×
27.03.2016
216.014.db25

Результат интеллектуальной деятельности: ИНКАПСУЛИРОВАННЫЙ АКТИВАТОР И ЕГО ПРИМЕНЕНИЕ ДЛЯ ЗАПУСКА ГЕЛЕОБРАЗУЮЩЕЙ СИСТЕМЫ ФИЗИЧЕСКИМИ СРЕДСТВАМИ

Вид РИД

Изобретение

№ охранного документа
0002579098
Дата охранного документа
27.03.2016
Аннотация: Группа изобретений относится к способу инкапсулирования ускорителя полимеризации и водным гелирующим системам, содержащим инкапсулированный ускоритель полимеризации с водорастворимыми или диспергируемыми мономерами. Способ включает стадии получения обратной эмульсии, содержащей, в масляной фазе, водный раствор или дисперсию (W1), содержащую указанный ускоритель полимеризации. Причем масляная фаза является (или, по крайней мере, включает) термоотверждаемой смесью изоцианата и гидроксилированного полиалкилдиена или многоатомного спирта. Далее выливают указанную обратную эмульсию в водную фазу (W2) для получения многофазной эмульсии вода/масло/вода, содержащей капли ускорителей в качестве внутренней водной фазы. Затем нагревают указанную многофазную эмульсию при температуре от 50 до 95°C для отверждения упомянутой выше термоотверждаемой смеси в полиуретане и получения капель ускорителя, заключенного в оболочки из полиуретана, диспергированных в воде. Техническим результатом является повышение эффективности герметизации подземных сред, или укрепления почв, или герметизации подземных структур. 3 н. и 14 з.п. ф-лы, 7 табл., 4 пр.

Изобретение относится к инкапсулированному в полиуретан ускорителю (мет)акрилатной гелеобразующей системы, запускаемой физическими средствами, такими как высокий сдвиг, высокое давление, температура, дробление, резание или любое сочетание указанных выше средств, и способу получения этой системы.

Остановка протечек жидкости в недоступных местах, таких как заглубленный трубопровод, стены туннеля или резервуара, является одной из основных технических проблем, с которыми могут сталкиваться операторы. В тяжелых случаях количество потерь жидкости может быть очень важным. Следовательно, существует значительный риск того, что протечка не сможет быть зафиксирована, приводящий к опасным событиям, которые могут произойти, если протекшая жидкость является легковоспламеняемой, взрывоопасной, вредной для окружающей среды или токсичной.

В общем, для решения этой проблемы операторы решают впрыскивать любой тип закупоривающей системы, такой как частицы, волокна или цемент, надеясь, что протечки будут заполнены или замещены и что они смогут восстановить флюидонепроницаемость трубы или резервуара.

Другой подход состоит в развитии "умных" систем, которые могут быть установлены контролируемым образом и могут быть впрыснуты непосредственно в место протечки. В данном случае может быть сэкономлено значительное количество времени между началом протечки или выброса и восстановлением, тем самым восстанавливая возможность прохождения потока или возможность хранения жидкости.

Такие закупоривающие системы могут применяться особенно, но не исключительно, для герметизации подземной среды и для укрепления почвы и герметизации подземной среды, такой как туннели метрополитена, канализационные сети, подземные автомобильные парковки, отстойные резервуары, плавательные бассейны, шахтные стволы и плотины. Среди многих технических решений, которые были предложены, могут быть упомянуты цементный раствор, кремниевый раствор и растворы синтетических смол. Синтетические смолы, полученные из ненасыщенных алифатических кислот, более конкретно, из акриловой кислоты и метакриловой кислоты, особенно рекомендуемы. Таким образом, в патенте FR-A-1113937 описано применение производного акриловой кислоты, такого как акриламид, N-алкилакриламиды, акрилонитрил, алкилакрилаты и акрилаты металлов и алкилидендиакриламид.

Критическим недостатком таких композиций является потенциальная токсичность некоторых из этих соединений, более конкретно, композиций на основе акриламида.

Экологические требования нетоксичности продуктов, которые могут контактировать с водой, вызвали необходимость в поиске соединений, пригодных в качестве замены. Таким образом, в патенте GB-A-1303456 описаны композиции, содержащие гидроксиалкилакрилат или -метакрилат, которые могут быть соединены с диакрилатом или диметакрилатом алкиленгликоля, растворимой солью серебра и персульфатом металла. Эти композиции не могут содержать высокие концентрации мономеров, так как экзотермическая реакция их полимеризации вызывает сильное расширение и образование пены и это не применимо в некоторых областях, особенно в операциях закупоривания трещин в подземных структурах. Основным недостатком такой композиции является контроль времени затвердевания. Конечно, во многих областях зоны протечки не доступны и часто находятся далеко от оборудования для закачки/впрыскивания. Как следствие, были проведены оценки задерживающих агентов, которые могут применяться в отдаленных местах и даже при повышенных температурах, как указано, например, в GB 2226066(A).

