×
10.02.2016
216.014.cea5

СПОСОБ ПОЛУЧЕНИЯ МЕТАТИТАНОВОЙ КИСЛОТЫ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение может быть использовано в неорганической химии. Способ получения метатитановой кислоты включает взаимодействие соединения титана с неорганической солью лития в присутствии лимонной и азотной кислот и последующий трехступенчатый отжиг. Полученный продукт обрабатывают уксусной кислотой, фильтруют, промывают дистиллированной водой и сушат. В качестве соединения титана используют раствор тетраизопропоксититана с содержанием Ti(IV) 16,2 мас.%. В качестве неорганической соли лития используют карбонат лития. Лимонную и азотную кислоты вводят в количестве 0,625 моль/Ti и 0,05-0,06 моль, соответственно. Отжиг проводят при температурах 250-270°С, 430-450°С и 520-550°С. Изобретение позволяет упростить получение метатитановой кислоты с получением чистого мелкодисперсного продукта. 2 пр.
Основные результаты: Способ получения метатитановой кислоты, включающий взаимодействие соединения титана с неорганической солью лития в присутствии лимонной и азотной кислот с последующим трехступенчатым отжигом и обработкой полученного продукта уксусной кислотой, фильтрованием, промыванием дистиллированной водой и сушкой, отличающийся тем, что в качестве соединения титана используют раствор тетраизопропоксититана с содержанием Ti(IV) 16,2 мас.%, а в качестве неорганической соли лития используют карбонат лития, при этом лимонную и азотную кислоты вводят в количестве 0,625 моль/Ti и 0,05-0,06 моль, соответственно, а отжиг проводят при температурах 250-270°С, 430-450°С и 520-550°С.
Реферат Свернуть Развернуть

Изобретение относится к области химической промышленности, в частности к получению неорганических соединений титана.

Известен способ получения порошка метатитановой кислоты, включающий взаимодействие порошков оксида титана и карбоната лития при температурах отжига 700-950°С в течение 24 ч с последующей обработкой в 0.5 Μ азотной кислоте при температуре 30°С в течение 14 дней. Полученный продукт промывали дистиллированной водой и сушили на воздухе (S. Awano, A. Saiki, Y. Tamaura, Μ. Abe, Synthesis and Ion Exchange Properties of Monoclinic Titanic Acid (H2TiO3), Journal of Ion Exchange 14 (2003) 181-184).

Недостатками известного способа являются: высокая температура отжига, длительность процесса, высокая концентрация азотной кислоты.

Известен способ получения порошка метатитановой кислоты, включающий взаимодействие порошков оксида титана и карбоната лития в присутствии безводного спирта, сушку при температуре 100°С в течение 2 ч, отжиг при температуре 850°С в течение 24 ч с последующей обработкой порошка в растворе соляной кислоты (X. Shi, Ζ. Zhang, D. Zhou, L. Zhang, B. Chen, L. Yu, Synthesis of Li+ adsorbent (Н2ТiO3) and its adsorption properties, Transactions of Nonferrous Metals Society of China 23 (2013) 253-259).

Недостатками известного способа являются: высокая температура отжига, большая размерность частиц порошка метатитановой кислоты (1-2 мкм) и наличие примеси Li+ в структуре конечного продукта (16,3%).

Известен способ получения порошка метатитановой кислоты, включающий взаимодействие диоксида титана с нитратом лития в водном растворе в присутствии лимонной и азотной кислот, вводимых в количестве 1 моль/Li+ и 0.02-0.04 моль соответственно, сушку при температуре 150°С, трехступенчатый отжиг полученного промежуточного продукта при температуре 280-300°С, 400-420°С, 470-490°С соответственно и последующую его обработку уксусной кислотой с концентрацией 0.05 Μ при температуре 60°С в течение 4 ч, фильтрование, промывание дистиллированной водой и сушку на воздухе (Патент RU 2431603, МПК С01G 23/00, 2011 г.).

Недостатками известного способа являются его сложность, которая обусловлена использованием в качестве исходного соединения титана - труднорастворимого соединения диоксида титана, большая размерность частиц порошка метатитановой кислоты (0.2-0.3 мкм), высокая длительность обработки раствором уксусной кислоты (4 ч).

