×
20.01.2016
216.013.a26d

Результат интеллектуальной деятельности: УСТРОЙСТВО ФОРМИРОВАНИЯ НАНО И СУБНАНОСЕКУНДНЫХ СВЧ ИМПУЛЬСОВ

Вид РИД

Изобретение

Аннотация: Устройство формирования нано- и субнаносекундных СВЧ-импульсов относится к радиотехнике и может быть использовано для формирования мощных СВЧ-импульсов наносекундной длительности с частотой следования входного микросекундного СВЧ-импульса, а также серии СВЧ-импульсов субнаносекундной длительности в пределах входного импульса, генерируемого в частотно-периодическом режиме. Устройство содержит многомодовый резонатор (1) с элементом ввода энергии (2), расположенным на его входной торцовой стенке, с элементом вывода энергии (3), выполненным в виде плавного перехода с корпуса резонатора на выходной волновод (4). Выходной волновод (4) выполнен в виде сверхразмерного прямоугольного волновода с первой стенкой, имеющей размер а, равный размеру широкой стенки одномодового стандартного прямоугольного волновода, и второй стенкой, выполненной сверхразмерной, имеющей размер d, удовлетворяющий соотношениям d=nb<0,2 L, где n=[0,2 L/b] - число, являющееся целой частью отношения 0,2 L/b; b - размер узкой стенки одномодового стандартного прямоугольного волновода, L - длина резонатора, 5λ
Основные результаты: Устройство формирования нано- и субнаносекундных СВЧ-импульсов, содержащее многомодовый резонатор с элементом ввода энергии, расположенным на его входной торцовой стенке, с элементом вывода энергии, выполненным в виде плавного перехода с корпуса резонатора на выходной волновод, и интерференционный СВЧ-переключатель из волноводных соединений в Н плоскости, отличающееся тем, что выходной волновод выполнен из сверхразмерного прямоугольного волновода с первой стенкой, имеющей размер а, равный размеру широкой стенки одномодового стандартного прямоугольного волновода, и второй стенкой, являющейся сверхразмерной, имеющей размер d, удовлетворяющий соотношениям:d=nb<0,2L,где n=[0,2L/b] - число, являющееся целой частью отношения 0,2L/b;b - размер узкой стенки одномодового стандартного прямоугольного волновода;L - длина резонатора, 5λ

Изобретение относится к области радиотехники и может быть использовано для формирования мощных СВЧ-импульсов наносекундной длительности с частотой следования входного микросекундного СВЧ-импульса, а также серии СВЧ-импульсов субнаносекундной длительности в пределах входного импульса, генерируемого в частотно-периодическом режиме.

Известны устройства формирования мощных СВЧ-импульсов нано- и субнаносекундной длительности [Ельчанинов А.С., Коровин С.Д., Месяц Г.А. и др. Генерация мощного СВЧ-излучения с использованием сильноточных электронных мини-ускорителей. Доклады АН СССР. 1984. Т.279. №3. С.824-826], основанные на преобразовании энергии ускоренного пучка электронов в энергию электромагнитного излучения при прохождении пучка через компактную электродинамическую структуру. Такой способ осуществляется, например, в релятивистских СВЧ-генераторах и усилителях. Отличаясь высокой пиковой мощностью выходных сигналов, источники такого типа имеют низкую частоту следования (~100 Гц) и ограниченный рабочий ресурс (~106-107 импульсов).

Известны также устройства с применением для получения СВЧ-импульсов нано- и субнаносекундной длительности полупроводниковых приборов [Кукарин С.В. Электронные СВЧ-приборы. М.: Радио и Связь. 1981. С.271]. Основными недостатками полупроводниковых устройств являются относительно невысокий уровень рабочей мощности, составляющий, как правило, не более единиц киловатт, а также низкая частота следования, равная единицам килогерц и обусловленная проблемой отвода тепла.

В работе [Диденко А.Н., Новиков С.А., Разин С.В. и др. Формирование мощных сверхширокополосных радиоимпульсов при последовательной временной компрессии СВЧ-энергии. Доклады АН СССР. 1991. Т.321. №3. С518-520] предложено устройство формирования СВЧ-импульсов субнаносекундной длительности, функционирующее на основе последовательной компрессии микросекундных импульсов СВЧ в цепочке резонаторов, преобразующих эти импульсы сначала в импульсы наносекундной длительности, а затем субнаносекундной. Устройство использует эффект повышения электрической прочности накопительного резонатора при укорочении входных СВЧ-импульсов до наносекундной длительности. В трехступенчатой системе 10-см диапазона длин волн сформированы импульсы длительностью ~0.35 нс с пиковой мощностью ~630 МВт. Вместе с тем, реализация такого устройства требует применения в первой ступени накопительного резонатора достаточно большой длины (~3 м). В комплексе со второй и третьей ступенью это делает систему громоздкой. Кроме того, из-за применения в компрессорах газоразрядных СВЧ-коммутаторов с большим временем восстановления система имеет невысокую частоту следования (~0.1-1.0 кГц).