В общем, не существует ни одной системы, которая бы полностью удовлетворяла в смысле точности контроля, и все еще существует сильная потребность в улучшенных гелеобразующих группах.

Данное изобретение относится к такой улучшенной системе и, более точно, к способу получения инкапсулированного ускорителя для запуска быстрого гелирования полимеризуемой системы.

Более точно, данное изобретение относится к способу инкапсулирования ускорителя полимеризации водорастворимых или диспергируемых в воде мономеров (обычно, водорастворимых или диспергируемых мономеров, содержащих акрилированный или метакрилированный полиоксиэтиленовый и/или полиоксипропиленовый мономер), где указанный способ включает стадии:

a) получения обратной эмульсии, содержащей, в масляной фазе, водный раствор или дисперсию (обозначенную как W1), содержащую указанный активатор полимеризации, где масляная фаза является (или, по крайней мере, включает) термоотверждаемой смесью изоцианата и полиалкилдиен гидроксилированного или многоатомного спирта,

b) выливания обратной эмульсии со стадии a) в водную фазу (обозначенную как W2) для получения многофазной эмульсии вода/масло/вода, содержащей капли активаторов в качестве внутренней водной фазы, и затем

c) нагревания многофазной эмульсии, полученной на стадии b), при температуре от 50 до 95°C для отверждения полиизоцианата в полиуретане и получения капель активатора (W1), заключенного в оболочки из полиуретана, диспергированных в воде (W2).

Данное изобретение также относится к конкретным гелирующим группам на основе инкапсулированного ускорителя, полученным на стадиях a)-c), также содержащим водорастворимый или вододиспергируемый акрилированный или метакрилированный полиоксиэтиленовый и/или полиоксипропиленовый мономеры вместе с инициаторами полимеризации, такими как перекиси.

Эта гелирующая группа содержит:

i) водорастворимые или диспергируемые мономеры, содержащие акрилированный или метакрилированный полиоксиэтиленовый и/или полиоксипропиленовый мономеры,

ii) инициатор полимеризации, диспергированный в указанном мономере i), и

iii) инкапсулированный ускоритель полимеризации, полученный способом в соответствии с данным изобретением.

Согласно конкретному варианту, инициаторы полимеризации ii) могут быть инкапсулированы с ускорителем iii). В этом случае инициаторы и ускорители, оба, обычно находятся во внутренней водной фазе внутри капсул, полученных в соответствии с данным изобретением. Такое совместное инкапсулирование может быть осуществлено, например, получением на стадии a) способа в соответствии с данным изобретением эмульсии, которая содержит инициаторы и усилители в водном растворе или дисперсии (W1).

Независимо от природы конкретной гелеобразующей группы, операцию гелирования проводят через реакцию полимеризации, инициированную выделением ранее инкапсулированного ускорителя в водорастворимом или диспергируемом полимере. Для осуществления такого выделения в подходящее время ускоритель инкапсулируют перед применением путем создания многофазной эмульсии в соответствии с данным изобретением. Высвобождение достигается любыми физическими средствами, которые позволяют выделить ускоритель полимеризации из полиуретановых капсул, например применением высокого сдвига, высокого давления, температуры, дробления, и/или резания.

На стадии a) в масляную фазу может быть необязательно добавлен растворитель или пластификатор. Этим растворителем или пластификатором может быть, например, диизобутиловый эфир сукцината, глутарата или адипата. Добавление растворителя или пластификатора позволяет варьировать механические свойства полиуретановой оболочки.

Необязательно на стадии a) неионное поверхностно-активное вещество добавляют в водную фазу W1, где указанный активатор диспергирован или растворен. Неионное поверхностно-активное вещество может быть, например, ди-C1-C8 алкиловым эфиром или насыщенной или ненасыщенной жирной кислотой, имеющей от 12 до 22 атомов углерода.

Предпочтительно, водная фаза W2 со стадии b) содержит минеральную соль, например NaCl, и ксантановую камедь или другой подобный полимер. Минеральную соль применяют для уравновешивания осмотического давления для предотвращения разрушения обратной эмульсии, полученной со стадии a). Ксантановую камедь применяют в качестве защитного коллоида и реологического агента. Могут применяться любые другие подобные полимеры, включая, например, желатин, пектин, производные целлюлозы, аравийскую камедь, гуаровую камедь, камедь бобов рожкового дерева, камедь тары, камедь кассии, агар, модифицированный крахмал, такой как н-октениловый крахмал или пористый крахмал, альгинаты, каррагинаны, хитозан, склероглюкан, диутанполивиниловый спирт, поливинилпирролидон и их смеси.