Таким образом, перед авторами стояла задача упростить способ получения метатитановой кислоты, обеспечив получение чистого продукта с частицами меньшей размерности.

Поставленная задача решена в предлагаемом способе получения метатитановой кислоты, включающем взаимодействие соединения титана с неорганической солью лития в присутствии лимонной и азотной кислот с последующим трехступенчатым отжигом и обработкой полученного продукта уксусной кислотой, фильтрованием, промыванием дистиллированной водой и сушкой, в котором в качестве соединения титана используют раствор тетраизопропоксититана с содержанием Ti(IV) 16.2 масс.%, лимонную и азотную кислоты вводят в количестве 0,625 моль/Ti+4 и 0,05-0,06 моль, соответственно, а отжиг проводят при температурах 250-270°С, 430-450°С и 520-550°С.

При этом в качестве неорганической соли лития может быть использован карбонат лития.

В настоящее время из патентной и научно-технической литературы не известен способ получения метатитановой кислоты, в котором в качестве исходного соединения титана используют раствор тетраизопропоксититана с содержанием Ti(IV) 16.2 масс.%, и взаимодействие тетраизопропоксититана с неорганической солью лития осуществляют в присутствии лимонной и азотной кислот, вводимых в количестве 0.625 моль/Тi(IV) и 0.05-0.06 моль соответственно, с последующим трехступенчатым отжигом полученного порошка при температурах 250-270°С, 430-450°С и 520-550°С.

В результате исследований, проведенных авторами, была установлена возможность использования в качестве исходного соединения для получения метатитановой кислоты раствора тетраизопропоксититана с содержанием Ti(IV) 16.2 масс.%. Использование в качестве исходного титанового реагента раствора тетраизопропоксититана позволяет исключить образование нерастворимого титанового осадка, приводящего к появлению в конечном продукте примесей диоксида титана, а также получить более высокодисперсный промежуточный порошок, что в, свою очередь, дает возможность резко уменьшить длительность обработки данного промежуточного порошка уксусной кислотой (15 минут вместо 4 часов в известном способе-прототипе). Существенное значение имеет содержание титана (IV) в количестве 16.2 масс.%, что обусловливает определенное количество карбоната лития для полного прохождения реакции в предлагаемых условиях. Использование в качестве исходного реагента раствора тетраизопропоксититана обусловливает и количественное содержание азотной и лимонной кислот. Введение азотной кислоты в избытке менее 0.05 моля не обеспечивает полного окисления органических компонентов комплекса, включающего помимо лимонной кислоты тетраизопропоксититан, и, как следствие, наблюдается загрязнение промежуточного продукта углеродом. При введении избытка азотной кислоты более 0.06 моля наблюдается бурное выделение газов, что усложняет технологическое оснащение процесса. Введение лимонной кислоты менее 0.625 моля на 1 моль Ti(IV) не обеспечивает полного прохождения реакции, поскольку промежуточный продукт по данным рентгенофазового анализа загрязнен примесями диоксида титана ТiO2. Введение лимонной кислоты более 0.625 моль на 1 моль Ti(IV) нецелесообразно, поскольку ведет к необоснованному перерасходу реагента.

В ходе исследования авторами были экспериментально определены интервалы температур ступенчатого отжига. Выдержка при температуре 250-270°С необходима для частичного разложения органической составляющей комплекса; при отсутствии выдержки в интервале 250-270°С дальнейшее повышение температуры приводит к бурному выделению продуктов разложения и к частичной потере продукта за счет выброса из тигля. Отжиг в интервале температур 430-450°С обеспечивает частичное удаление продуктов разложения металл-цитратного комплекса в виде газообразных оксидов (NOx, СО2) и начало формирования промежуточной фазы титаната лития кубической модификации. Выдержка при 520-550°С обусловлена использованием в качестве исходного соединения титана раствора тетраизопропоксититана с большим содержанием органических радикалов и обеспечивает полное удаление остатков органической составляющей, к резкому уменьшению промежуточной фазы титаната лития кубической модификации и к последующему окончательному формированию промежуточной фазы титаната лития моноклинной модификации. Образец имеет белый цвет и является высокодисперсным (0.08-0.15 мкм). При температуре выше 550°С наблюдается спекание образца с формированием крупных агломератов.

