×
20.11.2015
216.013.92b3

Результат интеллектуальной деятельности: ВИСКОЗИМЕТР

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительных средств, в частности для измерения вязкости жидких сред при различных температурах и прозрачности. Для достижения технического результата в корпусе (1) вискозиметра установлен теплоизолированный снаружи нагреватель (2) с цилиндрической полостью (5), в которую помещен установленный на платформе (7) цилиндрический стакан (6) для исследуемой жидкости. В стакан 6 погружен установленный на стойке 8 датчик температуры 9 для контроля температуры испытуемой жидкости и помещен чувствительный элемент 10, который установлен на коромысле 11, снабженном электромагнитным приводом 12. При этом коромысло 11 установлено на оси электромагнитного привода с возможностью поворота относительно оси, а чувствительный элемент 10 выполнен в виде шара из полимерного материала и закреплен на стержне 13, расположенном на рабочем плече коромысла с возможностью перемещения в стакане с испытуемой жидкостью. На другом плече коромысла закреплен противовес 14, обеспечивающий свободное перемещение шара в испытуемой жидкости при заданных температурах. Поворот коромысла 11 ограничен верхним 15 и нижним 16 упорами, закрепленными на панели 17 и предотвращающими выход шара из жидкой среды и касание шара дна стакана 6. В средней части коромысла установлен экран 18, взаимодействующий с установленными на панели 17 светодиодом 19 и фотоприемником 20 с возможностью перекрытия светового потока от светодиода на фотоприемник при перемещении коромысла с экраном. При этом светодиод 19 и фотоприемник 20 оптически связаны с экраном 18 для обеспечения задания постоянной глубины перемещения шара 10 в испытуемой жидкости и регистрации времени его перемещения из верхнего положения, характеризующего вязкость испытуемой жидкости. Для управления процессом измерения вязкости датчик температуры 9 электрически связан с блоком задания и измерения температуры испытания 22, снабженным переключателем температуры, светодиод 19 и фотоприемник 20 связаны с блоком контроля перемещения чувствительного элемента, измерения вязкости и ее регистрации 23, а электромагнитный привод 12 связан с блоком его управления 24. Указанные блоки 22, 23 и 24 связаны с блоком питания 25 и образуют систему автоматического управления процессом измерения вязкости. Техническим результатом является определение вязкости жидких сред при различных температурах, повышение точности измерений и автоматизации процесса измерения и упрощение конструкции. 3 ил.
Основные результаты: Вискозиметр, содержащий корпус, цилиндрический стакан для исследуемой жидкости, в котором расположен с возможностью вертикального перемещения чувствительный элемент, снабженный приводом, и блок контроля перемещения чувствительного элемента, подключенный к источнику питания, отличающийся тем, что вискозиметр выполнен с возможностью измерения вязкости исследуемой жидкости при различных температурах и снабжен системой управления процессом измерения, при этом в корпусе вискозиметра установлен теплоизолированный снаружи нагреватель с цилиндрической полостью, в которую помещен установленный на платформе цилиндрический стакан для исследуемой жидкости, выполненный с возможностью возвратно-поступательного перемещения совместно с платформой и фиксации в верхнем положении при установке стакана с испытуемой жидкостью в полости нагревателя, при этом в стакан погружен датчик температуры для контроля температуры испытуемой жидкости, установленный на стойке и электрически связанный с блоком задания и измерения температуры испытания, снабженным переключателем температуры, чувствительный элемент, погружаемый в жидкость, установлен на коромысле, снабженном электромагнитным приводом, связанным с блоком его управления, первый вход которого соединен с блоком задания и измерения температуры испытания, а второй вход соединен с блоком контроля перемещения чувствительного элемента, измерения вязкости и ее регистрации, при этом коромысло установлено на оси этого привода с возможностью поворота относительно ее, а чувствительный элемент выполнен в виде шара из полимерного материала и закреплен на стержне, расположенном на рабочем плече коромысла с возможностью перемещения в стакане с испытуемой жидкостью и ограничения крайнего верхнего и нижнего положений с помощью верхнего и нижнего упоров, закрепленных на панели и предотвращающих выход шара из жидкой среды и касание шара дна стакана, коромысло снабжено также установленным на другом плече противовесом, обеспечивающим свободное перемещение шара в испытуемой жидкости при заданных температурах, со стороны рабочего плеча в средней части коромысла установлен экран, взаимодействующий с установленными на упомянутой панели светодиодом и фотоприемником с возможностью перекрытия светового потока от светодиода на фотоприемник при перемещении коромысла с экраном, при этом панель закреплена в корпусе перпендикулярно плоскости экрана и снабжена соответствующим пазом, а светодиод и фотоприемник, оптически связанные с экраном, для обеспечения задания постоянной глубины перемещения шара в испытуемой жидкости и регистрации времени его перемещения, характеризующего вязкость испытуемой жидкости, электрически связаны с блоком контроля перемещения чувствительного элемента, измерения вязкости и ее регистрации, при этом указанные блоки связаны с блоком питания и ими образована система автоматического управления процессом измерения вязкости испытуемой жидкости, определяемой по формуле , где:П - среднеарифметическое значение показаний вискозиметра, имп;К - константа вискозиметра, зависящая от геометрии чувствительного элемента, глубины его погружения в испытуемую жидкость и диаметра стакана для испытуемой жидкости, имп;α - угол наклона тарировочной зависимости показаний вискозиметра от вязкости эталонных жидкостей.

