×
27.02.2016
216.014.e8e4

Результат интеллектуальной деятельности: ВОЛНОВОДНАЯ СТРУКТУРА С РАЗРЕШЕННЫМИ И ЗАПРЕЩЕННЫМИ ЗОНАМИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам обработки и коммутации СВЧ-сигналов на полупроводниковых приборах и предназначено для использования в телекоммуникационных системах, электрически управляемых устройствах СВЧ-электроники, таких как полосовые или селективные фильтры, антенны, перестраиваемые генераторы. Техническим результатом является создание волноводной СВЧ-структуры с электрически управляемыми характеристиками разрешенных и запрещенных зон при уменьшенных прямых потерях. Для этого в волноводную структуру с разрешенными и запрещенными зонами, содержащую диафрагму с рамочными элементами связи, расположенными по обе стороны диафрагмы, и полупроводниковый элемент с электрически управляемой проводимостью, введена по крайней мере в один рамочный элемент по крайней мере одна неоднородность типа «штырь с зазором», в зазор одной из которых помещен полупроводниковый элемент с электрически управляемой проводимостью. 5 ил.
Основные результаты: Array

Изобретение относится к устройствам обработки и коммутации СВЧ-сигналов на полупроводниковых приборах и предназначено для использования в телекоммуникационных системах, электрически управляемых устройствах СВЧ-электроники, таких как полосовые или селективные фильтры, антенны, перестраиваемые генераторы.

Известно устройство на основе диафрагмы и отрезков короткозамкнутых двухпроводных линий («Электроника СВЧ», №7, 1976 г., с.93-95), имеющее запрещенную и разрешенную зоны. Данное устройство может быть использовано в качестве широкополосного СВЧ-фильтра.

Однако данное устройство не может быть использовано в качестве перестраиваемого СВЧ-резонатора.

Известно устройство (см. патент РФ №2407114, МПК H01P1/00), представляющее собой отрезок волновода, содержащий частотно-селективный элемент и элемент для регулирования затухания. Частотно-селективный элемент выполнен в виде одномерного волноводного фотонного кристалла с нарушением периодичности в виде измененной толщины и/или диэлектрической проницаемости центрального слоя. После фотонного кристалла по направлению распространения электромагнитной волны включен элемент для регулирования затухания, выполненный в виде р-i-n-диодной структуры, подключенной к источнику питания с регулируемым напряжением. Выбором количества и параметров слоев в фотонном кристалле определяется ширина частотной области пропускания, выбором толщины или диэлектрической проницаемости достигается настройка центральной частоты этой области. Для реализации управления величиной пропускания в этой области используется р-i-n-диодная структура.

Однако данное устройство не позволяет осуществлять электрическую частотную перестройку резонансной моды колебаний (резонансной особенности).

Наиболее близким к предлагаемому решению является полупроводниковый СВЧ-модулятор с рамочным элементом связи («Электроника СВЧ», сер.1, №1, 1975 г., с.35-37), представляющий собой отрезок прямоугольного волновода, перегороженный диафрагмой с отверстием, в которое помещена полупроводниковая управляющая структура, например p-i-n-диод или диод с точечным контактом металл-полупроводник. По обе стороны диафрагмы располагаются рамочные элементы связи, соединенные с полупроводниковой управляющей структурой. Плоскости рамок совпадают с E-плоскостью, проходящей через середину широкой стенки волновода.

Однако в данной конструкции реализуется только инверсный режим электрического переключения передаваемой мощности СВЧ-сигнала, отсутствует возможность селективного управления выходным сигналом и прямые потери составляют более 4 дБ.

Задачей настоящего изобретения является создание волноводной СВЧ-структуры с электрически управляемыми характеристиками разрешенных и запрещенных зон при уменьшенных прямых потерях.

Техническим результатом изобретения является снижение прямых потерь, а также расширение функциональных возможностей, связанных с:

- созданием в запрещенной (разрешенной) зоне резонансной моды колебаний (резонансной особенности);

- возможностью «электрического» управления резонансной модой колебаний.

Поставленная задача достигается тем, что в волноводной структуре с разрешенными и запрещенными зонами, содержащей диафрагму с рамочными элементами связи, расположенными по обе стороны диафрагмы, и полупроводниковый элемент с электрически управляемой проводимостью, согласно решению по крайней мере в один рамочный элемент введена по крайней мере одна неоднородность типа «штырь с зазором», в зазор одной из которых помещен полупроводниковый элемент с электрически управляемой проводимостью.