Предлагаемый способ может быть осуществлен следующим образом. В качестве исходных реагентов используют раствор тетраизопропоксититана С16Н36О4Тi с плотностью 0.85 г/см3 и с содержанием Ti(IV)=16.2 масс.% и карбонат лития Li2CO3.

К раствору тетраизопропоксититана добавляют кристаллогидрат лимонной кислоты С6Н8O7·2Н2O из расчета в мольном соотношении C6H8O7·2H2O/Ti(IV)=0.625:1. Для получения раствора нитрата лития LiNO3 порошок карбоната лития вводят в дистиллированную воду, а затем добавляют концентрированную азотную кислоту HNO3 с плотностью 1.37 гр/см3, перемешивают и выдерживают до полного растворения порошка. Азотную кислоту берут в количестве, превышающем стехиометрически необходимое значение на 0.05-0.06 моль. Далее полученный раствор с избытком азотной кислоты медленно добавляют в растворимый композит тетраизопропоксититана с лимонной кислотой, выдерживают при температуре 140-150°С при перемешивании в течение 2.5-3.0 ч до образования порошкообразного остатка серо-черного цвета. Полученный порошок подвергают трехступенчатому отжигу при температурах 250-270°С в течение 2-3 ч, при температуре 430-450°С в течение 2-3 ч, при температуре 520-550°С в течение 6-7 ч

Далее полученный белый порошок добавляют в емкость с раствором уксусной кислоты СН3СООН концентрации 0.05 моль/л при соотношении «твердый реагент/жидкая фаза», равном 1 г/1 л и интенсивно перемешивают при температуре 60°С в течение 15 мин. Затем раствор охлаждают, осадок фильтруют через стеклянный фильтр и промывают дистиллированной водой до близкой к нейтральной среде рН=4-5, сушат на фильтре на воздухе в течение 6-8 ч Полученный продукт по данным рентгенофазового, химического и термического анализов, ИК и ЯМР 1Η и 6,7Li спектроскопии соответствует формуле Н2ТiО3. Минимальный размер кристаллитов по данным сканирующей электронной микроскопии составляет 0.08-0.15 мкм.

Предлагаемое техническое решение иллюстрируется следующими примерами.

Пример 1.

Берут 62 мл раствора тетраизопропоксититана С16Н36O4Тi с плотностью 0,85 г/см3 с содержанием Ti(IV)=16.2 масс.% и помещают в бюкс с притертой крышкой во избежание сорбции влаги из воздуха. Количество титана в объеме данного реактива Ti(IV) составляет 8.58 г или 0.179 моля. Далее к раствору тетраизопропоксититана С16Н36О4Ti добавляют 21.43 г кристаллогидрата лимонной кислоты С6Н8O7·2Н2O., что составляет 0,625 моля. Параллельно 13.92 г карбоната лития Li2CO3 с учетом 5% избытка по Li+ смешивают с 45-50 мл дистиллированной воды и медленно добавляют 22 мл концентрированной азотной кислоты HNO3 с учетом избытка в 0,6 моля и выдерживают до полного растворения порошка. Раствор тетраизопропоксититана с лимонной кислотой переносят в термостойкий стакан объемом 250 мл и добавляют 20 мл дистиллированной воды. Далее раствор нитрата лития с избытком по азотной кислоте вливают в водорастворимый композит тетраизопропоксититана с лимонной кислотой и перемешивают. Полученную смесь в виде белой однородной суспензии нагревают до 140°С и выдерживают при перемешивании в течение 3.0 ч до образования сухого остатка серо-черного цвета. Полученный порошок подвергают трехступенчатому отжигу при температурах 250°С в течение 3 ч, при температуре 430°С в течение 3 ч, при температуре 520°С в течение 7 ч

Далее полученный белый порошок добавляют в емкость с раствором уксусной кислоты СН3СООН концентрации 0.05 моль/л при соотношении «твердый реагент/жидкая фаза» равным 1 г/1 л и интенсивно перемешивают при температуре 60°С в течение 15 мин. Затем раствор охлаждают, осадок фильтруют через стеклянный фильтр и промывают дистиллированной водой до близкой к нейтральной среде рН=4-5, сушат на фильтре на воздухе в течение 8 ч Полученный продукт по данным рентгенофазового, химического и термического анализов, ИК и ЯМР 1H и 6,7Li спектроскопии соответствует формуле Н2ТiO3. Мини-малыши размер кристаллитов по данным сканирующей электронной микроскопии составляет 0.08-0.15 мкм.