Изобретение относится к области измерительных средств, в частности для измерения вязкости жидких сред при различных температурах и прозрачности.

Известны приборы для определения вязкости жидкостей: капиллярные, ротационные, вибрационные, ультразвуковые и др. Недостатками этих приборов являются либо сложность конструкции и трудность обработки данных измерений (ротационные), либо необходимость использования вторичных средств (вибрационные), либо невозможность измерения вязкости загрязненных сред (капиллярные).

Известен вискозиметр, содержащий основание, емкость с исследуемой жидкостью, перемещаемый внутри нее чувствительный элемент, соединенный посредством перекинутой через блок гибкой нитью с находящимся в воздухе противовесом, и регистрирующее устройство, фиксирующее высоту подъема чувствительного элемента, причем противовес и чувствительный элемент выполнены в виде двух одинаковых пустотелых шариков равной массы, внутренняя полость шарика, погруженного в емкость с исследуемой жидкостью, заполнена этой жидкостью, а внутренняя полость шарика, являющегося противовесом, заполнена воздухом (Патент РФ №2284501 С1, дата приоритета 05.03.2005, дата публикации 27.09.2006, авторы Пожбелко В.И. и др., RU).

Недостатком известного вискозиметра является ограниченная область использования в связи с невозможностью измерения вязкости в широком диапазоне температур.

Наиболее близким к заявляемому по технической сущности и достигаемому результату принят вискозиметр, содержащий установленный в корпусе полый цилиндр с размещенным внутри него приводным рабочим органом, имеющим обтекаемый сменный каплеобразный наконечник, смонтированный на штоке с возможностью вертикального перемещения, и блок контроля перемещения штока, при этом привод рабочего органа выполнен в виде шарнирно сопряженного со штоком двуплечего рычага, установленного на опоре вращения с соотношением длин плеч рычага, составляющим 1:10, причем одно плечо рычага подпружинено, а другое соединено с осью, связанной с курком, полый цилиндр, в котором размещен рабочий орган, снабжен либо боковым отверстием для пропуска исследуемой жидкости из дополнительной емкости, либо дроссельным отверстием, выполненным в дне цилиндра с возможностью взаимодействия с ним каплеобразного наконечника, а блок контроля перемещения состоит из последовательно соединенных датчика, преобразователя сигнала и цифрового индикатора, подключенных к источнику питания, причем датчик выполнен с возможностью контактирования с расположенным на штоке флажком для получения данных экспресс-анализа измеряемой текучей среды в относительных единицах, регистрируемых цифровым индикатором, показания которого имеют тем большее значение, чем больше вязкость жидкости (Патент РФ №2029939 С1, дата приоритета 12.11.1992, дата публикации 27.02.1995, авторы Зорин А.С. и др., RU, прототип).

