×
10.04.2016
216.015.2ba7

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ ПОМЕХОУСТОЙЧИВЫХ ШИРОКОПОЛОСНЫХ СИГНАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиотехники, а именно к беспроводной связи, и может быть использовано для повышения помехоустойчивости сигнала в системах связи. Способ включает формирование широкополосного сигнала, замену элементов последовательности передаваемых данных со значением 0 на элементы, имеющие значение -1. Для модуляции псевдослучайной последовательности длительностью N*τ, где τ может принимать значение от 1*10-6 до 100*10-6 секунд, используют любой сигнальный вектор , собственное число которого λ≈1, выбранный из набора собственных функций Q матрицы вида с элементами вида: , где индексы i,j=0, 1,…, L; k=0, 1, …, L; v - коэффициент, определяющий ширину канала связи формируемого сигнала v=π/6; L - размерность матрицы, т.е. количество отсчетов в сигнальном векторе от 64 до 1024. Формируют передаваемый сигнал согласно следующему выражению: x=e·q, где x - элемент сформированного помехоустойчивого сигнала ; z - порядковый номер элемента сформированного сигнала z=0,1,2,…(N·L-1); k - порядковый номер элемента последовательности, рассчитывается как k=[z/L]+1; e - элемент результирующей передаваемой последовательности ; d - порядковый номер элемента вектора , рассчитывается как d=z-(k-1)L+1. Технический результат - увеличение ширины полосы частот сигнала в 2 раза по сравнению с шириной полосы частот сигнала, сформированного с использованием биортогональной вейвлет-функцией, что увеличивает помехоустойчивость и, соответственно, энергетическую эффективность систем радиосвязи без потерь в скорости передачи информации. 6 ил.
Основные результаты: Способ формирования помехоустойчивых широкополосных сигналов, включающий расширение спектра сигнала методом псевдослучайной последовательности, отличающийся тем, что получают результирующую передаваемую последовательность элементов , складывая в сумматоре по модулю 2 полученную с помощью линейного сдвигающего регистра кодовую бинарную последовательность и информационный бит как элемент информационной последовательности, затем полученную результирующую передаваемую последовательность записывают в регистр памяти, для формирования псевдослучайной последовательности производят в полученной результирующей передаваемой последовательности замену ее элементов e со значением 0 на элементы со значением -1, модулируют сформированную псевдослучайную последовательность длительностью N*τ, где N - количество элементов бинарной кодовой последовательности, τ - длительность одного элемента кодовой бинарной последовательности, которая может принимать значение от 1*10 до 100*10 секунд путем использования любого сигнального вектора , собственное число которого λ≈1, выбранного из набора собственных функций матрицы вида А={ }, i,j=1, …, L, для чего с помощью сигнального процессора формируют и записывают в регистр памяти матрицу А с элементами вида: где индексы i,j=0, 1, …, L; k=0, 1, …, L; ν - коэффициент, определяющий ширину канала связи формируемого сигнала ν=π/6; L - размерность матрицы, т.е. количество отсчетов в сигнальном векторе от 64 до 1024, после чего формируют передаваемый сигнал , элементы которого рассчитывают согласно следующему выражению:x=e·q, где x - элемент сформированного помехоустойчивого сигнала ; z - порядковый номер элемента сформированного помехоустойчивого сигнала z=0, 1, 2, … (N·L-1); k - порядковый номер элемента последовательности, рассчитывается как k=[z/L]+1; e - элемент результирующей передаваемой последовательности ; d - порядковый номер элемента вектора , рассчитывается как d=z-(k-1)L+1, затем умножают элемент сформированного помехоустойчивого сигнала на несущую частоту и передают в канал связи.

Изобретение относится к области радиотехники, а именно к беспроводной связи, и может быть использовано для повышения помехоустойчивости передаваемых широкополосных сигналов в системах беспроводной связи.