По технической сущности наиболее близким к предлагаемому устройству является резонансный СВЧ-компрессор с трансформацией моды колебаний на элементе межмодовой связи в виде короткозамкнутого отрезка волновода с встроенным Н-тройником и устройством вывода энергии в виде плавного перехода [Августинович В.А., Артеменко С.Н., Игумнов B.C., Новиков С.А., Юшков Ю.Г. Формирование нано- и субнаносекундных СВЧ-импульсов при выводе энергии из резонатора трансформацией моды колебаний. // Изв. ВУЗов. Физика. 2011. Т.54. №11/2. С.229-234]. Этот компрессор взят за прототип. В нем для накопления используется цилиндрический многомодовый резонатор с основной рабочей модой Н01(p), на которой энергия накапливается через устройство ввода энергии, выполненное на входной торцовой стенке резонатора. Элемент (устройство) межмодовой связи в виде короткозамкнутого волноводного отрезка с последовательно встроенным Н-тройником подсоединено к этой же стенке на середине радиуса цилиндра. Первое (входное) прямое плечо тройника имеет полуволновую длину и связано с резонатором через окно связи, а второе (выходное) плечо короткозамкнуто и короткозамыкатель плеча выполнен подвижным. Боковое плечо также короткозамкнуто, имеет полуволновую длину и в нем расположен газоразрядный СВЧ-коммутатор с электродом, подключенным к источнику управляющих сигналов. На выходной торцовой стенке резонатора, выполненной в виде плавного перехода с цилиндра резонатора на выходной круглый волновод. Переход выполнен согласованным для вспомогательной рабочей моды Н11 круглого волновода, а выходной волновод - одномодовым. Компрессор-прототип может обеспечить формирование СВЧ-импульсов субнаносекундной длительности. Режим формирования субнаносекундных СВЧ-импульсов достигается тем, что накопленная энергия входного СВЧ-импульса длительностью Т выводится не непрерывно за время t<<Т, а дискретно малыми порциями путем периодической и кратковременной, в течение времени δt<<t, трансформации одной рабочей моды резонатора, на которой энергию накапливают в начальной половине длительности Т входного импульса, в другую моду, на которой энергию в конечной половине длительности Т входного импульса выводят через фиксированные промежутки времени Δt≈10Т0, где Т0 - время двойного пробега волны первой рабочей моды вдоль прямых плеч тройника, Т0<<Т, t≥Т0.

Основным недостатком компрессора-прототипа является относительно низкий уровень рабочей мощности из-за слабой межмодовой связи на окне связи резонатора с Н-тройником. Кроме того, частота следования импульсов в таком компрессоре ограничена предельной рабочей частотой газоразрядного СВЧ-коммутатора.

Задачей изобретения является повышение мощности выходных импульсов и расширение функциональных возможностей устройства.

Технический результат изобретения заключается в повышении мощности выходных импульсов устройства за счет выполнения выходного волновода и интерференционного СВЧ-переключателя из сверхразмерного волновода, имеющего увеличенную площадь поперечного сечения. Технический результат заключается также в расширении функциональных возможностей устройства за счет выполнения интерференционного СВЧ-переключателя в виде крестообразного волноводного соединения, позволяющего расширить диапазон регулирования связи резонатора с нагрузкой и, соответственно, функциональные возможности устройства.