Сущность изобретения заключается в том, что:

- создание в запрещенной (разрешенной) зоне резонансной моды колебаний (резонансной особенности) обеспечивается введением неоднородностей типа «штырь с зазором» в структуру на основе диафрагмы и системы связанных рамочных элементов;

- управление резонансной особенностью осуществляется изменением величины тока, протекающего через полупроводниковую n-i-p-i-n-структуру, помещенную в зазор между штырем и рамочным элементом.

Оригинальность данного изобретения заключается в следующем:

- в качестве неоднородностей используются конструкции типа «штырь с зазором», изготовленные из медной проволоки диаметром 1 мм;

- в качестве управляющего элемента используется n-i-p-i-n-структура, помещенная в зазор между штырем и рамочным элементом.

Устройство поясняется чертежами:

на фиг. 1 представлен общий вид волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, характеризующихся наличием запрещенной зоны;

на фиг. 2 а представлены амплитудно-частотные зависимости коэффициента отражения (кривая 1) и коэффициента прохождения (кривая 2) СВЧ-элемента на основе диафрагмы и системы связанных рамочных элементов, не содержащей неоднородности;

на фиг. 2 б представлены амплитудно-частотные зависимости коэффициента отражения (кривая 1) и коэффициента прохождения (кривая 2) СВЧ-элемента на основе диафрагмы и системы связанных рамочных элементов, содержащей неоднородности типа «штырь с зазором»;

на фиг. 3 представлены амплитудно-частотные характеристики коэффициента отражения вблизи пика пропускания запрещенной зоны СВЧ-элемента;

на фиг. 4 представлен общий вид волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, характеризующихся наличием разрешенной зоны;

на фиг. 5 представлены амплитудно-частотные характеристики коэффициента прохождения исследуемого СВЧ-элемента в диапазоне частот 8-12 ГГц;

где

1 - отрезок волновода сечением 23 мм × 10 мм;

2 - металлическая диафрагма толщиной 0.3 мм;

3 - отверстие в диафрагме (диаметром 3.5 мм);

4 - рамочный элемент, изготовленный из медной проволоки диаметром 1 мм;

5 - неоднородность типа «штырь с зазором»;

6 - неоднородность типа «штырь с зазором»;

7 - неоднородность типа «штырь с зазором»;

8 - полупроводниковая n-i-p-i-n-структура;

9 - частотная зависимость коэффициента отражения волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, не содержащей неоднородности;

10 - частотная зависимость коэффициента прохождения волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, не содержащей неоднородности;

11 - частотная зависимость коэффициента отражения волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, содержащей неоднородности типа «штырь с зазором»;

12 - частотная зависимость коэффициента прохождения волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, содержащей неоднородности типа «штырь с зазором»;

13 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=0 мА;

14 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=20 мА;

15 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=30 мА;

16 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=40 мА;

17 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=60 мА;

18 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=80 мА;

19 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=140 мА;

20 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=320 мА;

21 - отрезок волновода сечением 23 мм × 10 мм;

22 - металлическая диафрагма толщиной 0.3 мм;

23 - отверстие в диафрагме (диаметром 3.5 мм);

24 - рамочный элемент, изготовленный из медной проволоки диаметром 1 мм;

25 - неоднородность типа «штырь с зазором»;

26 - полупроводниковая n-i-p-i-n-структура;

27 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I= 0 мА;

28 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=1 мА;

29 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=3 мА;

30 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=10 мА;

31 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=40 мА;

32 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=60 мА;

33 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=190 мА;

34 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=300 мА.

Ниже представлен пример технической реализации волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, характеризующихся наличием запрещенной зоны.

Общий вид волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, характеризующихся наличием запрещенной зоны, представлен на фиг. 1.

В отрезке волновода 1 сечением 23 мм × 10 мм, перпендикулярно направлению распространения электромагнитного излучения, расположена металлическая диафрагма 2 толщиной 0.3 мм. Через отверстие 3 (диаметром 3.5 мм) в диафрагме 2 проходит рамочный элемент 4, изготовленный из медной проволоки диаметром 1 мм, обеспечивающий в определенном диапазоне частот передачу электромагнитного излучения из «одного» плеча волноведущей системы в «другое» и наоборот. Центр отверстия 3 находится на расстоянии 11.5 мм от узкой и 8.2 мм от широкой стенок волновода. Система связанных рамочных элементов 4 состоит из двух рамок, расположенных в волноводе по обе стороны от диафрагмы с отверстием, таким образом, что один конец рамок является общим, а свободные концы соединены с металлической мембраной 2. Размеры рамок определяют диапазоны частот (см. фиг. 2, а) разрешенных и запрещенных для передачи электромагнитного излучения через диафрагму.