Известен способ формирования фазоманипулированных сигналов в помехозащищенных системах [Варакин Л.Е. Системы связи с шумоподобными сигналами [Текст]. М.: Радио и связь, 1985. - 384 с.], в котором с помощью линейного сдвигающего регистра, состоящего из k триггеров, формируется кодовая бинарная последовательность, элементы которой принимают значение 0 или 1 и состоящая из N элементов, где N=2k-1. Далее каждому элементу последовательности ставится в соответствие радиоимпульс со своей начальной фазой. Если элемент последовательности имел значение 0, то ему ставится в соответствие отрезок синусоидального колебания с начальной фазой 0 градусов, если элемент последовательности имел значение 1, то ему ставится в соответствие отрезок синусоидального колебания с начальной фазой 180 градусов.

Недостатком данного способа является использование недостаточно оптимальной с энергетической точки зрения фазовой модуляции в качестве модулирующего сигнала, а также сравнительно узкий частотный диапазон, занимаемый сигналом, что уменьшает скрытность сигнала.

Наиболее близким техническим решением, принятым за прототип, является способ формирования помехоустойчивых сигналов, использующий в качестве сигнального базиса биортогональные вейвлет-функции [Анжина В.А., Кузовников А.В., Кухтин В.К., Пашков А.Е., Сомов В.Г., Шайдуров Г.Я., Демаков Н.В. Способ формирования помехоустойчивых сигналов // Патент России №2412551. Дата публикации 20.02.2011 г.]. Согласно способу для формирования широкополосного сигнала используют расширение спектра сигнала методом псевдослучайной последовательности, которую модулируют с использованием биортогональных вейвлет-функций, при этом "0" и "1" модулируют противоположными биортогональными вейвлет-функциями.

Однако использование вейвлет-функций для повышения помехоустойчивости имеет недостаток в виде ограничения на ширину частотного диапазона формируемого сигнала, что обусловлено фиксированной длительностью биортогональной вейвлет-функций и не позволяет дополнительно расширить спектр сигнала и обеспечить потенциальную помехоустойчивость. Недостатком данного способа является также использование неоптимальных с точки зрения энергетической эффективности вейвлет-функций из-за больших флуктуаций их амплитуды.

Задачей предлагаемого изобретения является создание способа, обеспечивающего повышение помехоустойчивости сигнала в системах связи за счет расширения занимаемой им полосы частот и, как следствие, увеличение энергетической эффективности систем связи.

Технический результат заключается в увеличении ширины полосы частот и, как следствие, повышение помехоустойчивости сигнала в 2 раза, по сравнению с сигналом, сформированным с использованием биортогональной вейвлет-функции.

Поставленная задача достигается тем, что формирование сигналов с высокой помехоустойчивостью реализуется с использованием сигнального вектора, представляющего собой собственный вектор матрицы.

Для этого, в известный способ формирования помехоустойчивых сигналов, включающий расширение спектра сигнала методом псевдослучайной последовательности, вносят следующие новые признаки:

- производят замену элементов последовательности передаваемых данных со значением 0 на элементы, имеющие значение -1;

- для модуляции сформированной псевдослучайной последовательности длительностью N*τ, где τ может принимать значение от 1*10-6 до 100*10-6 сек, используют сигнальный вектор собственное число которого λ≈1, при этом осуществляют выборку указанного сигнального вектора из набора собственных функций матрицы вида A={a i,j}, i,j=1, …, L с элементами вида:

где индексы i,j=0, 1, …, L; k=0, 1, …, L; ν - коэффициент, определяющий ширину канала связи формируемого сигнала, равный π/6; L - размерность матрицы, т.е. количество отсчетов в сигнальном векторе от 64 до 1024;

- формируют передаваемый сигнал согласно следующему выражению:

xz=ek·qd,

где xz - элемент сформированного помехоустойчивого сигнала ; z - порядковый номер элемента сформированного сигнала z=0, 1, 2, … (N·L-1); k - порядковый номер элемента последовательности, рассчитывается как k=[z/L]+1; ek - элемент результирующей передаваемой последовательности ; d - порядковый номер элемента вектора , рассчитывается как d=z-(k-1)L+1.