Указанный технический результат достигается тем, что в устройстве формирования нано- и субнаносекундных СВЧ-импульсов, содержащем, как и прототип, многомодовый резонатор с элементом ввода энергии, расположенным на его входной торцовой стенке, с элементом вывода энергии, выполненным в виде плавного перехода с корпуса резонатора на выходной волновод и интерференционный СВЧ-переключатель из волноводных соединений в Н плоскости, в отличие от прототипа, выходной волновод выполнен в виде сверхразмерного прямоугольного волновода с первой стенкой, имеющей размер а, равный размеру широкой стенки одномодового стандартного прямоугольного волновода, и второй стенкой, выполненной сверхразмерной, имеющей размер d, удовлетворяющий соотношениям:

d=nb<0,2L,

где n=[0,2L/b] - число, являющееся целой частью отношения 0,2L/b;

b - размер узкой стенки одномодового стандартного прямоугольного волновода;

L - длина резонатора, 5λ<L<50λ, λ - длина волны в свободном пространстве,

а интерференционный переключатель выполнен в виде крестообразного волноводного соединения из сверхразмерного прямоугольного волновода, идентичного выходному волноводу, с прямыми плечами, лежащими на одной линии и последовательно встроенными в выходной волновод, а также двумя боковыми плечами, ортогональными выходному волноводу, при этом одно из боковых плеч односвязно, имеет полуволновую длину и газоразрядная трубка расположенного в нем СВЧ-коммутатора параллельна сверхразмерной стенке, а второе боковое плечо многосвязно и набрано в виде пакета из n параллельных плотно прилегающих друг к другу Н-тройников из одномодового стандартного прямоугольного волновода с полуволновыми прямыми входными плечами, короткозамкнутыми боковыми плечами с расположенными в них СВЧ-коммутаторами, а также короткозамкнутыми выходными прямыми плечами, имеющими длину l, удовлетворяющую неравенствам λв<l<L, где λв - длина волны в волноводе, и электроды каждого СВЧ-коммутатора подсоединены к источнику управляющих сигналов.

Такая конфигурация выходного волновода и переключателя обеспечивает увеличение рабочей мощности компрессора за счет увеличения площади сечения сверхразмерного волновода. Она также обеспечивает расширение функциональных возможностей устройства за счет крестообразного соединения волноводов в интерференционном СВЧ-переключателе и набора Н-тройников в одном из плеч соединения с СВЧ-коммутаторами, управляющими работой тройников. Такое исполнение интерференционного СВЧ-переключателя позволяет регулировать связь резонатора с нагрузкой в широких пределах и, как следствие, формировать импульсы не только субнаносекундной длительности с высокой частотой следования, но и наносекундные импульсы с регулируемой мощностью и длительностью.

На Фиг.1-3 приведена схема предлагаемого устройства.

Устройство содержит многомодовый резонатор 1 с элементом ввода энергии 2 в виде отрезка волновода на входной торцовой стенке. Элемент вывода 3 выполнен как выходная торцовая стенка в виде плавного перехода, сопрягающего корпус резонатора с выходным сверхразмерным прямоугольным волноводом 4 с первой стенкой, имеющей размер а, равный размеру широкой стенки стандартного одномодового волновода, и второй стенкой, выполненной сверхразмерной размером d=nb<0,2 L, где 2<n=[0,2L/b], L - длина резонатора, 5λ<L<50λ, и b - размер узкой стенки стандартного прямоугольного волновода (фиг.3).

Предлагаемое устройство формирования нано- и субнаносекундных импульсов СВЧ содержит (фиг.1) сверхразмерный интерференционный СВЧ-переключатель 5, выполненный как крестообразное волноводное соединение в Н-плоскости. Два прямых плеча 6 этого соединения последовательно включены в выходной волновод 4 и имеют одинаковые с ним поперечные размеры. Два других плеча 7 и 8 переключателя 5 ортогональны выходному волноводу 4, короткозамкнуты, выполнены полуволновой длины и также имеют поперечное сечение, равное сечению выходного волновода 4. Причем плечо 7 имеет односвязное сечение размером a×d и в этом плече расположена газоразрядная диэлектрическая трубка СВЧ-коммутатора 9 с электродом, подсоединенным к источнику управляющих сигналов 10. Плечо 8 набрано в виде пакета из n (2<n=[0,2L/b]) параллельных Н-тройников 11 из стандартного прямоугольного волновода, плотно прилегающих друг к другу широкими стенками. Входные полуволновые прямые плечи 12 Н-тройников связаны с выходным трактом через окна связи 13 в полное сечение волновода Н-тройников (фиг.3).

Полуволновые выходные прямые плечи 14 Н-тройников ограничены подвижными короткозамыкателями 15 и имеют длину l, удовлетворяющую неравенствам λв<l<L, где λв - длина волны в волноводе, а в боковых полуволновых короткозамкнутых плечах 16 расположены СВЧ-коммутаторы 9 (фиг.2). Каждый из СВЧ-коммутаторов 9 размещен на расстоянии четверти длины волны в волноводе от короткозамыкателя бокового плеча 16 соответствующего тройника и их электроды подсоединены к источнику управляющих сигналов 10.