Ускоритель полимеризации, который применяют в способе в соответствии с данным изобретением и в гелирующей группе в соответствии с данным изобретением, предпочтительно является соединением, которое ускоряет полимеризацию водорастворимых или вододиспергируемых мономеров, содержащих акрилированный или метакрилированный полиоксиэтиленовый и/или полиоксипропиленовый мономер (также называемых "макромономеры" из-за присутствия полиоксиэтиленовых и/или полиоксипропиленовых цепей в мономере).

Ускоритель полимеризации, который применяют в способе с водорастворимыми или вододиспергируемыми макромономерами, имеет следующую общую формулу (I):

CH2=CR1-CO-(O-CH2-CHR2)n-OR3 (I),

где R1 является атомом водорода или метильным радикалом,

R2 является атомом водорода или метильным радикалом,

R3 является атомом водорода, метильным радикалом или CH2=CR1-CO- группой,

n является целым или дробным числом от 3 до 25.

Гелирующая система в соответствии с данным изобретением предпочтительно включает такие водорастворимые или вододиспергируемые макромеры формулы (I).

Предпочтительные водорастворимые или вододиспергируемые мономеры включают смесь модифицированного метакрилатом полиэтиленоксида. Полиэтиленоксидная цепь, включающая около 1000 г/моль в виде коротких цепей, не является достаточно гидрофильной, чтобы уравновесить гидрофобность метакрилатных концевых групп (особенно при высокой температуре и высокой минерализации), с другой стороны, более длинные цепи дают менее реакционноспособные молекулы. Предпочтительные мономеры соответствуют формуле:

где n равно числу от 15 до 25, включая предельные значения, и/или

где n равно числу от 10 до 20, включая предельные значения.

Кроме того, эти мономеры являются нелетучими, классифицируются как полимеры и не являются токсичными.

Согласно конкретному варианту, водорастворимые или вододиспергируемые мономеры, применяемые в композиции в соответствии с данным изобретением, являются смесью, содержащей, по крайней мере, два различных вида мономеров формулы (I), а именно первую часть мономеров, где R3 является метильным радикалом (далее обозначенную как монофункциональные мономеры I-1); и вторую часть мономеров, где R3 является CH2=CR1-CO-группой (далее обозначенную как бифункциональные мономеры I-2). Согласно экономичному варианту осуществления способа, эта смесь мономеров может предпочтительно быть получена взаимодействием смеси двух соединений (A1) и (A2), имеющих следующие формулы:

HO-(O-CH2-CHR2)n-OMe (A1)
HO-(O-CH2-CHR2)n-OH (A2),

где R2 такой, как определен выше,

с (мет)акриловой кислотой, хлоридом или ангидридом (предпочтительно, ангидридом), обычно, (мет)акриловым ангидридом формулы (CH2=CR1-C)2O, где R1 такой, как определен выше.

Предпочтительно, в данном способе получения соединения (A1) и (A2) применяют так, чтобы получить среднее число -OH групп от 1,1 до 1,5 (A1 несет одну -OH и A2 несет две). В связи с этим предпочтительно, чтобы молярное отношение (A2)/(A1) было от 10:90 до 50:50.

В зависимости от температурных условий конечного применения, либо водорастворимые соли перкислот, такие как персульфат натрия или персульфат аммония для низкой температуры (10-40°C), либо водорастворимые или вододиспергируемые перекиси, такие как гидроперекись трет-бутила (ГПТБ), гидроперекись трет-амила и гидроперекись кумена для температуры свыше 40°C, применяют в качестве инициатора полимеризации и смешивают с мономерами без взаимодействия в течение, по крайней мере, 2-3 часов при целевой температуре. Реакция полимеризации мономеров может быть легко инициирована добавлением к указанным мономерам аминового ускорителя. Тогда жесткие гели схватываются в течение от нескольких минут до нескольких часов в зависимости от целевой области применения и от того, как далеко место впрыска от места протечки, в зависимости от скорости закачивания. Гелевая пробка должна быть размещена при объединенном действии инициатора и ускорителя, концентрация которых адаптирована к условиям (особенно температуре) мономеров в удаленном месте гелирования.