Недостатком прототипа является низкая информативность вискозиметра, основанная на получении данных в относительных единицах и ограничивающая область использования в связи с невозможностью измерения вязкости в широком диапазоне температур, например от 40 до 140°C, а также сложность конструкции и низкая точность измерений из-за погрешности от пружинного привода рычага.

Задачей изобретения является расширение области использования и повышение информативности за счет определения вязкости жидких сред, в частности смазочных масел, в температурном интервале от 40 до 140°C, а также упрощение конструкции, повышение точности измерений и автоматизация процесса измерения.

Для решения поставленной задачи предложен вискозиметр, содержащий корпус, цилиндрический стакан для исследуемой жидкости, в котором расположен с возможностью вертикального перемещения чувствительный элемент, снабженный приводом, и блок контроля перемещения чувствительного элемента, подключенный к источнику питания. Согласно изобретению, вискозиметр выполнен с возможностью измерения вязкости исследуемой жидкости при различных температурах и снабжен системой управления процессом измерения, при этом в корпусе вискозиметра установлен теплоизолированный снаружи нагреватель с цилиндрической полостью, в которую помещен установленный на платформе цилиндрический стакан для исследуемой жидкости, выполненный с возможностью возвратно-поступательного перемещения совместно с платформой и фиксации в верхнем положении при установке стакана с испытуемой жидкостью в полости нагревателя, при этом в стакан погружен датчик температуры для контроля температуры испытуемой жидкости, установленный на стойке и электрически связанный с блоком задания и измерения температуры испытания, снабженным переключателем температуры, чувствительный элемент, погружаемый в жидкость, установлен на коромысле, снабженном электромагнитным приводом, связанным с блоком его управления, первый вход которого соединен с блоком задания и измерения температуры испытания, а второй вход соединен с блоком контроля перемещения чувствительного элемента, измерения вязкости и ее регистрации, при этом коромысло установлено на оси этого привода с возможностью поворота относительно ее, а чувствительный элемент выполнен в виде шара из полимерного материала и закреплен на стержне, расположенном на рабочем плече коромысла с возможностью перемещения в стакане с испытуемой жидкостью и ограничения крайнего верхнего и нижнего положений с помощью верхнего и нижнего упоров, закрепленных на панели и предотвращающих выход шара из жидкой среды и касание шара дна стакана, коромысло снабжено также установленным на другом плече противовесом, обеспечивающим свободное перемещение шара в испытуемой жидкости при заданных температурах, со стороны рабочего плеча в средней части коромысла установлен экран, взаимодействующий с установленными на упомянутой панели светодиодом и фотоприемником с возможностью перекрытия светового потока от светодиода на фотоприемник при перемещении коромысла с экраном, при этом панель закреплена в корпусе перпендикулярно плоскости экрана и снабжена соответствующим пазом, а светодиод и фотоприемник, оптически связанные с экраном, для обеспечения задания постоянной глубины перемещения шара в испытуемой жидкости и регистрации времени его перемещения, характеризующего вязкость испытуемой жидкости, электрически связаны с блоком контроля перемещения чувствительного элемента, измерения вязкости и ее регистрации, при этом указанные блоки связаны с блоком питания и ими образована система автоматического управления процессом измерения вязкости испытуемой жидкости, определяемой по формуле ,

где П - среднеарифметическое значение показаний вискозиметра, имп;

К - константа вискозиметра, зависящая от геометрии чувствительного элемента, глубины его погружения в испытуемую жидкость и диаметра стакана для испытуемой жидкости, имп;

α - угол наклона тарировочной зависимости показаний вискозиметра от вязкости эталонных жидкостей.

На фиг. 1 показана блок-схема заявляемого вискозиметра; на фиг. 2 представлен тарировачный график вискозиметра; на фиг. 3 приведены графические зависимости вязкости от температуры испытания для различных групп масел.