На Фиг.3 изображена внутренняя структура сверхразмерного интерференционного СВЧ-переключателя 5 с диэлектрической трубкой СВЧ-коммутатора 9 в короткозамкнутом плече 7 из сверхразмерного волновода и плеча 8, набранного из n (2<n=[0,2L/b]) одномодовых Н-тройников.

Устройство работает следующим образом. В призматическом или цилиндрическом многомодовом резонаторе 1 через элемент ввода энергии 2 на рабочей моде резонатора (H01(m) моде колебаний призматического либо H11(m) моде цилиндрического резонатора) накапливается энергия. Выходной сверхразмерный прямоугольный волновод 4 допределен для волны моды H01 и поэтому в режиме накопления энергия на этой волне с вектором электрического поля, параллельным сверхразмерной стенке выходного волновода, поступает к крестообразному сверхразмерному интерференционному СВЧ-переключателю 5. В месте сочленения волноводов переключателя волна H01 синфазно возбуждает короткозамкнутые ортогональные выходному волноводу 4 полуволновые плечи 7 и 8 интерференционного СВЧ-переключателя 5. Причем в плече 7, набранном из n одномодовых Н-тройников, возбуждается только входное плечо тройников. В результате в поперечном направлении креста устанавливается мода колебаний Н01(k). Две ближние к выходному волноводу варианты этой моды в плечах 7 и 8 излучают в нагрузку волны, противофазные волне, излучаемой центральной вариантой в выходном волноводе 4, и компенсируют ее, обеспечивая переключателю режим «закрыто». (В продольном сечении сверхразмерный крестообразный переключатель полностью идентичен аналогичному переключателю из одномодового волновода и поэтому на «чистой» рабочей волне H01 обладает идентичными свойствами). Высокая добротность Н01(m) моды колебаний призматического резонатора или H11(m) моды цилиндрического обеспечивает высокий коэффициент усиления мощности входной волны, а большая площадь поперечного сечения многомодового резонатора и волновода элемента вывода - высокий уровень мощности бегущей волны резонатора, т.е. значительный запас СВЧ-энергии. Длина резонатора выбирается из условия, что на рабочей частоте возбуждается только H01(m)11(m)) мода колебаний. Остальные моды резонируют далеко от резонанса рабочей моды либо излучаются в нагрузку. В то же время, плавный переход 3 выполняется согласованным для рабочей моды H01 в широкой полосе частот, составляющей величину не менее отношения 1/Т, где Т - время двойного пробега рабочей волны вдоль резонатора.

Далее, в зависимости от того, на электрод какого СВЧ-коммутатора подается управляющий сигнал, процесс вывода СВЧ-энергии и, следовательно, формирования выходных импульсов СВЧ идет по-разному. Включение СВЧ-коммутатора в плече 7 с газоразрядной трубкой приводит к сдвигу резонансной частоты резонатора, образованного поперечными плечами 7 и 8, за пределы полосы его резонанса и, соответственно, к нарушению установленного в режиме накопления амплитудно-фазового баланса излучаемых в нагрузку волн. Нарушение резонансных условий для боковых плеч интерференционного СВЧ-переключателя обеспечивает практически полное его открывание, т.к. устраняются волны из поперечных плеч, компенсировавшие волну, излучаемую в нагрузку в режиме накопления из входного плеча интерференционного СВЧ-переключателя. В результате энергия из резонатора выводится полностью за время двойного пробега рабочей волны вдоль резонатора. Мощность сформированного импульса при этом сопоставима с мощностью бегущей волны накопительного резонатора. Так формируются наиболее мощные импульсы наносекундной длительности.