Смесь:

i) водорастворимых или диспергируемых мономеров, содержащих акрилат или метакрилат полиоксиэтиленового и/или полиоксипропиленового мономера, и

ii) инициаторов полимеризации, диспергированных в i),

является стабильной при хранении или впрыскивании, но начинает полимеризоваться при добавлении ускорителя и контакте с ним в условиях давления и температуры в удаленном месте, в котором требуется осуществление обработки.

Ускоритель полимеризации, также называемый активатором, обычно является аминосоединением, таким как алкиламин, полиалкиленамин или полиалкиленимин, предпочтительно, содержащим третичные аминогруппы, алкильная или алкиленовая часть которых содержит 2-4 атома водорода.

Первичные или вторичные амины или гидрохлориды аминов также могут применяться, но скорость полимеризации получается с такими ускорителями ниже, чем с третичными аминами.

Аминовый ускоритель полимеризации может включать другие химические функциональные группы в формуле, такие как, например, нитрил или гидроксил, или функциональные группы сложного эфира.

Функциональные группы сложного эфира могут, в частности, быть образованы в результате реакции этерификации с акриловой кислотой или метакриловой кислотой одной или более гидроксильных функциональных групп, присутствующих в формуле амина.

Предпочтительные третичные амины включают диэтиламинопропионитрил, триэтаноламин, диметиламиноацетонитрил, диэтилентриамин, Ν,Ν-диметиланилин, диметиламиноэтилметакрилат, диметиламиноэтилакрилат, триэтаноламинметакрилат и триэтаноламинакрилат.

Предпочтительным ускорителем является полиэтиленимин (ПЭИ), коммерчески доступный от BASF под торговым наименованием Lupasol®.

Ускоритель обычно применяют в количестве от 0,01% до 10% массовых по отношению к массе полимеризуемых мономеров и, предпочтительно, от 0,1% до 1,0%. Могут применяться другие ускорители, катализаторы или соускорители, такие как ионы металлов, таких как медь или железо, в качестве катализаторов активации.

Изоцианаты, применение которых в данном изобретении является наиболее предпочтительным, включают альфа-, омега-алифатические диизоцианаты.

Такие алифатические диизоцианаты, конденсированные с полиаминами/многоатомными спиртами, являются либо изоцианатными молекулами, обозначенными как мономеры, то есть не поликонденсированными, либо более тяжелыми, получаемыми из одного или более олигоконденсатов или смесей олигоконденсатов, необязательно с мономером.

Как объясняется ниже, широко применяемыми олигоконденсатами являются биурет, димер и тример (в области конденсации термин "тример" применяют для описания смесей, получающихся при образовании изоциануровых колец из трех изоцианатных функциональных групп; фактически, кроме тримера, и более тяжелые продукты получают во время реакции тримеризации). Особенно в качестве мономера можно отметить полиметилендиизоцианаты, например ТМДИ (тетраметилендиизоцианат) и ГДИ (гексаметилендиизоцианат формулы: OCN-(CH2)6-NCO и его изомеры (метилпентаметилендиизоцианат)).

Желательно, чтобы структура одного из изоцианатных мономеров, для части основной цепи, соединяющая две изоцианатных функциональных группы, содержала, по крайней мере, одну полиметиленовую последовательность. Можно отметить соединения, полученные конденсацией с диолами и триолами (карбаматами и аллофанатами) в стехиометрических условиях. Таким образом, в изоцианатных композициях возможно обнаружить: изоциануратные функциональные группы, которые могут быть получены катализируемой циклоконденсацией изоцианатных функциональных групп с самими собой, мочевинные функциональные группы, которые могут быть получены реакцией изоцианатных функциональных групп с водой или первичными или вторичными аминами, биуретные функциональные группы, которые могут быть получены конденсацией изоцианатных функциональных групп с самими собой в присутствии воды и катализатора или реакцией изоцианатных функциональных групп с первичными или вторичными аминами, уретановые функциональные группы, которые могут быть получены реакцией изоцианатных функциональных групп с гидроксильными функциональными группами.

Оболочки из полиуретана, полученные на стадии c), обычно имеют средний диаметр от 10 до 1500 мкм, предпочтительно от 300 до 800 мкм.

Данное изобретение далее относится к способу герметизации подземных сред и укрепления почв и герметизации подземных структур, включая туннели метрополитена, канализационные сети, подземные автомобильные парковки, отстойные резервуары, плавательные бассейны, шахтные стволы и плотины.