Заявляемый вискозиметр содержит установленный в корпусе 1 нагреватель 2, снабженный нагревательным элементом 3 и внешней термоизоляцией 4. Нагреватель 2 выполнен с цилиндрической полостью 5, в которую помещен цилиндрический стакан 6 для исследуемой жидкости, установленный на платформе 7 с возможностью возвратно-поступательного перемещения совместно с платформой и фиксации в верхнем положении при установке стакана 6 с испытуемой жидкостью в полости 5 нагревателя. Для этого цилиндрический стакан 6 может быть снабжен снаружи канавкой, а в платформе может быть выполнен ответный Т-образный паз и установлен фиксатор, ограничивающий перемещение платформы (условно не показано). В стакан 6 погружен установленный на стойке 8 датчик температуры 9 для контроля температуры испытуемой жидкости и помещен чувствительный элемент 10, который установлен на коромысле 11, снабженном электромагнитным приводом 12. При этом коромысло 11 установлено на оси электромагнитного привода с возможностью поворота относительно оси, а чувствительный элемент 10 выполнен в виде шара из полимерного материала и закреплен на стержне 13, расположенном на рабочем плече коромысла с возможностью перемещения в стакане с испытуемой жидкостью. На другом плече коромысла закреплен противовес 14, обеспечивающий свободное перемещение шара в испытуемой жидкости при заданных температурах. Поворот коромысла 11 ограничен верхним 15 и нижним 16 упорами, закрепленными на панели 17 и предотвращающими выход шара из жидкой среды и касание шара дна стакана 6. Со стороны рабочего плеча в средней части коромысла установлен экран 18, взаимодействующий с установленными на панели 17 светодиодом 19 и фотоприемником 20 с возможностью перекрытия светового потока от светодиода на фотоприемник при перемещении коромысла с экраном. Панель 17 закреплена на основании корпуса перпендикулярно плоскости экрана 18 и снабжена пазом 21. Светодиод 19 и фотоприемник 20 оптически связаны с экраном 18 для обеспечения задания постоянной глубины перемещения шара 10 в испытуемой жидкости и регистрации времени его перемещения из верхнего положения, характеризующего вязкость испытуемой жидкости. Для управления процессом измерения вязкости при температурах в диапазоне от 40 до 140°C датчик температуры 9 электрически связан с блоком задания и измерения температуры испытания 22, снабженным переключателем температуры, светодиод 19 и фотоприемник 20 связаны с блоком контроля перемещения чувствительного элемента, измерения вязкости и ее регистрации 23, а электромагнитный привод 12 связан с блоком его управления 24. Первый вход блока управления электромагнитным приводом 24 соединен с блоком задания и измерения температуры испытания 22, а второй вход соединен с блоком контроля перемещения чувствительного элемента, измерения вязкости и ее регистрации 23. Указанные блоки 22, 23 и 24 связаны с блоком питания 25 и образуют систему автоматического управления процессом измерения вязкости.

На передней панели вискозиметра расположены элементы управления, включающие кнопки: «Сеть» - для подачи напряжения на блок питания 25; «Пуск» - для подачи напряжения на нагревательный элемент 3 с блока задания и измерения температуры 22; «Промывка» - для подачи импульсного напряжения на электромагнитный привод 12 с блока его управления 24 для промывки шара 10 и стакана 6 (условно не показано).

Для измерения вязкости в сСт (мм2/с) вискозиметр необходимо оттарировать при температуре 100°C на жидкостях с известной вязкостью и построить тарировочный график зависимости вязкости от показаний вискозиметра, выраженных в импульсах, так как показания зависят от диаметра чувствительного элемента (шара) 10, глубины погружения шара в жидкость, зависящей от длины экрана 18, перекрывающего световой потока от светодиода 19. Тарировочный график, приведенный на фиг. 2, представляет зависимость, которая описывается линейным уравнением:

где П - показания вискозиметра при измерении вязкости жидкостей с известной вязкостью, имп; К - коэффициент, определяемый точкой пересечения зависимости П=f с осью ординат, зависящий от конструктивных особенностей шара, глубины его погружения в жидкость и диаметра стакана для исследуемой жидкости, имп; α - угол наклона зависимости П=f(µ) к оси абсцисс.