Включение СВЧ-коммутаторов любого из одномодовых Н-тройников приводит к открыванию этого тройника. Далее процесс будет идти по-разному в зависимости от длины выходного короткозамкнутого прямого плеча тройника. Если длина этого плеча полуволновая, то в течение времени пробега волны от входа тройника до короткозамыкателя выходного прямого плеча тройник открыт. В течение этого времени резонансная частота поперечного резонатора переключателя меняется и, как следствие, накопительный резонатор интерференционного СВЧ-переключателя меняется и, как следствие, накопительный резонатор кратковременно открывается. После возвращения волны, отраженной от короткозамыкателя выходного плеча, к входу тройника частота поперечного резонатора возвращается к частоте исходной и накопительный резонатор закрывается. В результате на выходе формируется короткий импульс длительностью, равной времени двойного пробега волны от входа тройника до короткозамыкателя выходного плеча. После завершения процесса формирования первого импульса включается коммутатор второго тройника и процесс формирования очередного импульса повторяется, затем третьего, четвертого и т.д. Так формируются импульсы субнаносекундной длительности при коротких выходных плечах Н-тройников (порядка длины волны в волноводе) и наносекундной длительности при более длинных выходных плечах, но не более длины накопительного резонатора (l<L), т.к. при большей длине плеч нарушается постоянство мощности подводимой к плечу волны. Этот процесс может идти до порогового уровня срабатывания коммутаторов, связанного с уменьшением запаса энергии. При достижении этого уровня включается коммутатор сверхразмерного плеча сверхразмерного интерференционного СВЧ-переключателя, и остаток энергии выводится за время двойного пробега волны вдоль накопительного резонатора. В случае отличия длины выходного плеча от полуволновой длины интерференционный СВЧ- переключатель из сверхразмерного волновода остается приоткрытым в течение времени распада плазменного канала разряда. Это время составляет величины, значительно превышающее время звучания накопительного резонатора. Поэтому на выходе устройства формируются СВЧ-импульсы пониженной мощности по сравнению с мощностью бегущей волны накопительного резонатора, но с длительностью, превышающей время двойного пробега волны вдоль накопительного резонатора. При этом положением поршней в выходных плечах Н-тройников мощность и длительность могут регулироваться в широких пределах.

Допустимый размер сверхразмерной стенки выходного волновода и, следовательно, геометрические параметры плеч интерференционного СВЧ-переключателя из сверхразмерного волновода, в том числе количество Н-тройников в одном из плеч такого переключателя, определяется требованием обеспечения его работоспособности как в режиме накопления, так и в режиме вывода энергии. В принципе, при «чистой» H01 волне прямоугольного волновода в режиме накопления никаких ограничений на размер этой стенки нет, кроме ограничения, связанного с допустимым объемом накопительного резонатора. Этот объем ограничен предельной плотностью спектра колебаний, из которого следует ограничение на длину резонатора L<50λ. Нижнее ограничение длины 5λ<L определяется временем срабатывания СВЧ-коммутатора, составляющим в 3-х и 10-см диапазонах длин волн 1-2 нс. Это время должно быть не больше времени двойного пробега рабочей волны вдоль резонатора. Кроме того, поскольку в режиме вывода размер сверхразмерной стенки ограничен требованием малости времени t переключения по сравнению с временем Т двойного пробега волны вдоль накопительного резонатора, то для эффективного вывода это время должно составлять величину, порядка 0,1 T. Это означает, что размер сверхразмерной стенки должен быть меньше величины порядка 0,1 Tc=0,2 L, где с- скорость света в свободном пространстве; L - длина накопительного резонатора. Отсюда получаем, что число n Н-тройников в плече 8 интерференционного СВЧ- переключателя не должно превышать n=[0,2 L/b] - число, являющееся целой частью отношения 0,2 L/b (n<[0,2 L/b], где L длина резонатора, a b - размер узкой стенки одномодового стандартного прямоугольного волновода).

Пример конкретного выполнения.

Работоспособность предлагаемого устройства проверена экспериментально на макете устройства 3-см диапазона длин волн. Макет представлял собой резонансный СВЧ-компрессор с многомодовым накопительным резонатором и сверхразмерным крестообразным интерференционным СВЧ-переключателем, три плеча которого были выполнены из сверхразмерного волновода сечением 58×25 мм2, а четвертое набрано в виде пакета из пяти Н-тройников, изготовленных из прямоугольного волновода сечением 23×10 мм2. В продольном сечении такое соединение практически идентично одномодовому крестообразному соединению волноводов. Поэтому при правильной геометрии и «чистой» H01 волне сверхразмерный интерференционный СВЧ-переключатель на основе такого соединения должен работать идентично обычному переключателю, поскольку физические причины, препятствующие этому, отсутствуют. Это подтверждено экспериментально при измерении переходного ослабления интерференционного СВЧ-переключателя в режиме «закрыто». В полосе частот 8800-9500 MГц ослабление составило 39±2 дБ, что сопоставимо с ослаблением обычного крестообразного переключателя из одномодового волновода.

Подтверждено и свойство практически полного открывания соединения с H01 рабочей волной при незначительном изменении параметров сверхразмерного короткозамкнутого плеча, а также кратковременного или неполного открывания при срабатывании СВЧ-коммутатора в любом из Н-тройников пакета. Такой результат получен при работе соединения в качестве устройства вывода энергии.