Для создания запрещенной зоны размеры рамочных элементов выбирают кратными целому числу полуволн распространяющегося в волноводе электромагнитного излучения.

Для создания в запрещенной зоне исследуемой системы резонансной особенности в виде окна прозрачности (см. фиг. 2, б) вводятся неоднородности типа «штырь с зазором» (позиции 5-7 на фиг. 1), выполненные из медной проволоки диаметром 1 мм.

Контактные площадки прямоугольной формы, размером 2 мм × 1 мм каждая, напаивались на обе стороны зазора конструкции типа «штырь с зазором», расположенной на расстоянии 14 мм справа от плоскости диафрагмы. Полупроводниковая n-i-p-i-n-структура (позиция 8 на фиг. 1) механически зажималась между контактными площадками (см. фиг. 1). Подключение источника питания к n-i-p-i-n-структуре осуществлялось с помощью тонкого проволочного вывода через отверстие в узкой стенке волновода.

Высокочастотные характеристики исследуемого СВЧ-элемента на основе диафрагмы и системы связанных рамочных элементов исследовались с помощью векторного анализатора цепей Agilent PNA-L Network Analyzer N5230A.

На фиг. 3 представлены амплитудно-частотные характеристики коэффициента отражения вблизи пика пропускания запрещенной зоны СВЧ-элемента для такой конструкции.

Таким образом, полученные зависимости показывают возможность эффективного управления характеристиками резонансной особенности в запрещенной зоне исследуемой структуры с использованием n-i-p-i-n-структуры.

Рассмотрим пример технической реализации волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, характеризующихся наличием разрешенной зоны.

Общий вид волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, характеризующихся наличием разрешенной зоны, представлен на фиг. 4.

В отрезке волновода 21 сечением 23 мм × 10 мм, перпендикулярно направлению распространения электромагнитного излучения, расположена металлическая диафрагма 22 толщиной 0.3 мм. Через отверстие 23 (диаметром 3.5 мм) в диафрагме 22 проходит рамочный элемент 24, изготовленный из медной проволоки диаметром 1 мм, обеспечивающий в определенном диапазоне частот передачу электромагнитного излучения из «одного» плеча волноведущей системы в «другое» и наоборот. Центр отверстия 3 находится на расстоянии 11.5 мм от узкой и 8.2 мм от широкой стенок волновода. Система связанных рамочных элементов 24 состоит из двух рамок, расположенных в волноводе по обе стороны от диафрагмы с отверстием, таким образом, что один конец рамок является общим, а свободные концы соединены с металлической мембраной 22. Размеры рамок определяют диапазоны частот, разрешенных и запрещенных для передачи электромагнитного излучения через диафрагму.

Для создания разрешенной зоны размеры рамочных элементов выбирают кратными целому нечетному числу λ/4 распространяющегося в волноводе электромагнитного излучения.

Для создания в запрещенной зоне исследуемой системы резонансной особенности в виде окна прозрачности вводится неоднородность типа «штырь с зазором» (позиция 25 на фиг. 4), выполненная из медной проволоки диаметром 1 мм.

Контактные площадки прямоугольной формы, размером 2 мм × 1 мм каждая, напаивались на обе стороны зазора конструкции типа «штырь с зазором», расположенной на расстоянии 20 мм справа от плоскости диафрагмы. Полупроводниковая n-i-p-i-n-структура механически зажималась между контактными площадками (см. фиг.4). Подключение источника питания к n-i-p-i-n-структуре осуществлялось с помощью тонкого проволочного вывода через отверстие в узкой стенке волновода.

Высокочастотные характеристики исследуемого СВЧ-элемента на основе диафрагмы и системы связанных рамочных элементов исследовались с помощью векторного анализатора цепей Agilent PNA-L Network Analyzer N5230A.

Реализованная конструкция обеспечивает возникновение разрешенной зоны в диапазоне частот 8.67-11.12 ГГц.

На фиг. 5 представлены амплитудно-частотные характеристики коэффициента прохождения вблизи пика запирания разрешенной зоны исследуемого СВЧ-элемента для различных значений тока, протекающего через n-i-p-i-n-структуру.