Так как показатели К и tgα являются постоянными, то вязкость измеряемой жидкости зависит только от значения показателя П, характеризующего время опускания шара в жидкости на постоянную глубину, выраженное в импульсах.

Вискозиметр работает следующим образом. Стакан 6 заполняется испытуемой жидкостью массой 9 граммов и устанавливается в паз на платформу 7, которая поднимается и фиксируется в верхнем положении, при этом стакан 6 устанавливается в полости 5 нагревателя 2. На блоке 22 с помощью установленного на передней панели переключателя устанавливается необходимая температура (от 40 до 140°C) для измерения вязкости. При нажатии кнопки «Сеть» на передней панели прибора (условно не показано) подается напряжение на блок питания 25, от которого запитываются блоки 22, 23 и 24. Далее при нажатии кнопки «Пуск» напряжение с блока задания и измерения температуры 22 подается в нагреватель 2. Температуру нагревания испытуемой жидкости контролирует датчик температуры 9. При достижении установленной температуры нагреватель 2 обесточивается, и с блока 22 подается сигнал на блок 24, с которого импульсное напряжение подается на электромагнитный привод 12. При этом коромысло 11 совместно с шаром 10 совершает колебания от верхнего 15 до нижнего 16 упоров, происходит перемешивание испытуемой жидкости и охлаждение ее до заданной температуры, так как при отключении нагревателя за счет градиента температуры нагревателя температура жидкости увеличивается. При точном достижении установленной температуры коромысло 11 фиксируется в верхнем положении, и после подачи сигнала с блока 22 электромагнитный привод 12 обесточивается, и шар 10 под собственным весом перемещается в жидкости вместе с коромыслом 10 от верхнего 15 до нижнего 16 упоров. При этом также происходит перемещение экрана 18, и в момент перекрытия светового потока от светодиода 19 на фотоприемник 20 экраном 18 подается импульсное напряжение на расположенный в блоке 23 счетчик импульсов (условно не показано).

Время перемещения шара 10 в жидкости зависит от ее вязкости, а его значение измеряется и регистрируется цифровым индикатором, связанным со счетчиком импульсов и также расположенным в блоке 23 (условно не показано). Значение вязкости определяется по среднеарифметическому значению индикатора из пяти опытов. Для этого после индикации первого опыта нажимается кнопка «Пуск», и опыт повторяется. После пятикратного измерения вязкости платформа 7 со стаканом 6 опускается в нижнее положение, стакан вынимается из паза платформы 7, испытуемая жидкость сливается, а стакан 6 заполняется промывочной жидкостью, устанавливается на платформу 7 и поднимается в нагреватель 2. Далее нажимается кнопка «Промывка», при этом на электромагнитный привод 12 из блока 24 подается импульсное напряжение, что обеспечивает колебания коромысла 11 с шаром 10 от верхнего 15 до нижнего 16 упоров и промывку шара. После промывки шара 10 и протирки стакана 6 вискозиметр готов к дальнейшей работе.

По формуле (1) по результатам пятикратного измерения определяется вязкость испытуемой жидкости в сСт.

Для получения вязкостно-температурной зависимости в диапазоне температур от 40 до 140°C стакан 6 заполняется испытуемой жидкостью один раз, и при каждой температуре производят пять измерений. Температура испытания задается с помощью переключателя, установленного на передней панели прибора. Графические зависимости вязкости от температуры испытания приведены на фиг. 3 в логарифмических координатах для минеральных моторных масел: Роснефть Optimum 10W-40 SQ/CD (график а); Лукойл Стандарт 10W-40 SF/CC (график б); минерального трансмиссионного масла Bizol 80W-90 GL5 (график в) и синтетического трансмиссионного масла Bizol 75W-90 GL5 (график г). Данные зависимости имеют линейный характер.

Преимущества предлагаемого вискозиметра заключаются в использовании малого объема испытуемой жидкости, возможности получения вязкостно-температурной зависимости, сокращении времени измерения, автоматизации процесса измерения и упрощении конструкции.