Энергия накапливалась в многомодовом резонаторе из волновода сечением 72×34 мм2 длиной ~36 см. Накопительный резонатор работал на виде колебаний H01(19) на частоте ~8850 MГц. Его возбуждение осуществлялось через окно, расположенное на середине торцовой стенки резонатора. Через плавный переход накопительный резонатор сопрягался с интерференционным СВЧ-переключателем из сверхразмерного волновода. Поперечный резонатор такого СВЧ-переключателя работал на виде колебаний H01(7). Вся система, включая плавный переход, входное плечо сверхразмерного СВЧ-переключателя и его поперечный резонатор, работала на виде колебаний Н01(34).

Ослабление интерференционного СВЧ-переключателя из сверхразмерного волновода в режиме «закрыто» чувствительно к локальному спектру колебаний и изменениям формы резонатора. Поэтому добротность резонатора зависела от настройки и геометрии входного окна. Процедура настройки сводилась к варьированию формы окна и длины резонатора и такому их выбору, при котором добротность максимальна. Достигнутая добротность составила около 2,1×104, что на 30-35% ниже добротности резонатора с короткозамыкателем вместо крестообразного соединения. Однако это отличие не связано с потерями на излучение, т.к. замыкание выхода интерференционного СВЧ- переключателя из сверхразмерного волновода на добротность не влияло. Вероятной причиной понижения добротности являются потери в соединении.

Расчетное время двойного пробега волны вдоль накопительной системы составляло 4 нс. При отмеченных значениях добротности, времени пробега и рабочей частоты расчетный коэффициент усиления близок к 19,5 дБ. В экспериментах при коммутации в сверхразмерном поперечном плече интерференционного СВЧ-переключателя получено усиление ~16 дБ при длительности импульсов 3,5 нс по уровню -3 дБ. В качестве источника входных импульсов использовался импульсный магнетрон мощностью 50 кВт. Поэтому мощность выходных импульсов достигала ~2 MВт. Переключение осуществлялось в результате самопробоя в смеси воздуха с аргоном при атмосферном давлении в кварцевой трубке, расположенной в максимуме электрического поля параллельно силовым линиям. Вывод в этом случае шел за время двойного пробега волны вдоль резонатора, т.е. идентично выводу из одномодового резонатора через интерференционный СВЧ-переключатель на основе обычного крестообразного соединения. В случае поочередного срабатывания СВЧ-коммутатора в любом из пяти Н-тройников с идентичными полуволновыми выходными плечами вывод шел в течение не более 1 нс. При этом минимальный интервал времени между импульсами составлял около 100 нс. Усиление импульсов достигало 10 дБ. Изменение длины выходных плеч тройников в пределах четверти дины волны в волноводе приводило к падению усиления выходных импульсов с изменением длительности в пределах - 3…16 дБ и 50…3,5 нс.

Таким образом, в работе показана возможность использования сверхразмерного интерференционного СВЧ-переключателя на основе крестообразного волноводного соединения из сверхразмерного прямоугольного волновода в качестве эффективного устройства вывода энергии из сверхразмерного резонатора. По оценкам, при достижимой плотности потока мощности в волноводе 5-10 MВт/см2, в 3-см диапазоне длин волн такой СВЧ-переключатель может позволить формировать наносекундные СВЧ-импульсы мощностью ~0,1 ГВт. В 10-см диапазоне длин волн такой СВЧ-переключатель может обеспечить формирование таких же импульсов мощностью ~1 ГВт. Эти величины на порядок превышают возможную мощность импульсов, формируемых устройством-прототипом. Подтверждена возможность формирования в предлагаемом устройстве не только наносекундных, но и серии субнаносекундных импульсов в пределах входного импульса СВЧ. При прочих равных условиях большая площадь сечения сверхразмерного интерференционного СВЧ-переключателя может обеспечить более высокий уровень рабочей мощности компрессора по сравнению с прототипом, а управление процессом вывода с помощью пакета Н-тройников обеспечивает устройству более широкие функциональные возможности.