Критериям «новизна» и «изобретательский уровень» предложенный способ соответствует благодаря наличию следующих признаков:

- замена элементов последовательности передаваемых данных со значением 0 на элементы имеющие значение -1;

- вычисление собственных векторов матрицы А, где - собственный вектор матрицы вида A={a i,j}, i,j=1, …, L с элементами вида:

;

где индексы i,j=0, 1, …, L; k=0, 1, …, L; v - коэффициент, определяющий ширину канала связи формируемого сигнала, равный п/6; L - размерность матрицы, т.е. количество отсчетов в сигнальном векторе от 64 до 1024;

- выборка сигнального вектора согласно критерию максимального собственного числа λN≈1;

- использование вышеуказанного сигнального вектора для модуляции сформированной псевдослучайной последовательности длительностью N*τ, где τ может принимать значение от 1*10-6 до 100*10-6 сек;

- формирование передаваемого сигнала согласно следующему выражению: xz=ek·qd;

где xz - элемент сформированного помехоустойчивого сигнала ; z - порядковый номер элемента сформированного сигнала z=0, 1, 2, … (N·L-1); k - порядковый номер элемента последовательности, рассчитывается как k=[z/L]+1; ek - элемент результирующей передаваемой последовательности ; d - порядковый номер элемента вектора , рассчитывается как d=z-(k-1)L+1.

Перечисленные признаки в совокупности позволяют получить заявленный технический результат и из уровня техники не известны, так же, как и влияние наличия этих признаков на увеличение помехоустойчивости и повышение энергетической эффективности систем связи за счет существенного расширения спектра сигнала в частотной области.

Сущность изобретений поясняется изображениями, представленными на фигурах:

Фиг. 1 - вид сигнала, модулированный биортогональными вейвлет-функциями во временной области по прототипу;

Фиг. 2 - частотный спектр сигнала, модулированный биортогональными вейвлет-функциями по прототипу;

Фиг. 3 - вид сигнального вектора во временной области;

Фиг. 4 - вид передаваемого сигнала, сформированного на основе сигнального вектора во временной области;

Фиг. 5 - частотный спектр передаваемого сигнала, сформированного на основе сигнального вектора;

Фиг. 6 - таблица, в которой представлены значения ширины полосы частот в МГц, которую занимает сформированный сигнал при различных параметрах N, L и τ.

Способ осуществляют следующим образом:

1. Формируют с помощью линейного сдвигающего регистра, состоящего из k триггеров, кодовую бинарную последовательность, состоящую из N элементов, длительностью N*τ, где τ - длительность одного элемента (бита), принимающих значение 0 или 1, N=2k-1. Сформированную кодовую последовательность записывают в регистр памяти №1. Параметр τ принимает значение от 1*10-6 до 100*10-6 сек. В случае, когда τ принимает значение меньше 1*10-6 сек, возникает необходимость в высокой частоте дискретизации сигнала, что приводит к снижению стабильности работы системы в целом и ее удорожанию. В случае, когда τ принимает значение больше 100*10-6 сек, скорость передачи информации становится недостаточной для использования таких систем.

2. Последовательность информационных бит поэлементно поступает на сумматор из регистра памяти №2, при этом длительность одного элемента информационной последовательности совпадает с длительностью всей кодовой последовательности и составляет N*τ.

3. Полученные кодовую последовательность и элемент информационной последовательности складывают в сумматоре друг с другом по модулю 2, получая тем самым результирующую передаваемую последовательность элементов , которую записывают в регистр памяти №3.

4. В результирующей последовательности передаваемых элементов производят замену элементов со значением 0 на элементы со значением -1.

5. С помощью сигнального процессора формируют и записывают в регистр памяти №4 матрицу А, элементы которой рассчитывают следующим образом:

где индексы i,j=0, 1, …, L; k=0, 1, …, L; ν - коэффициент, определяющий ширину канала связи формируемого сигнала, равен π/6; L - размерность матрицы, т.е. количество отсчетов в сигнальном векторе от 64 до 1024.