Вискозиметр, содержащий корпус, цилиндрический стакан для исследуемой жидкости, в котором расположен с возможностью вертикального перемещения чувствительный элемент, снабженный приводом, и блок контроля перемещения чувствительного элемента, подключенный к источнику питания, отличающийся тем, что вискозиметр выполнен с возможностью измерения вязкости исследуемой жидкости при различных температурах и снабжен системой управления процессом измерения, при этом в корпусе вискозиметра установлен теплоизолированный снаружи нагреватель с цилиндрической полостью, в которую помещен установленный на платформе цилиндрический стакан для исследуемой жидкости, выполненный с возможностью возвратно-поступательного перемещения совместно с платформой и фиксации в верхнем положении при установке стакана с испытуемой жидкостью в полости нагревателя, при этом в стакан погружен датчик температуры для контроля температуры испытуемой жидкости, установленный на стойке и электрически связанный с блоком задания и измерения температуры испытания, снабженным переключателем температуры, чувствительный элемент, погружаемый в жидкость, установлен на коромысле, снабженном электромагнитным приводом, связанным с блоком его управления, первый вход которого соединен с блоком задания и измерения температуры испытания, а второй вход соединен с блоком контроля перемещения чувствительного элемента, измерения вязкости и ее регистрации, при этом коромысло установлено на оси этого привода с возможностью поворота относительно ее, а чувствительный элемент выполнен в виде шара из полимерного материала и закреплен на стержне, расположенном на рабочем плече коромысла с возможностью перемещения в стакане с испытуемой жидкостью и ограничения крайнего верхнего и нижнего положений с помощью верхнего и нижнего упоров, закрепленных на панели и предотвращающих выход шара из жидкой среды и касание шара дна стакана, коромысло снабжено также установленным на другом плече противовесом, обеспечивающим свободное перемещение шара в испытуемой жидкости при заданных температурах, со стороны рабочего плеча в средней части коромысла установлен экран, взаимодействующий с установленными на упомянутой панели светодиодом и фотоприемником с возможностью перекрытия светового потока от светодиода на фотоприемник при перемещении коромысла с экраном, при этом панель закреплена в корпусе перпендикулярно плоскости экрана и снабжена соответствующим пазом, а светодиод и фотоприемник, оптически связанные с экраном, для обеспечения задания постоянной глубины перемещения шара в испытуемой жидкости и регистрации времени его перемещения, характеризующего вязкость испытуемой жидкости, электрически связаны с блоком контроля перемещения чувствительного элемента, измерения вязкости и ее регистрации, при этом указанные блоки связаны с блоком питания и ими образована система автоматического управления процессом измерения вязкости испытуемой жидкости, определяемой по формуле , где:П - среднеарифметическое значение показаний вискозиметра, имп;К - константа вискозиметра, зависящая от геометрии чувствительного элемента, глубины его погружения в испытуемую жидкость и диаметра стакана для испытуемой жидкости, имп;α - угол наклона тарировочной зависимости показаний вискозиметра от вязкости эталонных жидкостей.
ВИСКОЗИМЕТР
ВИСКОЗИМЕТР
ВИСКОЗИМЕТР
Источник поступления информации: Роспатент

Показаны записи 231-240 из 250.
20.02.2019
№219.016.c264

Горелочное устройство алюминиевого электролизера с интенсивным смешиванием компонентов

Изобретение относится к цветной металлургии, а именно к электролитическому получению алюминия, и предназначено для сжигания анодных газов в горелочных устройствах электролизеров с самообжигающимся анодом. Горелочное устройство алюминиевого электролизера с интенсивным смешиванием компонентов...
Тип: Изобретение
Номер охранного документа: 0002456380
Дата охранного документа: 20.07.2012
11.03.2019
№219.016.dddf