На вставке фиг. 5 представлены амплитудно-частотные характеристики коэффициента прохождения исследуемого СВЧ-элемента в диапазоне частот 8-12 ГГц.

Как следует из полученных результатов, изменение величины протекающего тока от 0.0 до 300.0 мА при изменении напряжения смещения от 0.0 В до 0.9 В n-i-p-i-n-структуры приводит к изменению коэффициента прохождения от -25,0 дБ до -1,5 дБ на частоте 9.644 ГГц, при этом положение пика запирания изменялось от 10.079 ГГц до 9.644 ГГц.

Таким образом, из полученных результатов следует, что динамический диапазон изменения коэффициента пропускания на резонансной частоте составляет 23.5 дБ. Рассматриваемый диапазон изменения удельной электропроводности соответствует электрическим характеристикам n-i-p-i-n-структуры (типа 2А505), используемой в эксперименте.


ВОЛНОВОДНАЯ СТРУКТУРА С РАЗРЕШЕННЫМИ И ЗАПРЕЩЕННЫМИ ЗОНАМИ
ВОЛНОВОДНАЯ СТРУКТУРА С РАЗРЕШЕННЫМИ И ЗАПРЕЩЕННЫМИ ЗОНАМИ
ВОЛНОВОДНАЯ СТРУКТУРА С РАЗРЕШЕННЫМИ И ЗАПРЕЩЕННЫМИ ЗОНАМИ
ВОЛНОВОДНАЯ СТРУКТУРА С РАЗРЕШЕННЫМИ И ЗАПРЕЩЕННЫМИ ЗОНАМИ
ВОЛНОВОДНАЯ СТРУКТУРА С РАЗРЕШЕННЫМИ И ЗАПРЕЩЕННЫМИ ЗОНАМИ
Источник поступления информации: Роспатент

Показаны записи 71-76 из 76.
26.08.2017
№217.015.d7f7

Способ измерения параметров полупроводниковых структур

Использование: для одновременного определения толщины полуизолирующей подложки, толщины и удельной электропроводности нанесенного на нее сильнолегированного слоя и подвижности свободных носителей заряда в этом слое. Сущность изобретения заключается в том, что способ определения параметров...
Тип: Изобретение
Номер охранного документа: 0002622600
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d9f3

Трехканальный направленный ответвитель свч сигнала на магнитостатических волнах

Использование: для создания частотно-избирательного ответвителя мощности. Сущность изобретения заключается в том, что направленный ответвитель на магнитостатических волнах содержит размещенную на подложке из галлий-гадолиниевого граната микроволноводную структуру из пленки железо-иттриевого...
Тип: Изобретение
Номер охранного документа: 0002623666
Дата охранного документа: 28.06.2017
20.11.2017
№217.015.ef60

Умножитель частоты высокой кратности

Изобретение относится к радиоэлектронике, в частности к СВЧ-умножителям частоты высокой кратности, применяемым для получения сигнала высокой частоты с низким уровнем фазового шума в выходном сигнале. Технический результат заключается в расширении арсенала средств. Умножитель частоты включает...
Тип: Изобретение
Номер охранного документа: 0002628993
Дата охранного документа: 23.08.2017
19.01.2018
№218.016.00bf

Способ определения расстояния до объекта

Изобретение относится к области контрольно–измерительной техники. Способ измерения расстояния до объекта заключается в том, что объект освещают лазерным излучением, отраженное от объекта излучение, интерферирующее в лазере, преобразуют в электрический автодинный сигнал. Лазерное излучение...
Тип: Изобретение
Номер охранного документа: 0002629651
Дата охранного документа: 30.08.2017
20.01.2018
№218.016.1236

Многофункциональное отладочное устройство для микропроцессорных систем

Изобретение относится к области электроники и микропроцессорной техники и может найти обширное применение при отладке, ремонте и эксплуатации широкого спектра микропроцессорных систем и устройств, как уже существующих, так и вновь разрабатываемых, а также при изучении и исследовании принципов...
Тип: Изобретение
Номер охранного документа: 0002634197
Дата охранного документа: 24.10.2017
10.05.2018
№218.016.40ce

Способ повышения октанового числа

Изобретение относится к способу получения увеличения октанового числа бензина на 2,5-3 пункта, заключающемуся в пропускании бензина через пористую основу. Способ характеризуется тем, что данная основа содержит в себе адсорбирующий материал из многослойных углеродных нанотрубок, при этом для...
Тип: Изобретение
Номер охранного документа: 0002648985
Дата охранного документа: 29.03.2018
Показаны записи 81-90 из 116.
09.06.2018
№218.016.5f69