6. Выполняют с помощью сигнального процессора вычисление собственных векторов матрицы А, получая тем самым набор векторов , где - собственный вектор матрицы А.

7. В сигнальном процессоре осуществляют выборку сигнального вектора согласно критерию максимального собственного числа λN≈1. В случае, если количество вычисленных собственных векторов, удовлетворяющих условию λ≈1, больше чем 1, то выбирают один любой из всего набора векторов Q.

8. В умножителе последовательно умножают каждый элемент ek результирующей последовательности на выбранный сигнальный вектор , формируя тем самым передаваемый сигнал согласно следующему выражению:

xz=ek·qd,

где xz - элемент сформированного помехоустойчивого сигнала ; z - порядковый номер элемента сформированного сигнала, z=0, 1, 2, … (N·L-1); k - порядковый номер элемента последовательности, рассчитывается как k=[z/L]+1; ek - элемент результирующей передаваемой последовательности ; d - порядковый номер элемента вектора , рассчитывается как d=z-(k-1)L+1;

9. Умножают полученный сигнал xz на несущую частоту и передают в канал связи.

Совокупность вышеперечисленных признаков позволяет формировать сигналы при передаче цифровой информации с высокой помехоустойчивостью за счет использования в качестве модулирующего сигнала сигнального вектора матрицы А со значением собственного числа λ≈1, что позволяет существенно расширить диапазон занимаемых передаваемым сигналом частот и подтверждается энергетическим спектром, представленным на фиг. 5.

Вид сигнального вектора во временной области представлен на фиг. 3. Сигнал, модулированный по предложенному способу, представлен на фиг. 4, и сравнение его с сигналом, модулированным способом по прототипу на фиг. 1, демонстрирует, что флуктуации его амплитуды значительно меньше, чем у прототипа, следовательно, выше энергетическая эффективность.

Анализ полученных спектров на фиг. 2 и фиг. 5 показал увеличение ширины полосы сигнала, сформированного с использованием сигнальных векторов, в 2 раза по сравнению с шириной полосы сигнала, модулированного биортогональной вейвлет-функцией, что приводит к увеличению в 2 раза помехоустойчивости полученного сигнала, т.к. увеличение помехоустойчивости полученного сигнала пропорционально увеличению ширины полосы, занимаемой сигналом (ΔF), согласно выражению:

где ΔF - ширина спектра сигнала; Тс - длительность сигнала; Рс - мощность сигнала в полосе ΔF; Рш - мощность шума в полосе частот ΔF; рош - вероятность ошибочного приема; Ф(h) - функция Крампа [Зюко А.Г., Кловский Д.Д., Назаров М.В. Теория передачи сигналов [Текст]. М.: Радио и связь, 1986. - 304 с.].

Примеры значений ширины полосы частот в МГц, которую занимает сформированный сигнал при различных параметрах N, L, и τ, представленные в таблице на фиг. 6 подтверждают стабильность ширины спектра сигнала при заявленных параметрах N, L и τ.

В результате использования предложенного технического решения благодаря применению сигнального вектора матрицы удается формировать широкополосные сигналы, ширина спектра которых в 2 раза превосходит прототип, что позволяет пропорционально увеличить помехоустойчивость и, соответственно, энергетическую эффективность систем радиосвязи без потерь в скорости передачи информации.