Рамнопанельная блок-секция сборно-разборного здания

Изобретение относится к области строительства, в частности к рамно-панельной блок-секции сборно-разборного здания. Технический результат заключается в повышении надежности и общей устойчивости. Блок-секция содержит ригели, уложенное на них покрытие, стойки с подкосами, шарнирно соединенные с...
Тип: Изобретение
Номер охранного документа: 0002460853
Дата охранного документа: 10.09.2012
20.03.2019
№219.016.e842

Ультразвуковой способ определения внутренних механических напряжений в конструкционных материалах

Использование: для определения внутренних механических напряжений в конструкционных материалах. Сущность: заключается в том, что пропускают импульсы ультразвуковых колебаний через исследуемый образец, фиксируют прошедшие сигналы с учетом измерения разности скоростей и времен в напряженном...
Тип: Изобретение
Номер охранного документа: 0002455637
Дата охранного документа: 10.07.2012
20.03.2019
№219.016.e9e9

Асфальтобетонная смесь

Изобретение относится к дорожно-строительным материалам, а именно к составам асфальтобетонной смеси на основе нефтяного вязкого битума и заполнителей, которые могут быть использованы при строительстве и ремонте автомобильных дорог, а также аэродромных покрытий. Технический результат: улучшение...
Тип: Изобретение
Номер охранного документа: 0002460703
Дата охранного документа: 10.09.2012
29.03.2019
№219.016.f5da

Способ переработки золотосодержащего сырья для извлечения золота

Изобретение относится к обогащению полезных ископаемых, в частности к переработке золотосодержащих руд. Исходное сырье измельчают и приготавливают из него пульпу. Пульпу обрабатывают с введением реагентов, собирателя и носителя при перемешивании и отделяют полученный золотосодержащий агломерат....
Тип: Изобретение
Номер охранного документа: 0002455373
Дата охранного документа: 10.07.2012
10.04.2019
№219.017.09e2

Способ производства анодной массы

Изобретение относится к способу производства анодной массы для самообжигающихся анодов алюминиевых электролизеров и может быть использовано в производстве обожженных анодов. В способе производства анодной массы, включающем предварительный раздельный нагрев коксовой шихты, коксовой пыли и пека,...
Тип: Изобретение
Номер охранного документа: 0002464360
Дата охранного документа: 20.10.2012
10.04.2019
№219.017.0a1d

Способ проветривания карьера

Изобретение относится к горной промышленности и может быть применено при проветривании глубоких карьеров, расположенных в долинах крупных рек. Способ включает установку восходящих воздухопроводных каналов на борту и за пределами карьера и соединение их магистральными воздухопроводными каналами,...
Тип: Изобретение
Номер охранного документа: 0002460885
Дата охранного документа: 10.09.2012
19.04.2019
№219.017.31eb

Генератор озона

Изобретение относится к производству озона и может быть использован для очистки воды и обработки помещений в медицине. Генератор озона содержит разрядную камеру в виде прямоугольного параллелепипеда, внутри которой стопкой уложены плоские электроды и диэлектрические барьеры, имеется входная и...
Тип: Изобретение
Номер охранного документа: 0002458855
Дата охранного документа: 20.08.2012
29.04.2019
№219.017.4479

Анодный токоподвод алюминиевого электролизера

Изобретение относится к конструкции анодного токоподвода электролизера для получения алюминия. Анодный токоподвод алюминиевого электролизера, состоящий из вертикального наращиваемого стержня, выполнен из соединенных встык с созданием электрического контакта керамических открытопористых и...
Тип: Изобретение
Номер охранного документа: 0002456382
Дата охранного документа: 20.07.2012
29.04.2019
№219.017.4676

Керамическая масса для изготовления кирпича

Изобретение относится к области строительства, в частности к получению эффективного керамического строительного кирпича. Техническим результатом изобретения является снижение теплопроводности и плотности кирпича. Керамическая масса для изготовления кирпича содержит среднепластичную глину и...
Тип: Изобретение
Номер охранного документа: 0002462433
Дата охранного документа: 27.09.2012
Показаны записи 231-240 из 250.
29.12.2017
№217.015.f4e0