Устройство формирования нано- и субнаносекундных СВЧ-импульсов, содержащее многомодовый резонатор с элементом ввода энергии, расположенным на его входной торцовой стенке, с элементом вывода энергии, выполненным в виде плавного перехода с корпуса резонатора на выходной волновод, и интерференционный СВЧ-переключатель из волноводных соединений в Н плоскости, отличающееся тем, что выходной волновод выполнен из сверхразмерного прямоугольного волновода с первой стенкой, имеющей размер а, равный размеру широкой стенки одномодового стандартного прямоугольного волновода, и второй стенкой, являющейся сверхразмерной, имеющей размер d, удовлетворяющий соотношениям:d=nb<0,2L,где n=[0,2L/b] - число, являющееся целой частью отношения 0,2L/b;b - размер узкой стенки одномодового стандартного прямоугольного волновода;L - длина резонатора, 5λУСТРОЙСТВО ФОРМИРОВАНИЯ НАНО И СУБНАНОСЕКУНДНЫХ СВЧ ИМПУЛЬСОВ
УСТРОЙСТВО ФОРМИРОВАНИЯ НАНО И СУБНАНОСЕКУНДНЫХ СВЧ ИМПУЛЬСОВ
УСТРОЙСТВО ФОРМИРОВАНИЯ НАНО И СУБНАНОСЕКУНДНЫХ СВЧ ИМПУЛЬСОВ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 145.
20.03.2015
№216.013.3223

Способ компенсации погрешности измерения ультразвукового локатора

Использование: для компенсации погрешности измерения ультразвукового локатора. Сущность изобретения заключается в том, что выполняют излучение ультразвукового сигнала, прием ответного сигнала, измерение временного интервала между излученным и принятым сигналами и определение расстояния до...
Тип: Изобретение
Номер охранного документа: 0002544310
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3224

Устройство компенсации погрешности измерения ультразвукового скважинного глубиномера

Использование: для компенсации погрешности измерения ультразвукового скважинного глубиномера. Сущность изобретения заключается в том, что устройство компенсации погрешности измерения ультразвукового локатора содержит генератор ультразвуковых импульсов, подключенный к излучателю, и...
Тип: Изобретение
Номер охранного документа: 0002544311
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3225

Устройство для определения характеристик материалов

Устройство относится к области измерительной техники и может быть использовано для теплового контроля материалов. Устройство содержит источник импульсного нагрева, четыре термопары, четыре усилителя, дифференциатор, семь интеграторов, пять компараторов, шесть масштабных усилителей, датчик...
Тип: Изобретение
Номер охранного документа: 0002544312
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3264

Состав антиоксидантной композиции для улучшения качества питьевой воды

Изобретение относится к пищевой промышленности, в частности к улучшению качества питьевой воды. Состав для улучшения качества воды придает воде антиоксидантные свойства и представляет собой смесь дигидрокверцетина и глюкозы, взятых в соотношении 1:1 в концентрации по 1 мг/мл. Предлагаемое...
Тип: Изобретение
Номер охранного документа: 0002544375
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.343a

Сильноточный наносекундный ускоритель электронных пучков

Изобретение относится к ускорительной технике наносекундного диапазона и предназначено для генерации мощных электронных пучков, используемых в СВЧ приборах, радиационных технологиях и научных исследованиях. Сильноточный наносекундный ускоритель электронных пучков содержит размещенные в одном...
Тип: Изобретение
Номер охранного документа: 0002544845
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3455

Сверхпроводящий быстродействующий размыкатель

Изобретение относится к измерительной технике, представляет собой сверхпроводящий быстродействующий размыкатель и может быть использовано для ввода и вывода энергии сверхпроводящих магнитных систем, в системах защиты сверхпроводящих обмоток электрических машин, сверхпроводящих кабелей и линий...
Тип: Изобретение
Номер охранного документа: 0002544872
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.384c

Способ диагностики апоптоза лимфоцитов

Изобретение относится к медицине и может быть использовано для диагностики апоптоза лимфоцитов. Для этого клетки выделяют, инкубируют 48 часов при температуре 37°С и с 5% содержанием СО, с добавлением индуктора апоптоза дексаметазона в концентрации 10 моль/мл. Количественно определяют...
Тип: Изобретение
Номер охранного документа: 0002545900
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3933

Способ защиты синхронной электрической машины от витковых замыканий обмотки ротора

Изобретение относится к электротехнике и предназначено для защиты синхронных электрических машин от витковых замыканий обмотки ротора. Задачей изобретения является предотвращение отключений синхронной электрической машины при внешних переходных процессах. Способ защиты синхронной электрической...
Тип: Изобретение
Номер охранного документа: 0002546131
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3cc8

Устройство для сварки

Устройство предназначено для импульсного питания сварочной дуги с плавящимся и неплавящимся электродами. Устройство состоит из источника питания 1, к положительному полюсу которого подсоединены коммутирующий дроссель 2 и силовой тиристор 3, зашунтированные последовательно включенными...
Тип: Изобретение
Номер охранного документа: 0002547048
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.40b0