Этот способ включает стадии:

e1) впрыска в указанные окружающие почвы или структуры водной гелирующей группы, такой как определена выше, включающей ускоритель полимеризации, инкапсулированный в полиуретановые капсулы и мономеры, и

e2) запуска полимеризации полимера физическими средствами, например, такими как высокий сдвиг, высокое давление, температура, дробление, резание, при которых инкапсулированный ускоритель полимеризации высвобождается из полиуретановых капсул.

Изобретение далее иллюстрировано следующими иллюстративными примерами.

Пример 1

Конкретную гелирующую группу получают на следующих стадиях:

стадия a):

водный раствор полиэтиленимина (ПЭИ, Lupasol P от BASF) диспергируют в смеси OH функционализированного бутадиена (Poly BD R45HT-LO от Sartomer), изофорон диизоцианатного тримера, который поставляется разбавленным с 30% масс. бутилацетатом (Tolonate IDT 70B от Perstorp), и разбавляют Rhodiasolv DIB (диизобутиловый эфир сукцината, глутарата, адипата от Rhodia).

Для облегчения процесса эмульгирования эмульсию ПЭИ в OH функциональном бутадиене разбавляют DIB, который получают первым, и затем изоцианат добавляют к уже полученной эмульсии.

Размер частиц в эмульсии корректируют скоростью перемешивания.

Различные количества ингредиентов собраны в таблице 1:

Таблица 1
Ингредиенты Масса (г)
ОН функционализированный бутадиен Poly BD R45HT-LO от Sartomer 186,9
DIB 186,9
ПЭИ 532,7
Tolonate IDT 70B от Perstorp 93,5
Всего 1000,0

Время смешивания после добавления изоцианата составляет 5 мин. Затем обратную эмульсию быстро переносят в водную фазу для получения многофазной эмульсии со стадии b).

Стадия b)

Обратную эмульсию со стадии a) затем диспергируют при энергичном перемешивании для получения многофазной эмульсии. На этой стадии необходимо очень хорошее и гомогенное перемешивание для сохранения распределения размера частиц настолько узким, насколько это возможно.

Для стабилизации суспензии и избежания возгорания капсул, пока полиуретан не полностью поперечно сшит, дисперсию получают в солевом растворе ксантана. Соль (здесь NaCl в количестве 20% масс.) обеспечивает баланс осмотического давления между внутренним ПЭИ и внешним раствором ксантана. Несоответствие осмотического давления может вызвать выброс обратной эмульсии. Применяемый здесь ксантан является "защитным коллоидом" и реологическим агентом. Конечно, он обладает очень хорошими суспендирующими свойствами, а также стабилизирует эмульсию в соли и даже при повышенной температуре отверждения (вплоть до 80°C здесь).

Поскольку гомогенная смесь обеспечивается во время стадии b), распределение частиц по размеру непосредственно связано со скоростью смешивания. Скорость вращения 280 об/мин дает размер частиц приблизительно 400 мкм.

Типовые условия работы представлены ниже:

- перенос эмульсии со стадии a) в реактор (содержащий 0,45% масс. ксантана в 20% масс. водного раствора NaCl) при сдвиге 280 об/мин, нагретый до 66°C (температура колбы),

- после добавления продолжается перемешивание при 280 об/мин в течение 15 мин,

- снижение скорости до минимальных 37 об/мин и выдерживание в течение 2 часов для отверждения эластомера.

Для 1000 г эмульсии со стадии 1 количества, необходимые на второй стадии, показаны в таблице 2 ниже:

Таблица 2
Ингредиенты Масса (г)
Деионизированная вода 700,7
Ксантан (Rhodopol 23P) 4,0
NaCl Normapur 177,0
Всего 881,7

Пример 2

В круглодонную колбу с инертным азотом смесь метоксиполиэтиленгликоля (M=750 г/моль) и полиэтиленгликоля (M=1000 г/моль), соответственно 67% и 33% массовых, выливают при 50°C. Метоксиполиэтиленгликоль и полиэтиленгликоль имеют, соответственно, 1 и 2 OH функциональных групп на молекулу. Необходимое количество метакрилового ангидрида (AM2O) для получения молярного отношения AM2O/OH=1 добавляют в реакционную среду. Перед применением AM2O стабилизируют 1000 ч./млн фенотиазина и 1000 ч./млн топанола.

Количество и природа применяемых продуктов представлены в таблице 3 ниже:

Таблица 3
Поставщик Чистота М (г/моль) м (г)
Метакриловый ангидрид АМ2О Aldrich 94% 154,16 25,5
ПЭГ 1000 Fluka 100% 1000 33
Метокси ПЭГ 750 Aldrich 100% 750 67
Фенотиазин Acros 99% 199,3 0,024
Topanol A Brenntag 78,5-100% 178 0,024

Реакционную среду нагревают до 80°C в течение 10 ч при перемешивании магнитной мешалкой (с ожидаемым выходом этерификации 80%).