Способ дистанционного контроля движения поверхности объекта

Изобретение относится к области медицинской техники и может быть использовано для дистанционного контроля движения поверхности объекта. Осуществляют генерирование электромагнитного СВЧ-сигнала и его излучение. Принимают интерференционный сигнал, являющийся суммой падающего и отраженного...
Тип: Изобретение
Номер охранного документа: 0002656532
Дата охранного документа: 05.06.2018
20.06.2018
№218.016.6493

Способ измерения наноперемещений

Изобретение относится к области прецизионной контрольно-измерительной техники. Способ измерения наноперемещений заключается в том, что облучают объект лазерным излучением, регистрируют отраженное от объекта излучение, интерферирующее в лазере, встроенным фотодетектором. Преобразуют лазерное...
Тип: Изобретение
Номер охранного документа: 0002658112
Дата охранного документа: 19.06.2018
20.06.2018
№218.016.64cf

Свч фотонный кристалл

Использование: для измерений с использованием СВЧ техники. Сущность изобретения заключается в том, что СВЧ фотонный кристалл выполнен в виде прямоугольного волновода, содержащего четные и нечетные элементы, периодически чередующиеся в направлении распространения электромагнитного излучения,...
Тип: Изобретение
Номер охранного документа: 0002658113
Дата охранного документа: 19.06.2018
14.09.2018
№218.016.87d7

Частотный фильтр свч сигнала на магнитостатических волнах

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотного фильтра. Сущность изобретения заключается в том, что частотный фильтр СВЧ сигнала на магнитостатических волнах содержит магнитный элемент,...
Тип: Изобретение
Номер охранного документа: 0002666968
Дата охранного документа: 13.09.2018
14.09.2018
№218.016.87df

Нелинейный делитель мощности свч сигнала на спиновых волнах

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотно-избирательного делителя мощности с нелинейным эффектом. Делитель мощности СВЧ сигнала содержит единый входной порт, первый и второй выходные порты....
Тип: Изобретение
Номер охранного документа: 0002666969
Дата охранного документа: 13.09.2018
16.10.2018
№218.016.92a9

Способ измерения угла косоглазия

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для измерения угла косоглазия. Получают снимок косящего глаза при съемке камерой в анфас и освещении точечным источником света, расположенным за камерой. Измеряют на снимке расстояние между центром зрачка и...
Тип: Изобретение
Номер охранного документа: 0002669734
Дата охранного документа: 15.10.2018
14.12.2018
№218.016.a6b3

Способ диагностики шизофрении

Изобретение относится к медицине, а именно к области психиатрии, и может быть использовано для диагностики шизофрении. Способ включает в себя определение временной зависимости положения зрачка A(t) при слежении за перемещающимся на экране компьютера по горизонтали по гармоническому закону B(t)...
Тип: Изобретение
Номер охранного документа: 0002674946
Дата охранного документа: 13.12.2018
15.12.2018
№218.016.a7cb

Способ дистанционного измерения внутриглазного давления

Изобретение относится к области медицинской техники и может быть использовано в офтальмологии для дистанционного измерения внутриглазного давления. Техническая проблема заключается в повышении эффективности бесконтактного метода измерений внутриглазного давления за счёт повышения точности и...
Тип: Изобретение
Номер охранного документа: 0002675020
Дата охранного документа: 14.12.2018
13.02.2019
№219.016.b9c2

Газовый свч-сенсор

Использование: для детектирования малых концентраций различных газов и летучих соединений. Сущность изобретения заключается в том, что газовый СВЧ-сенсор содержит микрополосковую линию с заземляющим металлическим слоем и резонатор со слоем газоактивного материала на его поверхности, резонатор...
Тип: Изобретение
Номер охранного документа: 0002679458
Дата охранного документа: 11.02.2019
13.02.2019
№219.016.b9ca

Способ определения параметров магнитной жидкости

Изобретение относится к измерительной технике и может найти применение в различных отраслях промышленности. Cпособ определения параметров магнитной жидкости заключается в воздействии СВЧ-излучения и магнитного поля на магнитную жидкость, помещённую в волновод, измерении коэффициента отражения...
Тип: Изобретение
Номер охранного документа: 0002679457
Дата охранного документа: 11.02.2019
+ добавить свой РИД