Сцинтилляционный счетчик ионизирующего излучения

Изобретение относится к области измерения ядерных излучений, а именно к подсчету количества гамма квантов от различных источников излучения в диапазоне энергий от сотен кэВ до единиц МэВ с загрузкой до 10 имп./мин и может быть использовано для точной регистрации интенсивных потоков гамма...
Тип: Изобретение
Номер охранного документа: 0002548048
Дата охранного документа: 10.04.2015
Показаны записи 81-90 из 237.
10.02.2014
№216.012.9e5b

Способ получения циркониевой керамики

Изобретение относится к порошковой металлургии и может быть использовано в производстве высокопрочных конструктивных и инструментальных материалов и изделий, например, волочильных инструментов. Способ получения циркониевой керамики заключается в том, что порошковый материал на основе диоксида...
Тип: Изобретение
Номер охранного документа: 0002506247
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9eaf

Способ получения вольфрамата аммония

Изобретение относится к переработке вольфрамсодержащего сырья. Вольфрамсодержащий карбонатный раствор подвергают сгущению с помощью флоулянта ВПК-402 для удаления из раствора таких примесей, как ВО , РО , AsO  и SiO . Далее раствор подвергают первой стадии ионного обмена на анионите АВ-17-8 в...
Тип: Изобретение
Номер охранного документа: 0002506331
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9fa7

Способ определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота

Изобретение относится к электроаналитической химии. В способе определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде согласно изобретению проводят модифицирование графитовых электродов коллоидными частицами золота из золя золота в...
Тип: Изобретение
Номер охранного документа: 0002506579
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9fa8

Способ определения рения кинетическим инверсионно-вольтамперометрическим методом в породах и рудах

Изобретение направлено на определение рения в породах и рудах кинетическим инверсионно-вольтамперометрическим методом и может быть использовано в различных производственных отраслях для определения содержания в растворах концентраций различных ионов металлов. Способ согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002506580
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a117

Способ приготовления реагента для получения меченого технецием-99м норфлоксацина

Изобретение относится к способу приготовления реагента для получения меченого технецием-99м норфлоксацина. Указанный способ включает приготовление солянокислого раствора олова (II) хлорида дигидрата, его смешивание с порошком норфлоксацина гидрохлорида, замораживание полученной смеси при...
Тип: Изобретение
Номер охранного документа: 0002506954
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a164

Способ синтеза ферритов

Изобретение относится к порошковой металлургии, в частности к получению ферритов. Может использоваться в электронной и радио промышленностях. Исходные компоненты смешивают, подвергают помолу и проводят механическую активацию смеси в энергонапряженном аппарате в течение не менее 10 минут....
Тип: Изобретение
Номер охранного документа: 0002507031
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a1dd

Способ получения фуллеренов

Изобретение может быть использовано при электрохимической очистке сточных вод, имеющих сложный состав органического происхождения и ряд неорганических компонентов. Проводят электрохимическую обработку сточных вод, содержащих органические примеси, в анодной камере двухкамерного электролизера под...
Тип: Изобретение
Номер охранного документа: 0002507152
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a281

Кальций-фосфатное биологически активное покрытие на имплантате

Изобретение относится к области медицинской техники, в частности к биологически совместимым покрытиям на имплантате, обладающим свойствами остеоинтеграции, и может быть использовано в стоматологии, травматологии и ортопедии при изготовлении высоконагруженных костных имплантатов из...
Тип: Изобретение
Номер охранного документа: 0002507316
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a34b

Способ прогнозирования течения ишемической болезни сердца

Изобретение относится к области медицины и может быть использовано в кардиологии и терапии. Способ прогнозирования течения ишемической болезни сердца заключается в том, что до и после лечения исследуют модифицированные ЛП(а) путем обработки 0,5 мл сыворотки крови 0,2 мл 0,1% раствора Тритона...
Тип: Изобретение
Номер охранного документа: 0002507518
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a747

Способ вольтамперометрического определения наночастиц feo на угольно-пастовом электроде

Изобретение относится к области аналитической химии. Способ вольтамперометрического определения наночастиц FeOна угольно-пастовом электроде согласно изобретению включает электрохимическое превращение наночастиц FeO на угольно-пастовом электроде в фоновом электролите - 0,02 моль/дм раствор...
Тип: Изобретение
Номер охранного документа: 0002508538
Дата охранного документа: 27.02.2014
+ добавить свой РИД