Затем колбу помещают в вакуум (30 мбар) и нагревают до 90°C. При этом давлении и температуре полученную метакриловую кислоту удаляют паровой отгонкой. Отгонка считается завершенной, когда остаточное содержание метакриловой кислоты составит ниже 2%. Полученный продукт разбавляют водой до 70%. Этот материал далее назван "ПЭО-метакрилатные мономеры".

Пример 3

Капсулы из примера 1 получают с ПЭО-метакрилатными мономерами из примера 2.

Композиции загущают с применением гидроксиэтилцеллюлозы (ГЭЦ) Cellosize 10-HV от Dow. Твердый полимер гидрируют в течение, по крайней мере, 1 ч при перемешивании в деионизированной воде при 0,5% масс. перед применением.

Другие компоненты осторожно смешивают друг с другом в количествах, представленных в таблице 4:

Таблица 4
Композиция Композиция № 2-1 Композиция № 2-2
м (г) м (г)
ПЭО-метакрилатные мономеры 3,75 3,75
ГЭЦ при 0,5% 21,25 21,25
Персульфат натрия 0,125 0,25
Капсулы из примера 1 0,25 0,25

Половину от каждой композиции режут в течение 10 сек при 16000 об/мин с применением роторного статорного смесителя (Ultra-Turrax T25 basic от IKA). Растворы резаных и не резаных композиций выстаивают при 21°C, время отверждения представлено в таблице 5 ниже.

Таблица 5
Композиция № 2-1 Композиция № 2-2
Резаная Ultra-Turrax гелирование через 105 мин гелирование через 65 мин
Не резаная гелирование через 25 часов гелирование через 21 час

Результаты, приведенные в представленной выше таблице, показали, что резание в роторном статорном смесителе приводит к выделению активатора полимеризации и вызывает гелирование композиции.

Пример 4: высокотемпературная композиция

Для получения подходящей температурной стойкости для ПЭО-метакрилатных мономеров при высокой температуре применяют более термостойкий окислитель и дополнительное количество ингибитора добавляют в систему. Применяемым ингибитором является 4-гидрокси-2,2,6,6-тетраметилпиперидин-1-оксил (или Hydroxy-TEMPO).

Капсулы из примера 1 составляют с ПЭО-метакрилатными мономерами из примера 2.

Композиции загущают с применением гидроксиэтилцеллюлозы (ГЭЦ) Cellosize 10-HV от Dow. Твердый полимер гидрируют в течение, по крайней мере, 1 ч при перемешивании в деионизированной воде при 0,5% масс. перед применением.

Другие компоненты осторожно смешивают друг с другом в количествах, представленных в таблице 6:

Таблица 6
Композиция Композиция № 3-1
м (г)
ПЭО-метакрилатные мономеры 3,75
ГЭЦ при 0,5% 21,25
Трет-бутилгидроперекись при 70% в воде 0,10
Капсулы из примера 1 0,25
Hydroxy-TEMPO при 1% в воде 0,19

Затем половину от каждой композиции режут в течение 10 сек при 16000 об/мин с применением роторного статорного смесителя (Ultra-Turrax T25 basic от IKA). Растворы резаных и не резаных композиций помещают в печь и нагревают до 80°C, время отверждения представлено в таблице 7 ниже

Таблица 7
Композиция № 3
Резаная Ultra-Turrax 45 мин
Не резаная 210 мин

Принимая во внимание, что в печи образцам требуется около 60 минут для достижения 80°C и они имеют температуру 65°C через 45 мин, представленные выше результаты показывают, что резаный образец активируется очень быстро при повышенной температуре, в то время как не резаный образец остается стабильным в течение пары часов при 80°C без какой-либо реакции.