Пример 2.

Берут 12.4 мл раствора тетраизопропоксититана C16H36O4Ti с плотностью 0,85 г/см3 с содержанием Ti(IV)=16.2 масс.% и помещают в бюкс с притертой крышкой во избежание сорбции влаги из воздуха. Количество титана в объеме данного реактива Ti(IV) составляет 1.716 г или 0.036 моля. Далее к раствору тетраизопропоксититана С16Н36О4Тi добавляют 4.29 г кристаллогидрата лимонной кислоты C6H8O7·2H2O, что соответствует 0,625 моля. Параллельно 2.78 г карбоната лития Li2СО3 с учетом 5% избытка по Li+ смешивают с 15-20 мл дистиллированной воды и медленно добавляют 4.1 мл концентрированной азотной кислоты HNO3 с учетом избытка в 0,05 моля, и выдерживают до полного растворения порошка. Раствор тетраизопропоксититана с лимонной кислотой переносят в термостойкий стакан объемом 250 мл и добавляют 10 мл дистиллированной воды. Далее раствор нитрата лития с избытком по азотной кислоте вливают в водорастворимый композит тетраизопропоксититана с лимонной кислотой и перемешивают. Полученную смесь в виде белой однородной суспензии нагревают до 150°С и выдерживают при перемешивании в течение 2.5 ч до образования сухого остатка серо-черного цвета. Полученный порошок подвергают трехступенчатому отжигу при температурах 270°С в течение 2 ч, при температуре 450°С в течение 2 ч, при температуре 550°С в течение 6 ч

Далее полученный белый порошок добавляют в емкость с раствором уксусной кислоты СН3СООН концентрации 0.05 моль/л при соотношении «твердый реагент/жидкая фаза», равном 1 г/1 л и интенсивно перемешивают при температуре 60°С в течение 15 мин. Затем раствор охлаждают, осадок фильтруют через стеклянный фильтр и промывают дистиллированной водой до близкой к нейтральной среде рН=4-5, сушат на фильтре на воздухе в течение 6 ч Полученный продукт по данным рентгенофазового, химического и термического анализов, ИК и ЯМР 1H и 6,7Li спектроскопии соответствует формуле Н2ТiО3. Минимальный размер кристаллитов по данным сканирующей электронной микроскопии составляет 0.08-0.15 мкм.

Таким образом, авторами предлагается простой и надежный способ получения метатитановой кислоты, обеспечивающий получение чистого мелкодисперсного продукта.

Способ получения метатитановой кислоты, включающий взаимодействие соединения титана с неорганической солью лития в присутствии лимонной и азотной кислот с последующим трехступенчатым отжигом и обработкой полученного продукта уксусной кислотой, фильтрованием, промыванием дистиллированной водой и сушкой, отличающийся тем, что в качестве соединения титана используют раствор тетраизопропоксититана с содержанием Ti(IV) 16,2 мас.%, а в качестве неорганической соли лития используют карбонат лития, при этом лимонную и азотную кислоты вводят в количестве 0,625 моль/Ti и 0,05-0,06 моль, соответственно, а отжиг проводят при температурах 250-270°С, 430-450°С и 520-550°С.
Источник поступления информации: Роспатент

Показаны записи 31-40 из 100.
25.08.2017
№217.015.9db4

Модуль реактора для получения синтез-газа (варианты) и реактор для получения синтез-газа

Изобретение относится к химической промышленности, а именно к реактору переработки газового углеводородного сырья для получения синтез-газа, который может быть использован в газохимии для получения метилового спирта, диметилового эфира, альдегидов и спиртов, углеводородов и синтетического...
Тип: Изобретение
Номер охранного документа: 0002610616
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.9fba

Сложный гафнат лития-лантана в качестве люминесцентного материала для преобразования монохроматического излучения лазера и способ его получения