Способ формирования помехоустойчивых широкополосных сигналов, включающий расширение спектра сигнала методом псевдослучайной последовательности, отличающийся тем, что получают результирующую передаваемую последовательность элементов , складывая в сумматоре по модулю 2 полученную с помощью линейного сдвигающего регистра кодовую бинарную последовательность и информационный бит как элемент информационной последовательности, затем полученную результирующую передаваемую последовательность записывают в регистр памяти, для формирования псевдослучайной последовательности производят в полученной результирующей передаваемой последовательности замену ее элементов e со значением 0 на элементы со значением -1, модулируют сформированную псевдослучайную последовательность длительностью N*τ, где N - количество элементов бинарной кодовой последовательности, τ - длительность одного элемента кодовой бинарной последовательности, которая может принимать значение от 1*10 до 100*10 секунд путем использования любого сигнального вектора , собственное число которого λ≈1, выбранного из набора собственных функций матрицы вида А={ }, i,j=1, …, L, для чего с помощью сигнального процессора формируют и записывают в регистр памяти матрицу А с элементами вида: где индексы i,j=0, 1, …, L; k=0, 1, …, L; ν - коэффициент, определяющий ширину канала связи формируемого сигнала ν=π/6; L - размерность матрицы, т.е. количество отсчетов в сигнальном векторе от 64 до 1024, после чего формируют передаваемый сигнал , элементы которого рассчитывают согласно следующему выражению:x=e·q, где x - элемент сформированного помехоустойчивого сигнала ; z - порядковый номер элемента сформированного помехоустойчивого сигнала z=0, 1, 2, … (N·L-1); k - порядковый номер элемента последовательности, рассчитывается как k=[z/L]+1; e - элемент результирующей передаваемой последовательности ; d - порядковый номер элемента вектора , рассчитывается как d=z-(k-1)L+1, затем умножают элемент сформированного помехоустойчивого сигнала на несущую частоту и передают в канал связи.
СПОСОБ ФОРМИРОВАНИЯ ПОМЕХОУСТОЙЧИВЫХ ШИРОКОПОЛОСНЫХ СИГНАЛОВ
СПОСОБ ФОРМИРОВАНИЯ ПОМЕХОУСТОЙЧИВЫХ ШИРОКОПОЛОСНЫХ СИГНАЛОВ
СПОСОБ ФОРМИРОВАНИЯ ПОМЕХОУСТОЙЧИВЫХ ШИРОКОПОЛОСНЫХ СИГНАЛОВ
СПОСОБ ФОРМИРОВАНИЯ ПОМЕХОУСТОЙЧИВЫХ ШИРОКОПОЛОСНЫХ СИГНАЛОВ
СПОСОБ ФОРМИРОВАНИЯ ПОМЕХОУСТОЙЧИВЫХ ШИРОКОПОЛОСНЫХ СИГНАЛОВ
СПОСОБ ФОРМИРОВАНИЯ ПОМЕХОУСТОЙЧИВЫХ ШИРОКОПОЛОСНЫХ СИГНАЛОВ
СПОСОБ ФОРМИРОВАНИЯ ПОМЕХОУСТОЙЧИВЫХ ШИРОКОПОЛОСНЫХ СИГНАЛОВ
СПОСОБ ФОРМИРОВАНИЯ ПОМЕХОУСТОЙЧИВЫХ ШИРОКОПОЛОСНЫХ СИГНАЛОВ
СПОСОБ ФОРМИРОВАНИЯ ПОМЕХОУСТОЙЧИВЫХ ШИРОКОПОЛОСНЫХ СИГНАЛОВ
СПОСОБ ФОРМИРОВАНИЯ ПОМЕХОУСТОЙЧИВЫХ ШИРОКОПОЛОСНЫХ СИГНАЛОВ
СПОСОБ ФОРМИРОВАНИЯ ПОМЕХОУСТОЙЧИВЫХ ШИРОКОПОЛОСНЫХ СИГНАЛОВ
СПОСОБ ФОРМИРОВАНИЯ ПОМЕХОУСТОЙЧИВЫХ ШИРОКОПОЛОСНЫХ СИГНАЛОВ
СПОСОБ ФОРМИРОВАНИЯ ПОМЕХОУСТОЙЧИВЫХ ШИРОКОПОЛОСНЫХ СИГНАЛОВ
СПОСОБ ФОРМИРОВАНИЯ ПОМЕХОУСТОЙЧИВЫХ ШИРОКОПОЛОСНЫХ СИГНАЛОВ
СПОСОБ ФОРМИРОВАНИЯ ПОМЕХОУСТОЙЧИВЫХ ШИРОКОПОЛОСНЫХ СИГНАЛОВ
СПОСОБ ФОРМИРОВАНИЯ ПОМЕХОУСТОЙЧИВЫХ ШИРОКОПОЛОСНЫХ СИГНАЛОВ
СПОСОБ ФОРМИРОВАНИЯ ПОМЕХОУСТОЙЧИВЫХ ШИРОКОПОЛОСНЫХ СИГНАЛОВ
Источник поступления информации: Роспатент