ИНКАПСУЛИРОВАННЫЙ АКТИВАТОР И ЕГО ПРИМЕНЕНИЕ ДЛЯ ЗАПУСКА ГЕЛЕОБРАЗУЮЩЕЙ СИСТЕМЫ ФИЗИЧЕСКИМИ СРЕДСТВАМИ
ИНКАПСУЛИРОВАННЫЙ АКТИВАТОР И ЕГО ПРИМЕНЕНИЕ ДЛЯ ЗАПУСКА ГЕЛЕОБРАЗУЮЩЕЙ СИСТЕМЫ ФИЗИЧЕСКИМИ СРЕДСТВАМИ
ИНКАПСУЛИРОВАННЫЙ АКТИВАТОР И ЕГО ПРИМЕНЕНИЕ ДЛЯ ЗАПУСКА ГЕЛЕОБРАЗУЮЩЕЙ СИСТЕМЫ ФИЗИЧЕСКИМИ СРЕДСТВАМИ
ИНКАПСУЛИРОВАННЫЙ АКТИВАТОР И ЕГО ПРИМЕНЕНИЕ ДЛЯ ЗАПУСКА ГЕЛЕОБРАЗУЮЩЕЙ СИСТЕМЫ ФИЗИЧЕСКИМИ СРЕДСТВАМИ
ИНКАПСУЛИРОВАННЫЙ АКТИВАТОР И ЕГО ПРИМЕНЕНИЕ ДЛЯ ЗАПУСКА ГЕЛЕОБРАЗУЮЩЕЙ СИСТЕМЫ ФИЗИЧЕСКИМИ СРЕДСТВАМИ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 104.
29.06.2018
№218.016.68c9

Топливный фильтр с устройством высвобождения присадки

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания (ДВС). Топливный фильтр (1) содержит фильтрующий элемент (4), а также присадочный резервуар (13) в корпусе (2, 3). Фильтрующий элемент входит в контакт со съемной крышкой (3) корпуса и имеет фильтрующее...
Тип: Изобретение
Номер охранного документа: 0002659118
Дата охранного документа: 28.06.2018
06.07.2018
№218.016.6d10

Адаптивный парозащитный барьер

Изобретение относится к применению барьера против водяного пара, а также к конструктивному элементу, содержащему данный барьер. В качестве барьера используют пленки, ткани или слоя из материала P. При этом материал P содержит по меньшей мере один сополимер A, представляющий собой полиамид типа...
Тип: Изобретение
Номер охранного документа: 0002660122
Дата охранного документа: 05.07.2018
13.09.2018
№218.016.8703

Топливный фильтр и патрон для такого фильтра с встроенным присадочным резервуаром

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания (ДВС). В фильтрующем патроне (СС) для топливного фильтра фильтрующий элемент (4) и присадочный модуль соединены и расположены друг над другом для обеспечения их введения в виде единого узла внутрь...
Тип: Изобретение
Номер охранного документа: 0002666829
Дата охранного документа: 12.09.2018
24.11.2018
№218.016.a08c

Композиция на основе оксидов циркония, церия, ниобия и олова, способы получения и применение для катализа

Изобретение относится к каталитической композиции для обработки выхлопных газов. Композиция представляет собой композицию на основе оксидов циркония, церия, ниобия и олова с массовым содержанием оксида церия 5-50%, оксида ниобия - 5-20%, оксида олова – 1-10% и с содержанием оксида циркония,...
Тип: Изобретение
Номер охранного документа: 0002673295
Дата охранного документа: 23.11.2018
30.11.2018
№218.016.a25d

Новый способ получения осажденного диоксида кремния, новый осажденный диоксид кремния и варианты его использования, в частности, для армирования полимеров

Изобретение может быть использовано в химической промышленности. Осажденный диоксид кремния характеризуется удельной площадью поверхности по ВЕТ от 45 до 550 м/г, содержанием поликарбоновой кислоты и соответствующего карбоксилата, выраженным как общее содержание углерода, по меньшей мере 0,15%...
Тип: Изобретение
Номер охранного документа: 0002673521
Дата охранного документа: 27.11.2018
02.12.2018
№218.016.a2b5

Жидкости для гидроразрыва на основе ассоциативных полимеров и лабильных поверхностно-активных средств

Настоящее изобретение относится к жидкостям для гидроразрыва подземного пласта, используемого при добыче углеводородов из подземной формации. Жидкость для гидроразрыва, содержащая в водной среде ассоциативный полимер и лабильное поверхностно-активное средство - ЛПАВ в количестве, достаточном...
Тип: Изобретение
Номер охранного документа: 0002673832
Дата охранного документа: 30.11.2018
20.02.2019
№219.016.be74

Композиция на основе оксидов циркония, церия, иттрия, лантана и другого редкоземельного элемента, способ получения и применение в катализе

Настоящее изобретение относится к композиции катализатора или основы для катализатора, к способу ее получения и применению ее в катализе, в частности для обработки выхлопных газов двигателей внутреннего сгорания. Описана композиция по изобретению на основе оксида циркония с концентрацией,...
Тип: Изобретение
Номер охранного документа: 0002398629
Дата охранного документа: 10.09.2010
01.03.2019
№219.016.ce52

Композиция с повышенной кислотностью на основе оксидов циркония, кремния и, по меньшей мере, одного другого элемента, выбранного из титана, алюминия, вольфрама, молибдена, церия, железа, олова, цинка и марганца