Изобретение относится к новым соединениям класса сенсибилизированных люминофоров на основе неорганических кристаллических соединений, а именно к сложному гафнату лития-лантана состава LiLaNdHoErDyHfO, где x=2.5⋅10-1⋅10, y=1.6⋅10-4.7⋅10, z=1.5⋅10, n=1.2⋅10-4.7⋅10. Также предложен его способ...
Тип: Изобретение
Номер охранного документа: 0002606229
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.bf59

Способ диагностики римановой кривизны решетки нанотонких кристаллов

Использование: для диагностики римановой кривизны решетки нанотонких кристаллов. Сущность изобретения заключается в том, что способ диагностики римановой кривизны решетки нанотонких кристаллов включает получение электронно-микроскопического изображения нанотонкого кристалла в светлом поле,...
Тип: Изобретение
Номер охранного документа: 0002617151
Дата охранного документа: 21.04.2017
29.12.2017
№217.015.f3ca

Способ получения гетеронаноструктур ags/ag

Изобретение относится к области получения нанокристаллических композиционных материалов, содержащих полупроводниковые и металлические наночастицы, и может быть использовано в оптоэлектронике и наноэлектронике в качестве переключателей сопротивления и энергонезависимых устройствах памяти. Способ...
Тип: Изобретение
Номер охранного документа: 0002637710
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.f410

Способ получения диссипативных структур

Использование: для получения диссипативных структур. Сущность изобретения заключается в том, что способ получения диссипативной структуры в аморфной пленке в виде нанотонких кристаллов с упругим ротационным искривлением решетки включает нагревание и последующее охлаждение, где предварительно на...
Тип: Изобретение
Номер охранного документа: 0002637396
Дата охранного документа: 04.12.2017
29.12.2017
№217.015.fd73

Способ обнаружения усталостных поверхностных трещин в электропроводящем изделии

Использование: для обнаружения и регистрации в электропроводящих изделиях усталостных поверхностных трещин с использованием метода акустической эмиссии (АЭ). Сущность изобретения заключается в том, что инициируют акустическую эмиссию в контролируемом изделии путем его нагружения, выполняют...
Тип: Изобретение
Номер охранного документа: 0002638395
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.02c5

Способ получения композита триоксид молибдена/углерод

Изобретение относится к химической промышленности и электротехнике и может быть использовано при изготовлении электродных материалов в химических источниках тока. Для получения композита триоксид молибдена/углерод состава MoO/С порошок молибдена добавляют к пероксиду водорода в соотношении...
Тип: Изобретение
Номер охранного документа: 0002630140
Дата охранного документа: 05.09.2017
13.02.2018
№218.016.219e

Способ получения нанокристаллического порошка оксикарбида молибдена

Изобретение относится к химической технологии получения оксикарбида молибдена и может быть использовано в углекислотной конверсии природного газа в качестве катализатора. Способ получения нанокристаллического порошка оксикарбида молибдена включает испарение кислородсодержащего соединения...
Тип: Изобретение
Номер охранного документа: 0002641737
Дата охранного документа: 22.01.2018
10.05.2018
№218.016.4cf5

Способ получения суспензии апатита

Изобретение относится к области получения биологически активных фармацевтических и медицинских материалов, которые могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани. Способ получения суспензии апатита включает взаимодействие гидроксида...
Тип: Изобретение
Номер охранного документа: 0002652193
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4d86

Биорезорбируемый материал и способ его получения

Группа изобретений относится к медицине. Описан биорезорбируемый материал, включающий гидроксиапатит и монооксид титана состава TiOx, где х = 0.99, 1.09, 1.23, в количестве 10 – 20 мас.% от общего. Описан способ получения биорезорбируемого материала, включающий получение исходной смеси...
Тип: Изобретение
Номер охранного документа: 0002652429
Дата охранного документа: 26.04.2018
Показаны записи 31-40 из 41.
25.08.2017
№217.015.9db4

Модуль реактора для получения синтез-газа (варианты) и реактор для получения синтез-газа

Изобретение относится к химической промышленности, а именно к реактору переработки газового углеводородного сырья для получения синтез-газа, который может быть использован в газохимии для получения метилового спирта, диметилового эфира, альдегидов и спиртов, углеводородов и синтетического...
Тип: Изобретение
Номер охранного документа: 0002610616
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.9fba