Способ определения термоокислительной стабильности смазочных материалов

Изобретение относится к технологии оценки качества жидких смазочных материалов. При осуществлении способа испытывают пробы смазочного материала постоянной массы в присутствии воздуха, при оптимальных температурах ниже критической, выбранных в зависимости от базовой основы смазочного материала и...
Тип: Изобретение
Номер охранного документа: 0002637621
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.faec

Способ определения температуры вспышки смазочных масел

Изобретение относится к области испытания материалов с помощью нагрева, в частности к технологии определения температуры вспышки смазочных масел без применения поджога паров, и может быть использовано при оценке эксплуатационных характеристик товарных и работающих смазочных масел. Согласно...
Тип: Изобретение
Номер охранного документа: 0002640318
Дата охранного документа: 27.12.2017
19.01.2018
№218.016.0679

Способ оперативного контроля остойчивости судна в чрезвычайных ситуациях

Изобретение относится к способу оперативного контроля остойчивости судна в чрезвычайных ситуациях. Для осуществления способа генерируют варианты функциональной и организационной структуры системы управления (СУ) бортовой интеллектуальной системой (БИС), моделируют режимы функционирования СУ БИС...
Тип: Изобретение
Номер охранного документа: 0002631127
Дата охранного документа: 19.09.2017
10.05.2018
№218.016.43ae

Способ прогнозирования показателей термоокислительной стабильности смазочных материалов

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Предложен способ прогнозирования показателей термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с...
Тип: Изобретение
Номер охранного документа: 0002649660
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4721

Способ определения температурной области работоспособности смазочных материалов

Изобретение относится к технологии оценки качества жидких смазочных материалов. Предложен способ определения температурной области работоспособности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием, постоянной массы, минимум, при...
Тип: Изобретение
Номер охранного документа: 0002650602
Дата охранного документа: 16.04.2018
01.03.2019
№219.016.cea3

Способ определения качества смазочных масел

Изобретение относится к технологии контроля качества смазочных масел при их производстве и идентификации. Сущность: испытывают смазанную пару трения и определяют качество масел. Пробу масла нагревают при постоянной температуре с перемешиванием постоянной массы. Через равные промежутки времени...
Тип: Изобретение
Номер охранного документа: 0002454654
Дата охранного документа: 27.06.2012
01.03.2019
№219.016.cf13

Способ определения работоспособности смазочных масел

Изобретение относится к технологии оценки качества жидких смазочных материалов. При осуществлении способа отбирают пробы отработавших масел, делят на две части, первую часть подвергают фотометрированию, определяют коэффициент поглощения светового потока, вторую часть пробы постоянной массы...
Тип: Изобретение
Номер охранного документа: 0002451293
Дата охранного документа: 20.05.2012
29.03.2019
№219.016.ed96

Гидроразъем

Изобретение относится к космической технике, в частности в стыковочных устройствах космических аппаратов для соединения и разъединения магистралей. Техническим результатом является повышение надежности с обеспечением герметичности магистрали жидкостей. В гидроразъеме, содержащем стыкуемые...
Тип: Изобретение
Номер охранного документа: 0002683054
Дата охранного документа: 26.03.2019
19.04.2019
№219.017.33f1

Устройство для разрушения снежно-ледяных образований на дорожных покрытиях

Изобретение относится к устройствам для разрушения снежно-ледяных образований и гололеда на автодорогах, аэродромах и тому подобных сооружениях. Устройство содержит горизонтальный приводной вал, на котором смонтированы тяги, каждая из которых состоит из двух частей, одна из которых связана с...
Тип: Изобретение
Номер охранного документа: 0002463407
Дата охранного документа: 10.10.2012
23.04.2019
№219.017.36c6

Способ определения термоокислительной стабильности и температурной стойкости смазочных материалов

Изобретение относится к технологии оценки качества жидких смазочных материалов. Предложен способ определения термоокислительной стабильности и температурной стойкости смазочных материалов, при котором испытывают пробы смазочного материала постоянной массы в присутствии воздуха при температурах...
Тип: Изобретение
Номер охранного документа: 0002685582
Дата охранного документа: 22.04.2019
+ добавить свой РИД