Изобретение относится к области каталитической очистки выхлопных газов. Композиция выполнена на основе оксида циркония, оксида кремния и одного оксида другого элемента М, выбранного из титана, алюминия, вольфрама, молибдена, церия, железа, олова, цинка и марганца в массовых пропорциях этих...
Тип: Изобретение
Номер охранного документа: 0002425711
Дата охранного документа: 10.08.2011
01.03.2019
№219.016.cff6

Композиция на основе оксида циркония, оксида титана или смешанного оксида циркония и титана, нанесенная на носитель из оксида кремния, способы ее получения и ее применение в качестве катализатора

Изобретение может быть использовано в неорганической химии. Каталитическая композиция содержит по меньшей мере один оксид на носителе, полученный на основе оксида циркония, оксида титана или смешанного оксида циркония и титана, нанесенный на носитель на основе оксида кремния. После обжига при...
Тип: Изобретение
Номер охранного документа: 0002448908
Дата охранного документа: 27.04.2012
11.03.2019
№219.016.dc52

Полиамид высокой текучести

Изобретение относится к полиамиду, который может быть получен полимеризацией в присутствии, по меньшей мере: (i) мономеров двухосновных карбоновых кислот и диаминов или их солей; (ii) от 0,05 до 0,5% мол., по отношению к суммарному числу молей мономеров, образующих полиамид, полифункционального...
Тип: Изобретение
Номер охранного документа: 0002408614
Дата охранного документа: 10.01.2011
Показаны записи 71-76 из 76.
25.08.2017
№217.015.c44d

Способ выявления неисправности устройства для добавления присадки в топливо для транспортного средства и система для реализации указанного способа

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания. Предложен способ выявления неисправности устройства для добавления присадки в топливо для транспортного средства с двигателем внутреннего сгорания, причем указанный способ включает: этап анализа...
Тип: Изобретение
Номер охранного документа: 0002618148
Дата охранного документа: 02.05.2017
26.08.2017
№217.015.e6dc

Способ предотвращения эрозии почв

Группа изобретений относится к способу предотвращения эрозии почв, способу предотвращения стока воды с почвы, а также к почве, прошедшей противоэрозионную обработку. Способ заключается в том, что катионный гуар наносят на почву или вносят в почву. Достигаемый при этом технический результат...
Тип: Изобретение
Номер охранного документа: 0002626928
Дата охранного документа: 02.08.2017
26.08.2017
№217.015.ecb9

Способ получения алкоксифенола и алкоксигидроксибензальдегида

Изобретение относится к способу получения алкоксифенола из гидроксифенола, а также к вариантам способа получения алкоксигидроксибензальдегида из гидроксифенола. Способ получения алкоксифенола включает реакцию О-алкилирования по меньшей мере одного гидроксифенола с образованием по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002628525
Дата охранного документа: 17.08.2017
19.01.2018
№218.016.0d3f

Получение амфифильных блок-сополимеров путем контролируемой радикальной мицеллярной полимеризации

Изобретение относится к способу получения блок-сополимеров, к блок-сополимеру и его применению в качестве регулятора реологических свойств жидкой среды. Способ получения блок-сополимера включает этап (Е) мицеллярной радикальной полимеризации. На данном этапе в водной среде (М) приводят в...
Тип: Изобретение
Номер охранного документа: 0002632886
Дата охранного документа: 11.10.2017
13.02.2018
№218.016.1ff9

Способ получения сульфонимидного соединения и его солей

Изобретение относится к способу получения сульфонимидного соединения формулы (Rf-SO)(Rf-SO)NH в водной форме, где Rf и Rf независимо друг от друга выбирают из группы, включающей атом фтора и группы, содержащие от 1 до 4 атомов углерода, выбранных из перфторалкилов, фторалкилов, из смеси M1,...
Тип: Изобретение
Номер охранного документа: 0002641294
Дата охранного документа: 17.01.2018
04.04.2018
№218.016.309e

Новый способ получения осажденных диоксидов кремния, новые осажденные диоксиды кремния и их применения, в частности, для армирования полимеров

Изобретение может быть использовано в производстве изделий на основе полимерных композиций, таких как шины. Осажденный диоксид кремния имеет удельную поверхность БЭТ от 45 до 550 м/г. Содержание поликарбоновой кислоты в осажденном диоксиде кремния наряду с соответствующим карбоксилатом,...
Тип: Изобретение
Номер охранного документа: 0002644859
Дата охранного документа: 14.02.2018
+ добавить свой РИД