Сложный гафнат лития-лантана в качестве люминесцентного материала для преобразования монохроматического излучения лазера и способ его получения

Изобретение относится к новым соединениям класса сенсибилизированных люминофоров на основе неорганических кристаллических соединений, а именно к сложному гафнату лития-лантана состава LiLaNdHoErDyHfO, где x=2.5⋅10-1⋅10, y=1.6⋅10-4.7⋅10, z=1.5⋅10, n=1.2⋅10-4.7⋅10. Также предложен его способ...
Тип: Изобретение
Номер охранного документа: 0002606229
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.bf59

Способ диагностики римановой кривизны решетки нанотонких кристаллов

Использование: для диагностики римановой кривизны решетки нанотонких кристаллов. Сущность изобретения заключается в том, что способ диагностики римановой кривизны решетки нанотонких кристаллов включает получение электронно-микроскопического изображения нанотонкого кристалла в светлом поле,...
Тип: Изобретение
Номер охранного документа: 0002617151
Дата охранного документа: 21.04.2017
29.12.2017
№217.015.f3ca

Способ получения гетеронаноструктур ags/ag

Изобретение относится к области получения нанокристаллических композиционных материалов, содержащих полупроводниковые и металлические наночастицы, и может быть использовано в оптоэлектронике и наноэлектронике в качестве переключателей сопротивления и энергонезависимых устройствах памяти. Способ...
Тип: Изобретение
Номер охранного документа: 0002637710
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.f410

Способ получения диссипативных структур

Использование: для получения диссипативных структур. Сущность изобретения заключается в том, что способ получения диссипативной структуры в аморфной пленке в виде нанотонких кристаллов с упругим ротационным искривлением решетки включает нагревание и последующее охлаждение, где предварительно на...
Тип: Изобретение
Номер охранного документа: 0002637396
Дата охранного документа: 04.12.2017
29.12.2017
№217.015.fd73

Способ обнаружения усталостных поверхностных трещин в электропроводящем изделии

Использование: для обнаружения и регистрации в электропроводящих изделиях усталостных поверхностных трещин с использованием метода акустической эмиссии (АЭ). Сущность изобретения заключается в том, что инициируют акустическую эмиссию в контролируемом изделии путем его нагружения, выполняют...
Тип: Изобретение
Номер охранного документа: 0002638395
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.02c5

Способ получения композита триоксид молибдена/углерод

Изобретение относится к химической промышленности и электротехнике и может быть использовано при изготовлении электродных материалов в химических источниках тока. Для получения композита триоксид молибдена/углерод состава MoO/С порошок молибдена добавляют к пероксиду водорода в соотношении...
Тип: Изобретение
Номер охранного документа: 0002630140
Дата охранного документа: 05.09.2017
13.02.2018
№218.016.219e

Способ получения нанокристаллического порошка оксикарбида молибдена

Изобретение относится к химической технологии получения оксикарбида молибдена и может быть использовано в углекислотной конверсии природного газа в качестве катализатора. Способ получения нанокристаллического порошка оксикарбида молибдена включает испарение кислородсодержащего соединения...
Тип: Изобретение
Номер охранного документа: 0002641737
Дата охранного документа: 22.01.2018
29.05.2018
№218.016.5493

Сложный натриевый германат лантана, неодима и гольмия в качестве люминесцентного материала для преобразования монохроматического излучения лазера и способ его получения

Изобретение относится к неорганической химии и может быть использовано при получении люминофоров. Сначала готовят исходную смесь, включающую стехиометрические количества предварительно прокаленных при температуре 900-910°С оксидов лантана и неодима, содержащих примесь гольмия, и предварительно...
Тип: Изобретение
Номер охранного документа: 0002654032
Дата охранного документа: 15.05.2018
04.11.2019
№219.017.de29

Способ получения сложного литиевого танталата лантана и кальция

Изобретение относится к получению порошка сложного литиевого танталата лантана и кальция состава LiCaLaTaO, используемого в качестве одного из основных компонентов литий-ионной батареи. Способ включает добавление пентоксида тантала к кислоте с последующим получением геля и добавлением нитратов...
Тип: Изобретение
Номер охранного документа: 0002704990
Дата охранного документа: 01.11.2019
+ добавить свой РИД