Показаны записи 61-66 из 66.
13.01.2017
№217.015.75bb

Способ прогнозирования риска развития iii стадии гипертонической болезни у больных гипертонической болезнью с метаболическим синдромом

Изобретение относится к области медицинской диагностики и может быть использовано как способ прогнозирования риска развития III стадии гипертонической болезни у индивидуумов русской национальности, являющихся уроженцами Центрального Черноземья РФ, больных гипертонической болезнью с...
Тип: Изобретение
Номер охранного документа: 0002598745
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.76af

Способ формирования биоактивного покрытия на поверхности эндопротезов крупных суставов

Изобретение относится к медицине. Описан способ получения покрытий на элементах эндопротезов крупных суставов человека, выполненных из титана и его сплавов, включающий помещение имплантата в ванну с раствором электролита, содержащего ионы Са и Р, подключение имплантата и вспомогательного...
Тип: Изобретение
Номер охранного документа: 0002598626
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.7fe6

Способ и устройство восстановления передаваемой информации при ортогональном частотном уплотнении

Изобретение относится к областям проводной, спутниковой и наземной радиосвязи и может быть использовано для приема и цифрового восстановления передаваемой информации из канальных сигналов с ортогональным частотным уплотнением (OFDM). Технический результат заключается в обеспечении возможности...
Тип: Изобретение
Номер охранного документа: 0002599930
Дата охранного документа: 20.10.2016
25.08.2017
№217.015.cc4b

Износостойкое покрытие для режущего инструмента

Износостойкое покрытие для режущего инструмента может быть использовано в металлообработке. Покрытие представляет собой сложный нитрид титана, циркония, гафния, ванадия, ниобия и тантала (TiZrNbVHfTa)N со стабильной однофазной структурой. При этом суммарное количество элементов покрытия Ti,...
Тип: Изобретение
Номер охранного документа: 0002620521
Дата охранного документа: 26.05.2017
20.01.2018
№218.016.1302

Способ получения йогурта, обогащенного магнием

Изобретение относится к молочной промышленности и нанотехнологии. Подготавливают молоко и заквашивают. Вводят 500 мг на литр молочной смеси наноструктурированный карбонат магния в каррагинане или наноструктурированный карбонат магния в конжаковой камеди. Сквашивают смесь в течение 8 ч при...
Тип: Изобретение
Номер охранного документа: 0002634410
Дата охранного документа: 26.10.2017
05.07.2019
№219.017.a69a

Способ прогнозирования инфицирования новорожденных и родильниц

Изобретение относится к области медицины, в частности к акушерству и перинатологии. Околоплодные воды отбирают после преждевременного разрыва околоплодных оболочек при недоношенной беременности на сроке 22-36 недель беременности. Для этого в полость матки под контролем УЗ-луча вводят катетер,...
Тип: Изобретение
Номер охранного документа: 0002449277
Дата охранного документа: 27.04.2012
Показаны записи 71-71 из 71.
19.06.2019
№219.017.8836

Цифровое устройство для формирования речевых сигналов в системах связи с частотным разделением каналов

Изобретение относится к технике цифровой обработки речевых данных и может быть использовано при формировании речевых сигналов в системах связи с частотным разделением каналов. Достигаемый технический результат - лучшее использование выделенных частотных ресурсов. Устройство содержит М...
Тип: Изобретение
Номер охранного документа: 0002365039
Дата охранного документа: 20.08.2009
+ добавить свой РИД