03.2014
№216.012.aeee

Оптический пылемер

Изобретение относится к области исследования вентиляционного оборудования предприятия для определения наличия пыли. Данное изобретение направлено на повышение точности непрерывного измерения концентрации, а также определение среднего размера частиц пыли в изучаемой среде. Оптический пылемер...
Тип: Изобретение
Номер охранного документа: 0002510497
Дата охранного документа: 27.03.2014
Показаны записи 1-10 из 113.
27.03.2014
№216.012.aeef

Способ определения концентрации и среднего размера частиц пыли

Способ включает преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком. Используют измерительный канал, содержащий исследуемую среду, зондируемую световым пучком, и дополнительный канал, который заполнен очищенной от пыли газовой смесью....
Тип: Изобретение
Номер охранного документа: 0002510498
Дата охранного документа: 27.03.2014
10.12.2014
№216.013.0cea

Способ определения параметров взвешенных частиц произвольной формы

Изобретение относится к технике автоматизации измерений и может быть использовано при анализе взвешенных частиц произвольной формы. Согласно способу производят освещение потока частиц световым пучком и регистрацию параметров световых сигналов, формируемых частицами при их пролете через...
Тип: Изобретение
Номер охранного документа: 0002534723
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0f13

Способ электрохимической защиты текстильных изделий от статического электричества

Изобретение относится к области охраны труда и технике безопасности и предназначено для индивидуальной защиты от воздействия электростатического поля. Изобретение позволяет повысить эффективность индивидуальной защиты работников современных электростатических и взрывоопасных производств при...
Тип: Изобретение
Номер охранного документа: 0002535276
Дата охранного документа: 10.12.2014
20.02.2015
№216.013.2794

Пешеходный переход

Изобретение относится к области регулирования дорожного движения. Нерегулируемый пешеходный переход состоит из пешеходной дорожки на проезжей части автодороги, обозначенной по краям на тротуарах дорожными знаками. На их опоры устанавливаются видеокамеры, совмещенные с устройством для измерения...
Тип: Изобретение
Номер охранного документа: 0002541589
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.281a

Прецизионный аналого-цифровой интерфейс для работы с резистивными микро- и наносенсорами

Изобретение относится к области измерительной техники и может использоваться в структуре различных датчиковых систем, в которых используются резистивные сенсоры, изменяющие свое сопротивление под физическим воздействием окружающей среды (давление, деформация, свет, температура, радиация, состав...
Тип: Изобретение
Номер охранного документа: 0002541723
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.28da

Источник опорного напряжения, определяемого удвоенной шириной запрещённой зоны

Изобретение относится к области электротехники и может быть использовано в качестве температурно-стабильного источника опорного напряжения, определяемого удвоенной шириной запрещенной зоны. Технический результат заключается в получении температурно-стабильного выходного напряжения, значение...
Тип: Изобретение
Номер охранного документа: 0002541915
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b26

Способ определения драпируемости материалов для одежды

Изобретение относится к легкой промышленности и может быть использовано для определения драпируемости материалов для одежды. Для этого пробу материала в форме круга с заранее размеченными осями в продольном и поперечном направлениях фиксируют на основном диске в центре с иглой. Сверху...
Тип: Изобретение
Номер охранного документа: 0002542503
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.3124

Пассажирское кресло с энергопоглощающей спинкой

Изобретение относится к транспортному машиностроению, в частности к системам, обеспечивающим пассивную безопасность пассажиров при столкновениях пассажирских транспортных средств. Пассажирское кресло с энергопоглощающей спинкой состоит из основания, подушки и спинки с подлокотником. Подушка...
Тип: Изобретение
Номер охранного документа: 0002544048
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.38fe

Многозначный сумматор по модулю k

Изобретение относится к области вычислительной техники, автоматики, связи. Техническим результатом является повышение быстродействия устройств преобразования информации. Многозначный сумматор по модулю k содержит: первый (1) и второй (2) токовые входы устройства, токовый выход (3) устройства,...
Тип: Изобретение
Номер охранного документа: 0002546078
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.38ff

Источник опорного напряжения на основе утроенной ширины запрещенной зоны кремния

Изобретение относится к области электротехники и может использоваться при проектировании стабилизаторов напряжения, аналого-цифровых и цифро-аналоговых преобразователей и других элементов автоматики. Достигаемым техническим результатом является повышение выходного напряжения источника...
Тип: Изобретение
Номер охранного документа: 0002546079
Дата охранного документа: 10.04.2015
+ добавить свой РИД